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Abstract. If κ is an infinite cardinal, the boldface GCH at κ is the statement that κ+ does not inject into
P(κ). It will be shown here that ω1 → (ω1)

ω1
2 (the strong partition property at ω1) and jµ1

ω1
(ω1) = ω2

(the ultrapower of ω1 by the club filter on ω1 is ω2) implies that the boldface GCH holds at ωn for all n < ω
using combinatorial arguments. In particular, AD implies the boldface GCH holds at ωn for all n < ω.

1. Introduction

This paper will work with the Zermelo-Frankel axiom ZF for set theory (without the axiom of choice,
AC). Let κ be an infinite cardinal. There is a cardinal which does not inject into P(κ). What is the
smallest cardinal which does not inject into P(κ)? Since κ always injects into P(κ), the smallest that
this cardinal can be is κ+, the cardinal successor of κ. Cantor showed that κ does not surject onto P(κ).
Thus |κ| < |P(κ)|. If the axiom of choice holds, then all sets are wellorderable and one must have that κ+

injects into P(κ). Assuming the axiom of choice, the smallest cardinal which does not inject into P(κ)
must be greater than κ+. The usual generalized continuum hypothesis at κ (under AC) is the assertion that
|P(κ)| = 2κ = κ+. Assuming AC and the generalized continuum hypothesis at κ, one has that κ++ is the
smallest cardinal which does not inject into P(κ). However, without the axiom of choice, it is potentially
possible to have the most elegant answer to the above question: κ+ is the smallest cardinal that does not
inject into P(κ). Steel ([18], Theorem 8.26) calls this phenomenon the boldface GCH at κ which is the
assertion that κ+ does not inject into P(κ). Say that the boldface GCH holds below κ if the boldface GCH
holds for all δ < κ.

The boldface GCH at ω or the statement that there are no uncountable wellorderable subsets of R is a
very important property of many nice choiceless framework for the set theoretic universe. It follows from
classical regularity properties. If countable choice for R, ACR

ω, holds and all subsets of R have the property of
Baire, then wellordered unions of meager sets are meager. This implies R is not wellorderable. If in addition,
all subsets of R have the perfect set property, then every uncountable subset of R cannot be wellorderable.
Thus the boldface GCH at ω holds under ACR

ω and all subsets of R have the property of Baire and the perfect
set property. If ω1 is measurable (there is a countably complete nonprincipal ultrafilter on ω1), then also the
boldface GCH at ω holds (see Fact 3.2). These properties are all consequences of the axiom of determinacy,
AD, which states that every infinite two player game has a winning strategy for one of the two players. AD+

is Woodin’s extension of the axiom of determinacy.
The boldface GCH at ω is very important for the basic theory of determinacy. One important consequence

is that if the boldface GCH at ω holds,M is an inner model of ZFC, and P ∈M is a forcing which is countable
in the real world, then in the real world, there is a generic G ⊆ P which is P-generic over M . The existence
of generics for forcings countable in the real world is used in Woodin’s analysis of nice models of AD+ as
symmetric extension of their HOD-type submodels using Vopěnka forcing or ordinal definable ∞-Borel code
forcing. The boldface GCH at ω synergizes well with the Baire property. For example, Woodin ([15] Theorem

5.42 Claim 2) showed that ACR
ω, the boldface GCH at ω, and all subsets of R have the Baire property, then

for any set A, if P ∈ HOD{A} is a forcing which is countable in the real world, then there is a comeager set
of G ⊆ P which are P-generic over HOD{A} and moreover HOD{A}[G] = HOD{A,G}. Recently, [2] used this

observation of Woodin to show the following cardinality computations: Assume ACR
ω, all subsets of R have

the Baire property, and the boldface GCH at ω holds, then |ωω1| < |<ω1ω1|, ωω1 does not inject into R×ON,

and S1 does not inject into ωω1 (where S1 = {f ∈ [ω1]
<ω1 : sup(f) = ω

L[f ]
1 }).
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The boldface GCH at ω and all subsets of R have the Baire property proves the following result: ([9]
Proposition 3.5) For every Φ : R → P(ON), there exists a comeager K and countable E ⊆ P(ON) so that
for all r ∈ K, there exists an F ⊆ E so that Φ(r) =

⋃
F . This result is used to prove some interesting

combinatorial results under AD+. Let Θ be the supremum of the ordinals onto which R surjects. By [9]
Lemma 3.8 and Theorem 4.3, under AD+, if κ < Θ is an cardinal of uncountable cofinality, then there
are no maximal almost disjoint family A on κ such that ¬(|A| < cof(κ)). More recently, the above fact
was used to obtain large sets with respect to a normal measure or partition filters which are simultaneous
homogeneous for many partitions. This is used in [1] to show under AD+ that there is a four-element basis
for linear ordering on R × κ when κ < Θ is a regular cardinal and there is a twelve-element basis for the
linear orderings on R× κ when κ < Θ is a singular cardinal of uncountable cofinality.

The axiom of determinacy influences most strongly the sets which are surjective images of R. Steel ([18]
Theorem 8.26) showed that in L(R), the boldface GCH holds below Θ. Woodin ([19] Theorem 2.16) extended
these methods to show that AD+ proves the boldface GCH holds below Θ.

The general boldface GCH plays an important role in the structure of the cardinality of sets which are
nonwellorderable but linearly orderable (or equivalently, sets which are in bijection with subsets of the
power set of an ordinal). If κ is a cardinal, let PB(κ) be the set of bounded subsets of κ. By [2] and [6]
Theorem 4.8, if the boldface GCH holds below κ, then ¬([κ]cof(κ)| ≤ |PB(κ)|). If κ is regular cardinal and
the boldface GCH at κ holds, then |[κ]<κ| < |P(κ)|. Let B(ω, κ) be the set of all f : ω → κ such that
sup(f) < κ. If cof(κ) > ω, then ωκ = B(ω, κ). However, [2] shows that if the boldface GCH holds below κ,
then |B(ω, κ)| < |ωκ| if cof(κ) = ω.

Steel’s and Woodin’s result that the boldface GCH holds below Θ can be regarded as the first step in
classifying the cardinal exponentiations below Θ. Substantial evidence from [5], [6], [8], [7], and [10] suggests
that cardinal exponentiation follows a very elegant simple behavior called the ABCD Conjecture: Under
AD+, for all cardinals ω ≤ α ≤ β < Θ and ω ≤ γ ≤ δ < Θ, |αβ| ≤ |γδ| if and only if α ≤ γ and β ≤ δ.
Recently, [2] showed that under AD+, if ω < κ < Θ and ϵ < κ, then PB(κ) does not inject into ϵON, the
class of ϵ-length sequences of ordinals. By combining the latter result and the the boldface GCH below Θ,
[2] proved the ABCD conjecture under AD+.

The proof of the boldface GCH below Θ uses the inner model theory analysis of HOD. First, Steel ([17],
[20], and [18] Theorem 8.26) showed that if L(R) |= AD, then L(R) |= “the boldface GCH below Θ”. To show

this, Steel showed that HODL(R) ↾ δ21 is a direct limit of a directed system of certain iterable mice. Woodin
(as sketched in [19] Theorem 2.16) generalized this argument to show AD+ proves the boldface GCH below
Θ. To do this, one first applies Suslin-co-Suslin reflection to bring the question of the boldface GCH at some
κ < Θ into a nice model of AD+. Woodin then showed that a certain HOD-type submodel of this nice AD+

model has a direct system analysis using hybrid strategy mice.
More recently, many purely combinatorial questions of determinacy have been resolved below ωω or the

projective ordinals by classical determinacy methods to provide evidence before a general proof using inner
model theory is found. The boldface GCH at ω was known by the classical regularity properties or using the
fact that ω1 is measurable. The boldface GCH at ω1 was known by the fact that ω2 is measurable since it is
a weak partition cardinal as shown by Martin. Remarkably, it seems that Steel established the full boldface
GCH below Θ without even knowing that the boldface GCH holds at ω2 by classical determinacy arguments.

This paper will give a proof that the boldface GCH holds below ωω using combinatorial methods of AD.
(It should be noted that by the Moschovakis coding lemma, if κ < ΘL(R), the boldface GCH at κ holds in
the real world if and only if L(R) |= “the boldface GCH holds at κ”. Thus Steel’s result actually implies that
AD proves the boldface GCH below ΘL(R).) The paper will work with a combinatorial principle of ω1 which
is true in AD. Let ⋆ denote the following principle. (See Definition 2.10.)

⋆ For every function f : ω1 → ω1, there is a Kunen function K which bounds f .

ω1 →∗ (ω1)
ω1
2 is the strong partition relation on ω1. Martin showed that AD implies ω1 →∗ (ω1)

ω1
2 . See

Definition 2.10 for the definition of a Kunen function. Essentially, a Kunen function bounding f : ω1 → ω1

is a sequence ⟨φα : α < ω1⟩ such that there is a club C ⊆ ω1 so that for all α ∈ C, φα is a surjection of α
onto f(α). Kunen proved that AD implies every function f : ω1 → ω1 has a Kunen function bounding it
by defining what is known as a Kunen tree. Both of these results are important elementary consequences of
AD, but this paper will only use ω1 →∗ (ω1)

ω1
2 and ⋆. One can show that over ω1 →∗ (ω1)

2
2, ⋆ is equivalent
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to jµ1
ω1
(ω1) = ω2 where µ1

ω1
is the club filter on ω1. Kleinberg [14] studied the cardinals below ωω using

the hypothesis that ω1 →∗ (ω1)
ω1
2 and jµ1

ω1
(ω1) = ω2. It seems that ⋆ is much more directly practical than

jµ1
ω1
(ω1) = ω2. AD is the only theory in which ω1 →∗ (ω1)

ω1
2 and ⋆ (or jµ1

ω1
(ω1) = ω2) is known to hold.

AD, using the method of good coding system by Martin, is the only known theory that implies the existence
of a strong partition cardinal. Radin forcing was used by Mitchell ([16]) to produce a model in which the
club filter µ1

ω1
is a countably complete ultrafilter and by Woodin to produce a model in which ω1 is a weak

partition cardinal (ω1 →∗ (ω1)
ϵ
2 for all ϵ < ω1). However, it seems that AD is still the only known theory in

which µ1
ω1

is a countably complete ultrafilter and jµ1
ω1
(ω1) = ω2.

The main result of the paper is that ω1 →∗ (ω1)
ω1
2 and ⋆ imply the boldface GCH below ωω. The paper is

completely self-contained. The combinatorial methods used here can be generalized using Jackson’s theory
of descriptions ([11]) for the projective ordinals to show the boldface GCH holds below the supremum of the
projective ordinals, sup{δ1n : n ∈ ω}, and a bit beyond under AD. These methods show the boldface GCH at
a level far below Θ. Only inner model theory is known to prove the boldface GCH below Θ assuming AD+.

2. Partition Relations and Ultrapowers by Partition Filters

If X is a set and Y is a class, then XY is the class of all functions f : X → Y . If ϵ ∈ ON and X ⊆ ON is
a set, then [X]ϵ is the set of all increasing functions f : ϵ→ X. If κ is a cardinal, ϵ ≤ κ and γ < δ, then the
ordinary partition relation κ→ (κ)ϵγ is the assertion that for all P : [κ]ϵ → γ, there is a β < γ and an A ⊆ κ
with |A| = κ so that for all f ∈ [A]ϵ, P (f) = β. However one will need the correct type partition relations
here since one will be primarily interested in the ultrapowers by the partition measures obtained using the
correct type partition relations.

Definition 2.1. Let ϵ ∈ ON and f : ϵ→ ON be a function.

• f is discontinuous everywhere if and only if for all α < ϵ, sup(f ↾ α) = sup{f(ᾱ) : ᾱ < α} < f(α).
• f has uniform cofinality ω if and only if there is a function F : ϵ×ω → ON so that for all α < ϵ and
n ∈ ω, F (α, n) < F (α, n+ 1) and f(α) = sup{F (α, n) : n ∈ ω}.

• f has the correct type if and only if f is both discontinuous everywhere and has uniform cofinality
ω.

If X ⊆ ON and ϵ ∈ ON, then let [X]ϵ∗ denote the set of all increasing function f : ϵ→ X of the correct type.
Note that [κ]1∗ is the set of ordinals below κ of cofinality ω.

Definition 2.2. Let κ be an uncountable cardinal, ϵ ≤ κ, and γ < κ. The correct type partition relation
κ→∗ (κ)ϵγ is the statement that for all P : [κ]ϵ∗ → γ, there is a β < γ and a C ⊆ κ which is a club subset of
κ so that for all f ∈ [C]ϵ∗, P (f) = β.

If κ is an uncountable cardinal, ϵ ≤ κ, and γ < κ, then κ →∗ (κ)<ϵ
γ is the statement that for all ϵ̄ < ϵ,

κ→∗ (κ)ϵ̄γ . If κ is an uncountable cardinal, ϵ ≤ κ, and γ ≤ κ, then κ→∗ (κ)ϵ<γ is the statement that for all

γ̄ < γ, κ→∗ (κ)ϵγ̄ . If κ is an uncountable cardinal, ϵ ≤ κ, and γ ≤ κ, then κ→∗ (κ)<ϵ
<γ is the statement that

for all ϵ̄ < ϵ and γ̄ < γ, κ→∗ (κ)ϵ̄γ̄ .

If κ→∗ (κ)<κ
2 , then κ is called a weak partition cardinal. If κ→∗ (κ)κ2 , then κ is called a strong partition

cardinal. If κ→∗ (κ)κ<κ, then κ is called a very strong partition cardinal.

One can show that κ→ (κ)ω·ϵ
γ implies κ→∗ (κ)ϵγ and κ→∗ (κ)ϵγ implies κ→ (κ)ϵγ for all ϵ ≤ κ and γ < κ.

Note that every function of uniform cofinality ω must take range among the limit ordinals. Thus for
any cardinal κ and 1 ≤ ϵ ≤ κ, [κ]ϵ∗ ̸= ∅ requires that κ be an uncountable cardinal. Thus the notions of
correct type function and the correct type partition relations are only meaningful for uncountable cardinals.
Partition on ω (and notions such as the Ramsey property) can only be expressed using the ordinary partition
relation.

Definition 2.3. Let κ be an uncountable cardinal and ϵ ≤ κ. Define the ϵ-exponent (correct type) partition
filter µϵ

κ on [κ]ϵ∗ by A ∈ µϵ
κ if and only if there is a club C ⊆ κ so that [C]ϵ∗ ⊆ A. Note that µ1

κ is the ω-club
filter.

If X ⊆ ON, then let enumX : ot(X) → X be the increasing enumeration of X. An ordinal γ is indecom-
posable if and only if for all α, β < γ, α+ β < γ and α · β < γ. If κ is a cardinal, X ⊆ κ, ot(X) = κ, α < κ,
and γ < κ, then let nextγX(α) be the (1 + γ)th-element of X greater than α.
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The following results says that if C ⊆ κ is a club, then there is a club D ⊆ C which is very thin inside of
C. This club is particularly useful for many constructions.

Fact 2.4. Let κ be an uncountable regular cardinal. Let C ⊆ κ be a club consisting entirely of indecomposable
ordinals. Let D = {α ∈ C : enumC(α) = α}. Then D is a club subset of C and for any ϵ ∈ D and

α, β, γ, δ < ϵ, nextα·β+γ
C (δ) < ϵ.

Proof. D is easily seen to be closed. Let α < κ. Let α0 = α + 1. If αn ∈ C has been defined, then let
αn+1 = enumC(αn + 1). Let αω = sup{αn : n ∈ ω} and note that α < αω ∈ C since C is a club. For all
β < αω, there is an n ∈ ω so that β < αn. Thus enumC(β) < enumC(αn) < enumC(αn + 1) = αn+1 <
αω. Since {enumC(β) : β < αω} ⊆ {γ ∈ C : γ < αω}, ot{γ ∈ C : γ < αω} = αω. Since αω ∈ C,
enumC(αω) = αω. Thus α < αω and αω ∈ D. This shows that D is unbounded. Thus D is a club. Now
suppose ϵ ∈ D and α, β, γ, δ < ϵ. Since ϵ ∈ D ⊆ C and C consists entirely of indecomposable ordinals, ϵ
is an indecomposable ordinal. Since ϵ is in particular a limit ordinal and ϵ = enumC(ϵ) > δ, there is some
ν < ϵ so that δ < enumC(ν) < enumC(ϵ) = ϵ. Since ϵ is indecomposable, ν + α · β + γ < ϵ. Note that

nextα·β+γ
C (δ) < enumC(ν + α · β + γ) < enumC(ϵ) = ϵ. □

Fact 2.5. Let κ be an uncountable cardinal.

(1) κ→∗ (κ)22 implies that κ is regular.
(2) For all ϵ ≤ κ, κ→∗ (κ)ϵ2 implies µϵ

κ is an ultrafilter.
(3) For all ϵ ≤ κ and γ < κ, κ→∗ (κ)ϵγ implies µϵ

κ is a γ+-complete ultrafilter.

(4) If ϵ < κ, then κ→∗ (κ)ϵ+ϵ
2 implies κ→∗ (κ)ϵ<κ. Thus κ→∗ (κ)<κ

2 implies κ→∗ (κ)<κ
<κ.

Proof. (1) Suppose κ is not regular. Let δ = cof(κ) < κ and ρ : δ → κ be an increasing cofinal function.
Define P : [κ]2 → 2 by P (α, β) = 0 if and only if there exists an η < δ so that α < ρ(η) < β. By κ→∗ (κ)22,
let C ⊆ κ be a club homogeneous for P . First, suppose C is homogeneous for P taking value 0. For each
α < κ, let ηα = enumC(ω · α + ω). For all α < κ, (ηα, ηα+1) ∈ [C]2∗. P (ηα, ηα+1) = 0 implies there is a
ξ < δ so that ηα < ρ(ξ) < ηα+1. Let ξα be the least ξ such that ηα < ρ(ξ) < ηα+1. For any α < ᾱ < κ,
ρ(ξα) < ηα+1 ≤ ηᾱ < ρ(ξᾱ). Since ρ is an increasing function, this implies that ⟨ξα : α < κ⟩ is an increasing
function of κ into δ which is impossible since δ < κ. Next, suppose C is homogeneous for P taking value 1.
Let α be any element of [C]1∗. Since ρ is cofinal, fix ξ̄ < δ so that α < ρ(ξ̄). Since C is a club, let β be any
element of [C]1∗ so that ρ(ξ̄) < β. Thus α < ρ(ξ̄) < β. However, P (α, β) = 0 implies that there is no ξ < δ
with α < ρ(ξ) < β which is contradiction. So C is not homogeneous for P which also a contradiction.

(2) Let X ⊆ [ω1]
ϵ
∗. Define PX : [κ]ϵ → 2 by PX(ℓ) = 1 if and only if ℓ ∈ X. By κ→∗ (κ)ϵ2, there is a club

C homogeneous for P . If C is homogeneous for P taking value 1, then [C]ϵ∗ ⊆ X and hence X ∈ µϵ
κ. If C is

homogeneous for P taking value 0, then [C]ϵ∗ ⊆ [κ]ϵ∗ \X and thus [κ]ϵ∗ \X ∈ µϵ
κ.

(3) Suppose µϵ
κ is not γ+-complete. Let δ < γ+ and ⟨Xξ : ξ < δ⟩ is a sequence in µϵ

κ such that⋂
ξ<δXξ /∈ µϵ

κ. Let ϕ : γ → δ be a surjection. For η < γ, let Yη = Xϕ(η) and note that ⟨Yη : η < γ⟩ is a

sequence in µϵ
κ and

⋂
η<γ Yη /∈ µϵ

κ. Let C0 ⊆ κ be a club so that [C0]
ϵ
∗ ⊆ [κ]ϵ∗ \

⋂
η<γ Yη. Define P : [C0]

ϵ
∗ → γ

by P (ℓ) is the least η < γ so that ℓ /∈ Yη. By κ →∗ (κ)ϵγ , there is an η̄ < γ and a club C1 ⊆ C0 so that for
all ℓ ∈ [C1]

ϵ
∗, P (ℓ) = η̄. Thus [C1]

ϵ
∗ ∩ Yη̄ = ∅. Thus Yη̄ /∈ µϵ

κ. Contradiction.
(4) Let γ < κ and P : [κ]ϵ∗ → γ. If ℓ ∈ [κ]ϵ+ϵ, then let ℓ0, ℓ1 ∈ [κ]ϵ be defined by ℓ0 = ℓ ↾ ϵ and

ℓ1(α) = ℓ(ϵ+ α). Define Q0 : [κ]ϵ+ϵ → 2 by Q0(ℓ) = 0 if and only if P (ℓ0) = P (ℓ1). By κ→∗ (κ)ϵ+ϵ
2 , let C0

be a club homogeneous for Q. Suppose C0 is homogeneous for Q taking value 1. Define Q1 : [κ]ϵ+ϵ → 2 by
Q1(ℓ) = 0 if and only if P (ℓ0) < P (ℓ1). By κ →∗ (κ)ϵ+ϵ

2 , there is a club C1 ⊆ C0 which is homogeneous for
Q1. First, suppose C1 is homogeneous for Q1 taking value 1. For each n ∈ ω, let ιn : ϵ → κ be defined by
ιn(α) = enumC1

((ω·ϵ)·n+ω·α+ω). Let In : ϵ×ω → ω1 be defined by In(α, k) = enumC1
((ω·ϵ)·n+ω·α+k). For

all n ∈ ω, ιn is discontinuous and In witnesses that ιn has uniform cofinality ω. Thus ιn ∈ [C1]
ϵ
∗. Note that

for all n < ω, sup(ιn) < ιn+1(0). For each n ∈ ω, there is an ℓn ∈ [C1]
ϵ+ϵ
∗ so that ℓ0n = ιn and ℓ1n = ιn+1. For

each n ∈ ω, Q0(ℓn) = 1 and Q1(ℓn) = 1 imply that P (ιn) = P (ℓ0n) > P (ℓ1n) = P (ιn+1). Thus ⟨P (ιn) : n ∈ ω⟩
is an infinite descending sequence of ordinals which is a contradiction. Now suppose C1 is homogeneous for
Q1 taking value 1. For each ξ < γ + 1, let τξ(α) = enumC1

((ω · ϵ) · ξ + ω · α + ω). Let Tξ : ϵ × ω → ω1 by
Tξ(α, k) = enumC1((ω ·ϵ) ·ξ+ω ·α+k). For each ξ < γ+1, τξ is discontinuous and has uniform cofinality ω as
witnessed by Tξ. For each ξ0 < ξ1 < γ+1, there is an ℓξ0,ξ1 ∈ [C1]

ϵ+ϵ
∗ so that ℓ0ξ0,ξ1 = τξ0 and ℓ1ξ0,ξ1 = τξ1 . For
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all ξ0 < ξ1 < γ + 1, Q0(ℓξ0,ξ1) = 1 and Q1(ℓξ0,ξ1) = 0 imply that P (τξ0) = P (ℓ0ξ0,ξ1) < P (ℓ1ξ0,ξ1) = P (τξ1).

Thus ⟨τ(ξ) : ξ < γ + 1⟩ is order embedding of γ + 1 into γ which is impossible. Thus C0 must have
been homogeneous for Q0 taking value 0. Let ι0, ι1 ∈ [C0]

ϵ
∗. Let ῑ ∈ [C0]

ϵ
∗ be any element such that

max{sup(ι0), sup(ι1)} < ῑ(0). Then there are ℓ0, ℓ1 ∈ [C0]
ϵ
∗ so that ℓ00 = ι0, ℓ

0
1 = ι1 and ℓ10 = ῑ = ℓ11.

Then Q0(ℓ0) = 0 = Q1(ℓ1) implies that P (ι0) = P (ℓ00) = P (ℓ10) = P (ῑ) = P (ℓ11) = P (ℓ01) = P (ι1). Since
ι0, ι1 ∈ [C0]

ϵ
∗ were arbitrary, one has that P is constant on [C0]

ϵ
∗. □

Fact 2.6. Let κ be an uncountable cardinal, 1 ≤ ϵ < κ, δ < ϵ, κ →∗ (κ)
δ+1+(ϵ−δ)
2 , and κ →∗ (κ)ϵ−δ

<κ . Let
Φ : [κ]ϵ → κ has the property that {ι ∈ [κ]ϵ : Φ(ι) < ι(δ)} ∈ µϵ

κ. Then there is a club C ⊆ κ and a function
Ψ : [C]δ∗ → κ so that for all ι ∈ [C]ϵ∗, Φ(ι) = Ψ(ι ↾ δ).

Proof. If ℓ ∈ [κ]
δ+1+(ϵ−δ)
2 , let ℓ̂ ∈ [ω1]

ϵ
∗ be defined by ℓ̂(α) = ℓ(α) if α < δ and ℓ̂(α) = ℓ(δ + 1 + (α − δ)) if

δ ≤ α < ϵ. Let C0 ⊆ κ be a club consisting entirely of indecomposable ordinals so that for all ι ∈ [C0]
ϵ
∗,

Φ(ι) < ι(δ). Define P : [C]δ+1+(ϵ−δ) → 2 by P (ℓ) = 0 if and only if Φ(ℓ̂) < ℓ(δ). By κ →∗ (κ)
δ+1+(ϵ−δ)
2 ,

there is a club C1 ⊆ C0 which is homogeneous for P . Let C2 = {α ∈ C1 : enumC1
(α) = α}. Pick any

ι ∈ [C2]
ϵ
∗. Since Φ(ι) < ι(δ) because ι ∈ [C2]

ϵ
∗ ⊆ [C0]

ϵ
∗, next

ω
C1

(Φ(ι)) < ι(δ) by Fact 2.4. Let ℓ ∈ [C1]
δ+1+(ϵ−δ)
∗

be such that ℓ̂ = ι and ℓ(δ) = nextωC1
(Φ(ι)) (and note that ℓ has uniform cofinality ω since ι does and

cof(nextωC1
(Φ(ι))) = ω). Since Φ(ℓ̂) = Φ(ι) < nextωC1

(Φ(ι)) = ℓ(δ), one has P (ℓ) = 0. Thus C1 is homogeneous

for P taking value 0. For any σ ∈ [C2]
δ
∗, let Φσ : [C2\(sup(σ)+1)]ϵ−δ

∗ → κ be defined by Φσ(τ) = Φ(σ τ̂). For

any τ ∈ [C2 \ (sup(σ) + 1)]ϵ−δ
∗ , let ℓσ,τ = σ ⟨̂nextωC1

(sup(σ))⟩̂ τ . Note that ℓσ,τ ∈ [C1]
δ+1+(ϵ−δ)
∗ , ℓ̂σ,τ = σ τ̂ ,

and ℓ(δ) = nextωC1
(sup(σ)). P (ℓσ,τ ) = 0 implies that Φσ(τ) = Φ(σ τ̂) = Φ(ℓ̂σ,τ ) < ℓ(δ) = nextωC1

(sup(σ)).

By κ →∗ (κ)ϵ−δ
<κ , µϵ−δ

κ is κ-complete. There is a γσ < κ so that for µϵ−δ
κ -almost all τ , Φσ(τ) = γσ. Define

Q : [C2]
ϵ
∗ → 2 by Q(ι) = 0 if and only if Φ(ι) = γι↾δ. By κ →∗ (κ)ϵ2, there is a club C3 ⊆ C2 which is

homogeneous for Q. Pick any σ ∈ [C3]
δ
∗. There is a club D ⊆ C3 \ (sup(σ) + 1) so that for all τ ∈ [D]ϵ−δ

∗ ,
Φσ(τ) = γσ. Fix τ ∈ [D]ϵ−δ

∗ . Let ι = σ τ̂ and note that ι ∈ [C3]
ϵ
∗. Φ(ι) = Φι↾δ(τ) = Φσ(τ) = γσ = γι↾δ. Thus

Q(ι) = 0. This shows that C3 is homogeneous for Q taking value 0. Define Ψ : [C3]
δ
∗ → κ by Ψ(σ) = γσ.

For any ι ∈ [C3]
ϵ
∗, Q(ι) = 0 implies that Φ(ι) = γι↾δ = Ψ(ι ↾ δ). □

Fact 2.7. Let κ be an uncountable cardinal satisfying κ→∗ (κ)22. Then µ1
κ is normal.

Proof. Note that κ →∗ (κ)22 implies κ →∗ (κ)1<κ by Fact 2.5. This result now follows from Fact 2.6 with
δ = 0 and ϵ = 1. □

Fact 2.8. Suppose ϵ < κ and κ →∗ (κ)ϵ+1
2 . Let Φ : [κ]ϵ → κ. Then there is a club C ⊆ κ so that for all

f ∈ [C]ϵ∗, Φ(f) < nextωC(sup(f)).

Proof. Define P : [κ]ϵ+1
∗ → 2 by P (g) = 0 if and only if Φ(g ↾ ϵ) < g(ϵ). By κ →∗ (κ)ϵ+1

2 , there is a club
C ⊆ κ which is homogeneous for P . Pick any f ∈ [C]ϵ∗. Let γ = nextωC(Φ(f)). Let g = f ⟨̂γ⟩ and note
that g ∈ [C]ϵ+1

∗ . Since Φ(g ↾ ϵ) = Φ(f) < nextωC(Φ(f)) = γ = g(ϵ), one has that P (g) = 0. Since C is
homogeneous for P and g ∈ [C]ϵ+1

∗ , one has that C is homogeneous for P taking value 0. For any f ∈ [C]ϵ∗,
let gf = f ⟨̂nextωC(sup(f))⟩. P (gf ) = 0 implies that Φ(f) = Φ(gf ↾ ϵ) < gf (ϵ) = nextωC(sup(f)). □

Note that the ordinary partition relation ω → (ω)n2 for n ∈ ω is the finite Ramsey theorem. For an
uncountable cardinals κ, the ordinary partition relation κ → (κ)22 is equivalent to the weak compactness of
κ which is compatible with the axiom of choice. However, the correct type partition relation κ →∗ (κ)22
implies µ1

κ is normal which can be used to show ωκ is not a wellorderable set. The finite exponent correct
type partition relation already seems to imply many of the consequences of the infinite exponent ordinary
partition relation. If ACR

ω holds and ϵ < ω1, then a function f : ϵ→ ω1 has uniform cofinality ω if and only
if the range of f consists of limit ordinals. However if µ1

ω1
is a normal ultrafilter, then one can show that

the identity function id : ω1 → ω1 does not have uniform cofinality ω. The notion of a correct type function
is a nontrivial concept when handling functions f : ω1 → ω1 which will happen frequently in this paper.

Fact 2.9. (Martin; [12], [11], [4], [3]) Assume AD. ω1 →∗ (ω1)
ω1
<ω1

.
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Since AD implies ω1 → (ω1)
ω1
<ω1

, one has that for all ϵ ≤ ω1, µ
ϵ
ω1

are countably complete ultrafilters.
Actually, AD implies there are no nonprincipal ultrafilters on ω which can be used to show any ultrafilter on
any set is countably complete.

Definition 2.10. Let
∏

α<ω1
α = {(α, β) : β < α}. A Kunen function is a function K :

∏
α<ω1

α → ω1

such that for all α < ω1, {K(α, β) : β < α} is an ordinal which will be denote χK
α . Define ΞK : ω1 → ω1 by

ΞK(α) = χK
α . If β < ω1, then let Kβ : (ω1 \ β + 1) → ω1 be defined by Kβ(α) = K(α, β).

Let f : ω1 → ω1. The Kunen function K bounds f if and only if {α < ω1 : f(α) ≤ ΞK(α)} ∈ µ1
ω1
. The

Kunen function K strictly bounds f if and only if {α ∈ ω1 : f(α) < ΞK(α)} ∈ µ1
ω1
.

Fact 2.11. (Kunen; [11] Lemma 4.1)) AD. For every function f : ω1 → ω1, there is a Kunen function
K :

∏
α<ω1

α→ ω1 which bounds f .

Definition 2.12. Let ⋆ be the following statement.

• For any function f : ω1 → ω1, there is a Kunen function K :
∏

α<ω1
α→ ω1 which bounds f .

Note that ω1 →∗ (ω1)
ω1
2 and ⋆ follows from AD by Fact 2.9 and Fact 2.11. The main result of the paper

will be proved from the combinatorial principles ω1 →∗ (ω1)
ω1
2 and ⋆.

Definition 2.13. If µ is an measure on a set X. If f and g are two functions on X, then let f ∼µ g if
and only if {x ∈ X : f(x) = g(x)} ∈ µ. If f : X → ON and g : X → ON, then write f <µ g if and only if
{x ∈ X : f(x) < g(x)} ∈ µ. If f : X → ON, then let [f ]µ be the class of all functions g with g ∼µ f . The
ultrapower

∏
X ON/µ is the set of ∼µ equivalence class of functions f : X → ON. The ultrapower ordering

on
∏

X ON/µ is defined by x ≺µ y if and only if there exists f, g : X → ON so that x = [f ]µ and y = [g]µ
and f <µ g. jµ : ON →

∏
X ON/µ is defined by jµ(α) = [cα]µ where cα : X → {α} is the constant function.

If µ is a measure and x ∈ jµ(ω1), then let initµ(x) = {y ∈ jµ(ω1) : y ≺µ x}.

Fact 2.14. Assume ω1 →∗ (ω1)
ω1
2 . jµ1

ω1
(ω1) ≤ ω2 implies ⋆.

Proof. ω1 →∗ (ω1)
2
2 implies µ1

ω1
, the club filter on ω1, is a normal ultrafilter on ω1 by Fact 2.7. Thus

ω1 = [id]µ1
ω1

where id : ω1 → ω1 is the identity function. Now suppose jµ1
ω1
(ω1) ≤ ω2. Let f : ω1 → ω1 be

any function with [id]µ1
ω1

≤ [f ]µ1
ω1
. Thus ω1 = [id]µ1

ω1
≤ [f ]µ1

ω1
< jµ1

ω1
(ω1) ≤ ω2. Let b : ω1 → initµ1

ω1
([f ]µ1

ω1
)

be a bijection. Define a wellordering ≺ on ω1 by α ≺ β if and only if b(α) < b(β). Let W = (ω1,≺) and
note that ot(W) = [f ]µ1

ω1
. For each α < ω1, let Wα = (α,≺↾ α). If β < α < ω1, then let ot(Wα, β) be the

rank of β in Wα. Define K :
∏

α<ω1
α → ω1 by K(α, β) = ot(Wα, β). One seeks to show that K is a Kunen

function for f . It is clear that for all α ∈ ω1, {K(α, β) : β < α} = {ot(Wα, β) : β < α} = ot(Wα). Thus
ΞK(α) = ot(Wα). Suppose η < [f ]µ1

ω1
. Let ξη = b−1(η). Define gη : ω1\(ξη+1) → ω1 by gη(α) = ot(Wα, ξη).

Note that for all α ∈ ω1 \ (ξη + 1), gη(α) < ot(Wα) = ΞK(α). Define Ψ : initµ1
ω1
([f ]µ1

ω1
) → initµ([Ξ

K]µ1
ω1
)

by Ψ(η) = [gη]µ1
ω1
. Suppose η0 < η1 < [f ]µ1

ω1
. Let ζ = max{ξη0

, ξη1
}. For all α ∈ ω1 \ (ζ + 1), gη0

(α) =

ot(Wα, ξη0) < ot(Wα, ξη1) = gη1(α) since b(ξη0) = η0 < η1 < b(ξη1). Thus Ψ(η0) = [gη0 ]µ1
ω1

< [gη1 ]µ1
ω1

=

Ψ(η1). Ψ is an order embedding of initµ([f ]µ1
ω1
) into initµ1

ω1
([ΞK]). Thus [f ]µ1

ω1
≤ [ΞK]µ1

ω1
. This shows that

{α ∈ ω1 : f(α) ≤ ΞK(α)} ∈ µ1
ω1
. K is a Kunen function bounding f . □

Fact 2.15. Assume ω1 →∗ (ω1)
2
2. Let f : ω1 → ω1 and K be a Kunen function strictly bounding f . Then

there is a γ < ω1 so that f ∼µ Kγ .

Proof. ω1 →∗ (ω1)
2
2 implies that µ1

ω1
is a normal ultrafilter by Fact 2.7. Let A = {α ∈ ω1 : f(α) < ΞK(α)} ∈

µ. For each α ∈ ω1, one has that f(α) < ΞK(α) = χK
α = {K(α, β) : β < α}. Define g : A → ω1 by g(α) is

the least β < α so that K(α, β) = f(α). For all α ∈ A, g(α) < α. Since µ1
ω1

is normal, there is a γ < ω1 and
B ⊆ A with B ∈ µ and g(α) = γ for all α ∈ B. Thus Kγ(α) = f(α) for all α ∈ B. □

Fact 2.16. Assume ω1 →∗ (ω1)
2
2. Let f : ω1 → ω1 and K be a Kunen function bounding f . Then there is

an injection Γ : initµ1
ω1
([f ]µ1

ω1
) → ω1 so that for all x ∈ initµ1

ω1
([f ]µ1

ω1
), [KΓ(x)]µ1

ω1
= x.

Proof. Suppose x ≺µ1
ω1

[f ]µ1
ω1
. Let g : ω1 → ω1 represent x. Then g <µ1

ω1
f and hence K is also a Kunen

function bounding g. By Fact 2.15, there is a γ < ω1 so that Kγ ∼µ g. Let Γ(x) be the least γ such that
[Kγ ]µ1

ω1
= x. This defines the desired injection Γ : [f ]µ1

ω1
→ ω1. □
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Dependent choice implies ultrapowers of ordinals are wellordering. However the existence of Kunen
functions bounding functions from ω1 to ω1 is sufficient to show that the ultrapower of ω1 by the finite
exponent partition measures on ω1 are wellorderings.

Fact 2.17. Assume ω1 →∗ (ω1)
2
2 and ⋆. The ultrapower jµ1

ω1
(ω1) =

∏
ω1
ω1/µ

1
ω1

is a wellordering.

Proof. Suppose the ultrapower is not wellfounded. There is an A ⊆
∏

ω1
ω1/µ

1
ω1

which has no minimal
element according to the ultrapower ordering ≺µ1

ω1
. Pick any element x ∈ A. Let f : ω1 → ω1 be a

representative for x. Let K be a Kunen function bounding f . By Fact 2.16, there is an injection Γ :
initµ1

ω1
([f ]µ1

ω1
) → ω1 so that for all y ≺µ1

ω1
[f ]µ1

ω1
, y = [KΓ(y)]µ1

ω1
. Let B = Γ[[f ]µ1

ω1
] be the range of Γ.

Let δ0 be the least ordinal δ ∈ B. Suppose δn has been defined. Since [f ]µ1
ω1

has no ≺-least element,

there is some δ ∈ B so that Kδ <µ1
ω1

Kδn . Let δn+1 be the least δ ∈ B so that Kδ <µ1
ω1

Kδn . For each

n ∈ ω, Dn = {α ∈ ω1 : Kδn+1(α) < Kδn(α)} ∈ µ1
ω1
. Since µ1

ω1
is countably complete, D =

⋂
n∈ωDn ∈ µ1

ω1

and hence nonempty. Let ᾱ ∈ D. Then ⟨Kδn(ᾱ) : n ∈ ω⟩ is an infinite descending sequence of ordinals.
Contradiction. □

Fact 2.18. Assume ω1 →∗ (ω1)
2
2 and ⋆. jµ1

ω1
(ω1) ≤ ω2.

Proof. By Fact 2.17, jµ1
ω1
(ω1) is a wellordering. By Fact 2.16, each initial segment of jµ1

ω1
(ω1) injects into

ω1. Thus jµ1
ω1
(ω1) ≤ ω2. □

Fact 2.19. Assume ω1 →∗ (ω1)
2
2. ⋆ and jµ1

ω1
(ω1) ≤ ω2 are equivalent.

Proof. This follows from Fact 2.14 an Fact 2.18. □

Fact 2.20. Let κ be an uncountable cardinal and µ be a normal ultrafilter on κ containing no bounded subsets
of κ. Let q : κ→ κ be a function and A ∈ µ. Then the set B = {α ∈ A : (∀α′ < α)(q(α′) < α)} ∈ µ.

Proof. Suppose not. Then C = κ \ B ∈ µ. Let f : C → κ be defined by f(α) is the least α′ < α so that
α ≤ q(α′). Since µ is normal, there is a D ⊆ C with D ∈ µ and a β < κ so that for all α ∈ D, h(α) = β.
Thus for all α ∈ D, α ≤ q(h(α)) = q(β). This is impossible since D is an unbounded set. □

Fact 2.21. Let κ be an uncountable cardinal and µ be a normal ultrafilter on κ containing no bounded subsets
of κ. If A ∈ µ, then {α ∈ A : enumA(α) = α} ∈ µ.

Proof. By applying Fact 2.20 to enumA, the set Ā = {α ∈ κ : (∀α′ < α)(enumA(α
′) < α)} ∈ µ. Let

B = A ∩ Ā ∈ µ. If α ∈ B, then sup(enumA ↾ α) = α and thus enumA(α) = α since α ∈ A. So
B ⊆ {α ∈ A : enumA(α) = α}. □

Fact 2.22. (Martin) Assume κ is an uncountable cardinal satisfying κ→∗ (κ)κ2 .

(1) Let µ be an ultrafilter on κ such that jµ(κ) is a wellordering. Then jµ(κ) is a cardinal.
(2) Let µ be a normal ultrafilter on κ which contains no bounded subsets of κ such that jµ(κ) is a

wellordering. Then jµ(κ) is a regular cardinal.

Proof. (1) First assume µ is an ultrafilter on an uncountable cardinal satisfying κ →∗ (κ)κ2 and jµ(κ) is a
wellordering (and thus one may assume jµ(κ) is an ordinal). For the sake of contradiction, suppose jµ(κ) is
not a cardinal. Then there is a λ < jµ(κ) and an injection Φ : jµ(κ) → λ. If f : κ→ κ is a function, then let
f0 = f(2 · α) and f1 = f(2 · α+ 1). Define P : [κ]κ∗ → 2 by P (f) = 0 if and only if Φ([f0]µ) = Φ([f1]µ). By
κ→∗ (κ)κ2 , there is a club C0 ⊆ κ which is homogeneous for P . Take any f ∈ [C0]

κ
∗ . Note that for all α < κ,

f0(α) < f1(α) and hence [f0]µ < [f1]µ. Since Φ is injective, Φ([f0]µ) ̸= Φ([f1]µ) and thus P (f) = 1. So C0

is homogeneous for P taking value 1. Define Q : [C0]
κ
∗ → 2 by Q(f) = 0 if and only if Φ([f0]µ) < Φ([f1]µ).

By κ→∗ (κ)κ2 , there is a club C1 ⊆ C0 which is homogeneous for Q. First suppose C1 is homogeneous for Q
taking value 1. For each k ∈ ω and α < κ, let gk(α) = enumC1((ω · ω) · α+ ω · k + ω). Note that gk ∈ [C1]

κ
∗ .

For each k ∈ ω, there is an fk ∈ [C1]
κ
∗ so that f0k = gk and f1k = gk+1. Then P (fk) = 1 and Q(fk) = 1

imply that Φ([gk+1]µ) = Φ([f1k ]µ) < Φ([f0k ]µ) = Φ([gk]µ). Thus ⟨Φ([gk]µ) : k ∈ ω⟩ is an infinite descending
sequence in the ordinal λ which is a contradiction. Suppose C1 is homogeneous for Q taking value 0. Since
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λ < jµ(κ), let h : κ → κ be such that [h]µ = λ. Define T = {(α, β) : α < κ ∧ β < h(α) + 2}.1 Let <lex

be the lexicographic ordering on T . Note that the ordertype of (T,<lex) is κ. Let ψ : T → C1 be an order
preserving function from (T,<lex) into (C1, <) of the correct type which means the following two conditions
hold:

• For all x ∈ T , sup{ψ(y) : y <lex x} < ψ(x).
• There is a function Ψ : T × ω → κ so that for all x ∈ T and k ∈ ω, Ψ(x, k) < Ψ(x, k + 1) and
ψ(x) = sup{Ψ(x, k) : k ∈ ω}.

For any function g : κ→ κ, define ĝ : κ→ C1 by

ĝ(α) =

{
ψ(α, g(α)) g(α) < h(α) + 1

ψ(α, 0) otherwise
.

Define Ĝ : κ× ω → κ by

Ĝ(α, k) =

{
Ψ((α, g(α), k) g(α) < h(α) + 1

Ψ((α, 0), k) otherwise
.

Note that Ĝ witnesses that ĝ has uniform cofinality ω. Since ψ is discontinuous everywhere, ĝ is discontinuous
everywhere. Thus ĝ : κ → C1 is an increasing function of the correct type and hence ĝ ∈ [C1]

κ
∗ . For any

η < λ+ 1, let δη = [ĝ]µ for any g : κ→ κ such that [g]µ = η. Note that δη is independent of the choice of g
representing η. Let η0 < η1 < λ+ 1. Let g0, g1 : κ→ κ be such that η0 = [g0]µ and η1 = [g1]µ. For i ∈ 2, let
g̃0, g̃1 ∈ [C1]

κ
∗ be defined by

g̃0(α) =

{
ψ(α, g0(α)) g0(α) < g1(α) < h(α) + 1

ψ(α, 0) otherwise

g̃1(α) =

{
ψ(α, g1(α)) g0(α) < g1(α) < h(α) + 1

ψ(α, 1) otherwise

Note that for all α < κ, g̃0(α) < g̃1(α) by the definitions above and the fact that ψ is order preserving on
(T,<lex). For all α < κ, g̃1(α) < g̃0(α+1) since g̃1(α) = ψ(α, ξ) for some ξ < h(α)+2, g̃0(α+1) = ψ(α+1, ζ)
for some ζ < h(α + 1) + 2, and by comparing the first coordinates since ψ is order preserving on (T,<lex).
Thus there is an f ∈ [C1]

κ
∗ so that f0 = g̃0 and f1 = g̃1. Since [g0]µ < [g1]µ < λ + 1, one has that

A = {α ∈ ω1 : g0(α) < g1(α) < h(α) + 1} ∈ µ. Hence for all α ∈ A, ĝ0(α) = g̃0(α) and ĝ1(α) = g̃1(α).
Thus δη0

= [ĝ0]µ = [g̃0]µ = [f0]µ and δη1
= [ĝ1]µ = [g̃1]µ = [f1]µ. P (f) = 1 and Q(f) = 0 imply that

δη0 = [f0]µ < [f1]µ = δη1 . Thus ⟨δη : η < λ + 1⟩ is an order preserving injection of λ + 1 into λ which is
impossible. (Note that since jµ(κ) is an ordinal, λ < jµ(κ) is also an ordinal. For ordinals λ, λ + 1 cannot
inject into λ.)

(2) Now suppose µ is a normal ultrafilter on κ which does not contain any bounded subsets of κ and jµ(κ)
is an ordinal. For the sake of contradiction, suppose jµ(κ) is not regular. Then there is an infinite cardinal
λ < jµ(κ) and an increasing map ρ : λ→ jµ(κ). Define V : [κ]κ∗ → 2 by V (f) = 0 if and only if there exists a
ξ < λ so that [f0]µ < ρ(ξ) < [f1]µ (where f0, f1 ∈ [κ]κ is obtained from f ∈ [κ]κ as before). By κ→∗ (κ)κ2 ,
there is a club C0 homogeneous for V . First suppose C0 is homogeneous for V taking value 0. Let h : κ→ κ
be such that [h]µ = λ. Define W = {(α, β) : β < h(α) + 2}. As before, (W,<lex) has ordertype κ. Let
ψ : W → C0 be a order preserving function from (W,<lex) → C0 of the correct type. For any g : κ → κ,
define ǧ0, ǧ1 : κ→ κ by

ǧ0(α) =

{
ψ(α, g(α)) g(α+ 1) < h(α) + 2

ψ(0, 0) otherwise

ǧ1(α) =

{
ψ(α, g(α) + 1) g(α+ 1) < h(α) + 2

ψ(0, 1) otherwise
.

Note that for all g : κ→ κ, ǧ0, ǧ1 ∈ [C0]
κ
∗ and for all α < κ, ǧ0(α) < ǧ1(α) < ǧ0(α+1) by arguments similar

to the above. Thus there is some f ∈ [C0]
κ
∗ so that f0 = ǧ0 and f1 = ǧ1. Now suppose η < λ + 1. Let

g : κ → κ be such that η = [g]µ. Let f ∈ [C0]
κ
∗ be such that f0 = ǧ0 and f1 = ǧ1. V (f) = 0 implies that

1The purpose for adding 2 rather than 1 is to ensure that (α, 0), (α, 1) ∈ T for all α < κ.
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there is a ξ < λ so that [ǧ0]µ = [f0]µ < ρ(ξ) < [f1]µ = [ǧ1]µ. Let ξη be the least such ξ and note that
ξη is independent of the choice of g representing η. Now suppose η0 < η1 < λ + 1. Let g, p : κ → κ be
such that η0 = [g]µ and η1 = [p]µ. Note that B = {α ∈ κ : g(α) < p(α) < h(α) + 2} ∈ µ. For all α ∈ B,
ǧ1(α) ≤ p̌0(α). Thus ρ(ξη0

) < [ǧ1]µ ≤ [p̌0]µ < ρ(ξη1
). Since ρ is an increasing function, one must have

that ξη0
< ξη1

. Thus ⟨ξη : η < λ + 1⟩ is an order preserving injection of λ + 1 into λ. This is impossible.
Now suppose C0 is homogeneous for V taking value 1. Let g0 ∈ [C0]

κ
∗ . Since ρ : λ → jµ(κ) is cofinal,

there is some ξ̄ so that ρ(ξ̄) > [g0]µ. Since jµ(C0) is order isomorphic to jµ(κ), let g1 ∈ [C0]
κ
∗ be so that

[g1]µ > ρ(ξ̄). Since g0 is an increasing function, for all α < κ, there is an α′ so that g1(α) < g0(α
′). Let q(α)

be the least α′ so that g1(α) < g0(α
′). Since [g0]µ < ρ(ξ̄) < [g1]µ, let A0 ∈ µ be such that for all α ∈ A0,

g0(α) < g1(α). Let A1 = {α ∈ A0 : (∀α′ < α)(q(α′) < α)} and note that A1 ∈ µ by Fact 2.20. Define
f : κ → κ by f(2 · α) = g0(enumA1(α)) and f(2 · α + 1) = g1(enumA1(α)) for all α < κ. Note that for all
α < κ, f(2 ·α) = g0(enumA1

(α)) < g1(enumA1
(α)) = f(2 ·α+1) since g0(γ) < g1(γ) for all γ ∈ A1. Note also

that for all α < κ, f(2 · α + 1) = g1(enumA1
(α)) < g0(q(enumA1

(α))) < g0(enumA1
(α + 1)) = f(2 · (α + 1))

by the definition of q and A1. This shows that f : κ→ κ is an increasing function. It is clear that f ∈ [C0]
κ
∗

since g0, g1 ∈ [C0]
κ
∗ . Let A2 = {α ∈ A1 : enumA1(α) = α} which belongs to µ by Fact 2.21. For all i ∈ 2 and

α ∈ A2, f
i(α) = gi(enumA1(α)) = gi(α). Thus [f i]µ = [gi]µ for both i ∈ 2. V (f) = 1 implies that there is

no ξ < λ with [g0]µ = [f0]µ < ρ(ξ) < [f1]µ = [g1]µ. This is contradiction since [g0]µ < ρ(ξ̄) < [g1]µ. It has
been shown that V has no homogeneous club which violates κ→∗ (κ)κ2 . □

Fact 2.23. (Martin) Assume ω1 →∗ (ω1)
ω1
2 and ⋆. Then jµ1

ω1
(ω1) = ω2 and ω2 is a regular cardinal.

Proof. By Fact 2.17, jµ1
ω1
(ω1) is a wellordering. By Fact 2.16, each initial segment of jµ1

ω1
(ω1) injects into ω1.

Thus ω1 = [id]µ1
ω1
< jµ1

ω1
(ω1) ≤ (ω1)

+ = ω2. Since Fact 2.22 implies jµ1
ω1
(ω1) must be a cardinal, one has

that jµ1
ω1
(ω1) = ω2. Since µ1

ω1
is a normal ultrafilter by Fact 2.7, Fact 2.22 also implies that ω2 = jµ1

ω1
(ω1)

is regular. □

Fact 2.24. Assume ω1 →∗ (ω1)
ω1
2 . ⋆ and jµ1

ω1
(ω1) = ω2 are equivalent.

Proof. This follow from Fact 2.14 and Fact 2.23 □

Next, one will show that for all 1 ≤ n < ω, jµn
ω1
(ω1) = ωn+1 and cof(ωn+1) = ω2 (without assuming any

form of dependent choice or even countable choice).

Fact 2.25. Assume ω1 →∗ (ω1)
n+1
2 . For each 1 ≤ n < ω and g : ω1 → ω1, let Σ̂n(g) : [ω1]

n → ω1 be

defined by Σ̂(g)(ι) = g(ι(n− 1)). Let Σn : jµ1
ω1
(ω1) → jµn

ω1
(ω1) be defined by Σn([g]µ1

ω1
) = [Σ̂(g)]µn

ω1
. Then

Σn : jµ1
ω1
(ω1) → jµn

ω1
(ω1) is cofinal.

Proof. Suppose x ∈ jµn
ω1
(ω1). Let f : [ω1]

n → ω1 represent x. Define Pf : [ω1]
n+1 → 2 by Pf (ℓ) = 0 if and

only if f(ℓ ↾ n) < ℓ(n). By ω1 →∗ (ω1)
n+1
2 , there is a club C ⊆ ω1 which is homogeneous for Pf . Pick any

ι ∈ [C]n∗ . Let γ ∈ [C]1∗ be such that f(ι) < γ. Let ℓ = ι̂ ⟨γ⟩ and note that ℓ ∈ [C]n+1
∗ . Then Pf (ℓ) = 0 since

f(ℓ ↾ n) = f(ι) < γ = ℓ(n). This shows that C is homogeneous for Pf taking value 0. Let g : ω1 → ω1

be defined by g(α) = nextωC(α). Let ι ∈ [C]n∗ and let ℓι = ι̂ ⟨g(ι(n − 1))⟩. Note that ℓι ∈ [C]n+1
∗ and thus

Pf (ℓι) = 0. This implies that f(ι) = f(ℓι ↾ n) < ℓι(n) = g(ι(n−1)) = Σ̂n(g)(ι). Since ι ∈ [C]n∗ was arbitrary,

it has been shown that x = [f ]µn
ω1

≺µn
n−1

[Σ̂n(g)]µn
ω1

= Σn([g]µ1
ω1
). □

Fact 2.26. Assume 1 ≤ m < n < ω and ω1 →∗ (ω1)
n
2 . There is an order embedding of jµm

ω1
(ω1) into a

proper initial segment of jµn
ω1
(ω1).

Proof. If f : [ω1]
m → ω1, then let f̂ : [ω1]

n → ω1 be defined by f̂(ℓ) = f(ℓ ↾ m). Define Ψ : jµm
ω1
(ω1) →

jµn
ω1
(ω1) by Ψ(x) = [f̂ ]µn

ω1
where f : [ω1]

m → ω1 represents x. One can check that Ψ is well defined

independent of the choice of representative f for x and is an order embedding.
Let g : [ω1]

n → ω1 be defined by g(ℓ) = ℓ(m). The claim is that the range of ψ is below [g]µn
ω1
. Let

f : [ω1]
m → ω1. Let Pf : [ω1]

m+1 → ω1 be defined by Pf (σ) = 0 if and only if f(σ ↾ m) < σ(m). By

ω1 → (ω1)
m+1
2 , let C0 ⊆ ω1 be a club homogeneous for Pf . Pick ι ∈ [C0]

m
∗ . Let σ = ι̂ ⟨nextωC0

(f(ι))⟩
and note that σ ∈ [C0]

m+1
∗ . Since f(σ ↾ m) = f(ι) < nextωC0

(f(ι)) = σ(m), one has that Pf (σ) = 0.
9



Thus C0 is a homogeneous for Pf taking value 0. For any ι ∈ [C0]
m
∗ , let σι = ι̂ ⟨nextωC0

(ι(m − 1))⟩.
Pf (σι) = 0 implies that f(ι) < nextωC0

(ι(m − 1)). Let C1 = {α ∈ C0 : enumC0
(α) = α}. Let ℓ ∈ [C1]

n.

One has f̂(ℓ) = f(ℓ ↾ m) < nextωC0
(ℓ(m − 1)) < ℓ(m) = g(ℓ) since ℓ(m) ∈ C1 and using Fact 2.4. Thus

Ψ([f ]µm
ω1
) < [g]µn

ω1
. This shows that Ψ maps jµm

ω1
(ω1) into an initial segment of jµn

ω1
(ω1). □

Definition 2.27. Suppose f : [ω1]
n → ω1. For each 1 ≤ k ≤ n, define Ikf : [ω1]

k → ω1 by Ikf (σ) =

sup{f(τˆσ) : τ ∈ [ω1]
n−k ∧ sup(τ) < σ(0)}. (Note that Inf = f .)

Note that if f, g : [ω1]
n → ω1 with [f ]µn

ω1
⪯µn

ω1
[g]µn

ω1
, then it is not necessarily true that [I1f ]µ1

ω1
≤ [I1g ]µ1

ω1
.

However, one has the following.

Fact 2.28. Suppose 1 ≤ n < ω1, f, g : [ω1]
n → ω1 with [f ]µn

ω1
⪯µn

ω1
[g]µn

ω1
. Then there is a f̄ : [ω1]

n → ω1

so that [f̄ ]µn
ω1

= [f ]µn
ω1

and for all α < ω1, I
1
f̄
(α) ≤ I1g (α).

Proof. Since [f ]µn
ω1

⪯µn
ω1

[g]µn
ω1
, A = {ℓ ∈ [ω1]

n : f(ℓ) ≤ g(ℓ)} ∈ µn
ω1
. Define f̄ : [ω1]

n → ω1 by

f̄(ℓ) =

{
f(ℓ) ℓ ∈ A

0 ℓ /∈ A
.

Note that [f ]µn
ω1

= [f̄ ]µn
ω1
. For all α ∈ ω1, I

1
f̄
(α) = sup{f̄(ℓ) : ℓ ∈ [ω1]

n ∧ ℓ(n − 1) = α} = sup{f̄(ℓ) : ℓ ∈
A ∧ ℓ(n− 1) = α} ≤ sup{g(ℓ) : ℓ ∈ A ∧ ℓ(n− 1) = α} ≤ sup{g(ℓ) : ℓ ∈ [ω1]

n ∧ ℓ(n− 1) = α} = I1g (α) where
the first inequality uses the fact that f(ℓ) ≤ g(ℓ) for all ℓ ∈ A. □

Definition 2.29. Suppose 1 ≤ n < ω, K is a Kunen function, and h : [ω1]
n → ω1. Define Kn,h : [ω1]

n+1 →
ω1 by Kn,h(ℓ) = K(ℓ(n), h(ℓ ↾ n)) when h(ℓ ↾ n) < ℓ(n) and Kn,h(ℓ) = 0 otherwise.

Fact 2.30. Assume ω1 →∗ (ω1)
ω1
2 and ⋆. For all 1 ≤ n < ω, jµn

ω1
(ω1) = ωn+1 and cof(ωn+1) = ω2.

Proof. Suppose 1 ≤ n < ω and the following has been shown:

(1) jµn
ω1
(ω1) = ωn+1 and cof(ωn+1) = ω2.

(2) If A ⊆ ωn+1 with |A| ≤ ω1, there is a function Σ so that for all α ∈ A, Σ(α) : [ω1]
n
∗ → ω1 and

[Σ(α)]µn
ω1

= α.2

For n = 1, both properties have been shown. (1) is Fact 2.23. To see (2), suppose A ⊆ ω2 with |A| ≤ ω1.
Since ω2 is regular, sup(A) < ω2. Let f : ω1 → ω1 represent sup(A) and K be a Kunen function bounding f .
By Fact 2.16, there is a function Γ so that for all α < sup(A), α = [KΓ(α)]µ1

ω1
. For α ∈ A, let Σ(α) = KΓ(α).

Now suppose the two properties have been established at n. One seeks to establish the two properties at
n+ 1.

First, one will show that jµn+1
ω1

(ω1) is wellfounded. Suppose X ⊆ jµn+1
ω1

(ω1) has no ≺µn+1
ω1

-minimal ele-

ments. Pick x ∈ X and let f : [ω1]
n+1 → ω1 represent x. Let K be a Kunen function bounding I1f : ω1 → ω1.

For any y ≺µn+1
ω1

x, use Fact 2.28 to pick a g : [ω1]
n+1 → ω1 which represents y and I1g ≤µ1

ω1
I1f . Thus K is

also a Kunen function which bounds I1g . Let Ag = {α ∈ ω1 : I1g (α) < ΞK(α)} and note that Ag ∈ µ1
ω1
. For

any ℓ ∈ [Ag]
n+1
∗ , g(ℓ) ≤ I1g (ℓ(n)) < ΞK(ℓ(n)). Let ĥ(ℓ) be the least ordinal γ < ℓ(n) so that g(ℓ) = K(ℓ(n), γ).

Since ĥ(ℓ) < ℓ(n) for µn+1
ω1

-almost all ℓ, Fact 2.6 implies there is an h : [ω1]
n → ω1 so that for µn+1

ω1
-almost

all ℓ, ĥ(ℓ) = h(ℓ ↾ n). By (1) at n, one has that [h]µn
ω1

∈ jµn
ω1
(ω1) = ωn+1. It has been shown that for

all y ≺µn+1
ω1

x, there is an ordinal δ < ωn+1 so that for any h : [ω1]
n → ω1 representing δ, the function

Kn,h : [ω1]
n+1 → ω1 defined (in Definition 2.29) by Kn,h(ℓ) = K(ℓ(n), h(ℓ ↾ n)) represents y. Let δy be the

least such δ for y. Let B = {δy : y ∈ X ∧ y ≺µn+1
ω1

x} and note that B ⊆ ωn+1. Let δ0 be the least member

of B according to the usual ordering on ωn+1. Suppose δk has been found and let yk be the element of
X represented by Kn,h for any h : [ω1]

n → ω1 representing δk. Since X has no minimal element, there is
some δ so that for any h : [ω1]

n → ω1 representing δ, the function Kn,h represents an element of X which
is ≺µn+1

ω1
below yk. Let δk+1 be the least such ordinal δ. This defines a sequence ⟨δk : k ∈ ω⟩ of ordinals

2For this proof, one only needs the result for |A| ≤ ω. However, the proof is no different for A with |A| ≤ ω1. There are
other applications which require the stronger form.
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below ωn+1 and corresponding sequence ⟨yk : k ∈ ω⟩ in X. Note that for all k ∈ ω, yk+1 ≺µn+1
ω1

yk. Since

|{δk : k ∈ ω}| = ω < ω1, property (2) at n gives a sequence ⟨hk : k ∈ ω⟩ so that [hn]µn
ω1

= δk. For each

n ∈ ω, let Ek = {ℓ ∈ [ω1]
n+1 : Kn,hk+1(ℓ) < Kn,hk(ℓ)} and note that Ek ∈ µn+1

ω1
since yk+1 ≺µn+1

ω1
yk. Since

ω1 →∗ (ω1)
2n+2
2 implies µn+1

ω1
is countably complete, E =

⋂
k∈ω Ek ∈ µn+1

ω1
and hence nonempty. Let ℓ ∈ E.

Then ⟨Kn,hk(ℓ) : k ∈ ω⟩ is an infinite descending sequence of ordinals which is a contradiction. It has been
shown that jµn+1

ω1
(ω1) is a wellordering.

Next, one will show that jµn+1
ω1

(ω1) ≤ ωn+2. Let x ∈ jµn+1
ω1

(ω1), f : [ω1]
n+1 → ω1 represent x, and K be

a Kunen function bounding I1f . The argument above showed that for any y ≺µn+1
ω1

x, there is an ordinal

δ < ωn+1 so that for any h : [ω1]
n → ω1 which represents δ, Kn,h : [ω1]

n+1 → ω1 represents y. Let δy
be the least such δ for y. The map Υ : initµn+1

ω1
(x) → ωn+1 defined by Υ(y) = δy is an injection. So

initµn+1
ω1

(x) has cardinality less than or equal to ωn+1. Since x ∈ jµn+1
ω1

(ω1) was arbitrary, this shows that

jµn+1
ω1

(ω1) ≤ (ωn+1)
+ = ωn+2.

By Fact 2.26, ωn+1 = jµn
ω1
(ω1) < jµn+1

ω1
(ω1) ≤ ωn+2. Since Fact 2.22 implies jµn+1

ω1
(ω1) is a cardinal,

one has that jµn+1
ω1

(ω1) = ωn+2. cof(ωn+2) = jµ1
ω1
(ω1) = ω2 by Fact 2.25. Property (1) at n + 1 has been

established.
Now to establish property (2) at n + 1. Suppose A ⊆ ωn+2 with |A| ≤ ω1. Since cof(ωn+2) = ω2, one

has that sup(A) < ωn+2. Let f : [ω1]
n+1 → ω1 represent sup(A) and let K be a Kunen function bounding

I1f . As argued above, there is a sequence ⟨δα : α ∈ A⟩ in ωn+1 with the property that for all α ∈ A, for any

h : [ω1]
n → ω1 representing δα, Kn,h represents α. The set {δα : α ∈ A} is a subset of ωn+1 of cardinality

less than or equal to ω1. By property (2) at n, there is a sequence ⟨hα : α ∈ A⟩ so that hα : [ω1]
n → ω1

represents δα. Then ⟨Kn,hα : α ∈ A⟩ has the property that for all α ∈ A, Kn,hα represents α. This verifies
property (2) at n+ 2.

By induction, this completes the proof. □

As mentioned in the footnote, the proof of Fact 2.30 actually showed that one can find representatives
for ω1-many elements of jµn

ω1
(ω1). Although this is not needed in the proof of Fact 2.30 or anywhere else in

this paper, this is a very important instance of choice that is required for many combinatorial results below
ωω. For example, it is needed to show ω2 is a weak partition cardinal. This fact proved within the proof of
Fact 2.30 is explicitly isolated below.

Fact 2.31. Assume ω1 →∗ (ω1)
ω1
2 and ⋆. Let 1 ≤ n < ω and A ⊆ jµn

ω1
(ω1) = ωn+1 with |A| ≤ ω1. There

is a function Γ on A so that for all α ∈ A, Γ(α) : [ω1]
n → ω1 and α = [Γ(α)]µn

ω1
.

[3] shows that these combinatorial methods using the Kunen functions can show that jµϵ
ω1
(ωω) is well-

founded and even show that jµϵ
ω1
(ωω) < ωω+1 for all ϵ < ω1. However this seems to be the limit of the purely

combinatorial methods. These methods cannot be used to calculate jµϵ
ω1
(ωω+1) for ϵ < ω1. These combi-

natorial methods have no influence on the ultrapower by the strong partition measure µω1
ω1
. Using Martin’s

good coding system for ω·ϵω1 for ϵ < ω1 to make complexity calculations, [3] showed that jµϵ
ω1
(ωω+1) = ωω+1

for all ϵ < ω1. Calculating the ultrapowers by the strong partition measure on ω1 is an important question
concerning the strong partition property. [3] showed that jµω1

ω1
(ω1) is wellfounded in AD alone by using

Martin’s good coding system for ω1ω1 to bring the ultrapower into L(R) to apply a result of Kechris [13]
which states that AD implies L(R) |= DC. The first step in understanding the ultrapower by the strong
partition measure on ω1 was completed in [3] by answering a question of Goldberg that jµω1

ω1
(ω1) < ωω+1.

Fact 2.32. Assume ω1 →∗ (ω1)
ω1
2 and ⋆. Let 1 ≤ n < ω. If δ ∈ ωn+1 \ ωn, then there is a function

f : [ω1]
n → ω1 such that [f ]µn

ω1
= δ with the property that for all ι0, ι1 ∈ [ω1]

n
∗ , if ι0(n− 1) < ι1(n− 1), then

f(ι0) < f(ι1).

Proof. Let f0 : [ω1]
n → ω1 be any representative for δ with respect to µn

ω1
. Let A0 = {ι ∈ [ω1]

n
∗ :

f(ι) ≥ ι(n − 1)}. One must have that A0 ∈ µn
ω1

since otherwise Fact 2.6 implies there is a function

g : [ω1]
n−1 → ω1 so that for µn

ω1
-almost all ℓ, f0(ℓ) = g(ℓ ↾ n − 1). This would imply that δ = [f0]µn

ω1
=

[g]µn−1
ω1

∈ jµn−1
ω1

(ω1) = ωn which contradicts the assumption that δ ∈ ωn+1 \ ωn. Let C0 ⊆ ω1 be a club
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so that [C0]
n
∗ ⊆ A0. Define P : [C0]

n+1
∗ → 2 by P (ℓ) = 0 if and only if f0(ℓ ↾ n) < ℓ(n). Let C1 ⊆ C0

be homogeneous for P using ω1 →∗ (ω1)
n+1
2 . Pick any ι ∈ [C1]

n
∗ . Let ℓ = ι̂ ⟨nextωC1

(f(ι))⟩ and note that

ℓ ∈ [C1]
n+1
∗ . Then f(ℓ ↾ n) = f(ι) < nextωC1

(f(ι)) = ℓ(n + 1). Thus P (ℓ) = 0 and hence C1 must be
homogeneous for P taking value 0. For any ι ∈ [C1]

n
∗ , let ℓι = ι̂ ⟨nextωC0

(ι(n − 1))⟩. P (ℓι) = 0 implies
that f(ι) = f(ℓι ↾ n) < ℓι(n) = nextωC1

(ι(n − 1)). Let C2 = {α ∈ C1 : enumC1
(α) = α}. Note that

if ℓ ∈ [ω1]
n
∗ , then enumC2

◦ ℓ ∈ [C2]
n
∗ . Define f1 : [ω1]

n
∗ → ω1 by f1(ι) = f0(enumC2

◦ ι). Now suppose
ι0, ι1 ∈ [ω1]

n
∗ with ι0(n − 1) < ι1(n − 1). By the observations above and the definition of C2, one has that

f1(ι0) = f0(enumC2 ◦ ι0) < nextωC1
(enumC2(ι0(n−1))) < (enumC2 ◦ ι1)(n−1) ≤ f0(enumC2 ◦ ι1) = f1(ι1). Let

C3 = {α ∈ C2 : enumC2
(α) = α}. For all ι ∈ [C3]

n
∗ , one has that enumC2

◦ ι = ι. Thus δ = [f0]µn
ω1

= [f1]µn
ω1
.

f1 is the representative of δ with the desired properties. □

Definition 2.33. Let ⊏n be the reverse lexicographic ordering on [ω1]
n defined as follows: Let <lex be

the lexicographic ordering on n-tuples. If ι ∈ [ω1]
n (so ι is an increasing function), let ι∗ ∈ nω1 be defined

by ι∗(k) = ι(n − 1 − k). Define ⊏n on [ω1]
n
∗ by ι ⊏n ℓ if and only if ι∗ <lex ℓ

∗. (Even more explicitly,
let α0 < ... < αn−1 < ω1 and β0 < ... < βn−1 < ω1. (α0, ..., αn−1) ⊏n (β0, ..., βn−1) if and only if
(αn−1, αn−2, ..., α0) <lex (βn−1, βn−2, ..., β0).)

A function f : [ω1]
n → ω1 has type n if and only if the following hold:

• f is order preserving from ([ω1]
n,⊏n) into the usual ordinal ordering (ω1, <).

• (Discontinuous everywhere) For any ℓ ∈ [ω1]
n, sup{f(ι) : ι ⊏n ℓ} < f(ℓ).

• (Uniform cofinality ω) There is a function F : [ω1]
n × ω → ω1 so that for all ℓ ∈ [ω1]

n and k ∈ ω,
F (ℓ, k) < F (ℓ, k + 1) and f(ℓ) = sup{F (ℓ, k) : k ∈ ω}.

Note that a function f : ω1 → ω1 has type 1 if and only if it is an increasing function of the correct type
(that is, f ∈ [ω1]

ω1
∗ ).

Define Bn+1 ⊆ ωn+1 to be the set of δ ∈ ωn+1 so that there is a function f : [ω1]
n → ω1 of type n with

δ = [f ]µn
ω1
. If C ⊆ ω1, then let BC

n+1 be the set of δ ∈ ωn+1 so that there is a function f : [ω1]
n → C of type

n with δ = [f ]µn
ω1
.

Definition 2.34. Let Vn = {(αn−1, ..., α0, γ) ∈ n+1ω1 : α0 < α1 < ... < αn−1 ∧ γ < αn−1}. Let ≪ be
the lexicographic ordering on Vn. Let Vn = (Vn,≪) which is a wellordering of ordertype ω1. A function
ϕ : Vn → ω1 has the correct type if and only if the following holds:

• ϕ is order preserving from Vn into (ω1, <), the usual ordering on ω1.
• ϕ is discontinuous everywhere: for all x ∈ Vn, ϕ(x) > sup{ϕ(y) : y ≪ x}.
• ϕ has uniform cofinality ω: there is a function Φ : Vn × ω → ω1 with the property that for all x ∈ V
and k ∈ ω, Φ(x, k) < Φ(x, k + 1) and ϕ(x) = sup{Φ(x, k) : k ∈ ω}.

Fact 2.35. Assume ω1 →∗ (ω1)
ω1
2 and ⋆. Let C ⊆ ω1 be a club. There is an order embedding of ωn+1 into

BC
n+1.

Proof. Let ϕ : Vn → C be a function of the correct type. It is clear that the order type of ωn+1 \ ωn

is ωn+1. One will define an order embedding of ωn+1 \ ωn into BC
n+1. Let δ ∈ ωn+1 \ ωn. By Fact

2.32, there is an f : [ω1]
n
∗ → ω1 so that δ = [f ]µn

ω1
and has the property that for all ι0, ι1 ∈ [ω1]

n
∗ , if

ι0(n − 1) < ι1(n − 1), then f(ι0) < f(ι1). Suppose α0 < α1 are two limit ordinals. Let γ0, γ1 be such that
α0 < γ0 < γ1 < α1. For i ∈ 2, let ιγi

= (0, 1, ..., n−2, γi). By the property of f , one has that f(ιγ0
) < f(ιγ1

).
Hence I1f (α0) ≤ f(ιγ0

) < f(ιγ1
) < I1f (α1). So I

1
f is an increasing function on the limit ordinals below ω1. This

implies that (I1f (ι(n− 1)), I1f (ι(n− 2)), ..., I1f (ι(0)), f(ι)) ∈ Vn when ι ∈ [ω1]
n
∗ . Let f̂ : [ω1]

n
∗ → ω1 be defined

by f̂(ι) = ϕ(I1f (ι(n−1)), I1f (ι(n−2)), ..., I1f (ι(0)), f(ι)). Define Ψ : (ωn+1 \ωn) → BC
n+1 by Ψ(δ) = [f̂ ]µn

ω1
for

any f : [ω1]
n → ω1 such that δ = [f ]µn

ω1
and for all ι0, ι1 ∈ [ω1]

n, if ι0(n− 1) < ι1(n− 1), then f(ι0) < f(ι1).

Ψ is well defined independent of the choice of such f representing δ. Suppose ι0 ⊏n ι1. If k < n is largest
such that ι0(k) ̸= ι1(k), then ι0(k) < ι1(k). By the obervation above, I1f (ι0(j)) = I1f (ι1(j)) for all k < j < n

and I1f (ι0(k)) < I1f (ι1(k)). Since ϕ is order preserving on Vn, one has that f̂(ι0) < f̂(ι1). This shows that

f̂ is order preserving on ([ω1]
n
∗ ,⊏n). f̂ is discontinuous everywhere and has uniform cofinality ω since ϕ is

discontinuous everywhere and has uniform cofinality ω. So f̂ has type n. This shows that Ψ does map into
BC

n+1. Suppose δ0, δ1 ∈ ωn+1 \ ωn and δ0 < δ1. Let g0, g1 : [ω1]
n → ω1 represent δ0 and δ1, respectively,
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with the necessary properties stated above. Let D ⊆ ω1 be a club so that for all ι ∈ [D]n∗ , g0(ι) < g1(ι).

For i ∈ 2, define fi : [ω1]
n → ω1 by fi(ℓ) = gi(enumD ◦ ℓ). Let D̃ = {α ∈ D : enumD(α) = α}. Note that

for all ℓ ∈ D̃ and i ∈ 2, fi(ℓ) = gi(ℓ). Thus δi = [gi]µn
ω1

= [fi]µn
ω1

and fi still has the necessary properties.

Moreover, for all ℓ ∈ [ω1]
n, f0(ℓ) < f1(ℓ). Thus for all α ∈ [ω1]

n, I1f0(α) ≤ I1f1(α). So for all ι ∈ [ω1]
n,

(I1f0(ι(n−1)), ..., I1f0(ι(0)), f0(ι)) ≪ (I1f1(ι(n−1)), ..., I1f1(ι(0)), f1(ι)) and therefore f̂0(ι) < f̂1(ι). This shows

that Ψ(δ0) = [f̂0]µn
ω1
< [f̂1]µn

ω1
= Ψ(δ1). This shows that Ψ : (ωn+1 \ ωn) → BC

n+1 is an order preserving

injection. □

Definition 2.36. Suppose 1 ≤ n < ω and δ ∈ Bn+1. For any 1 ≤ k ≤ n, let Ik
δ = [Ikf ]µk

ω1
for all

f : [ω1]
n → ω1 of type n such that [f ]µn

ω1
= δ. (Note that Ik

δ is independent of the choice of f representing

δ but f must be a function of type n.)

Fact 2.37. Assume ω1 →∗ (ω1)
ω1
2 and ⋆. Let 1 ≤ n < ω, C ⊆ ω1 be a club, and ϕ : Vn+1 → C be a function

of the correct type. Let ψ : [ω1]
n → ω1 be defined by ψ(α0, ..., αn−1) = sup{ϕ(αn−1, ..., α0, ζ, 0) : ζ < α0}.

Let δ = [ψ]µn
ω1
. The set |{η < BC

n+2 : In
η = δ}| = |ωn+1|.

Proof. Let A = {η < BC
n+2 : In

η = δ}. Let ν ∈ ωn+1. Let f : [ω1]
n → ω1 be such that [f ]µn

ω1
= ν. By Fact 2.8,

there is a clubD0 ⊆ ω1 so that for all ℓ ∈ [D]n∗ , f(ℓ) < nextωD0
(ℓ(n−1)). LetD1 = {α ∈ D0 : enumD0

(α) = α}.
For all ℓ ∈ [D1]

n+1, f(ℓ ↾ n) < nextωD0
(ℓ(n− 1)) < ℓ(n) using Fact 2.4. Define a function f̂ : [D1]

n+1 → C by

f̂(α0, ..., αn) = ϕ(αn, ..., α0, f(α0, ..., αn−1)).

Note that this is well defined since (αn, .., α0, f(α0, ..., αn−1)) ∈ Vn+1 by the property of D1. Let f̃ :

[ω1]
n+1 → C be defined by f̃(ℓ) = f̂(enumD1

◦ ℓ). Let D2 = {α ∈ D1 : enumD1
(α) = α}. Note that for all

ℓ ∈ [D2]
n+1
∗ , ℓ = enumD1 ◦ ℓ. Thus [f̂ ]µn+1

ω1
= [f̃ ]µn+1

ω1
. Note that f̃ has type n + 1 since ϕ has the correct

type from Vn+1 into (C,<). So [f̃ ]µn+1
ω1

∈ BC
n+2. Observe that for all (α0, ..., αn−1) ∈ [D2]

n
∗ ,

In
f̃
(α0, ..., αn−1) = sup{f̃(ζ, α0, ..., αn−1) : ζ < α0} = sup{f̂(ζ, α0, ..., αn−1) : ζ < α0}

= sup{ϕ(αn−1, ..., α0, ζ, f(α0, ..., αn−1)) : ζ < α0} = sup{ϕ(αn−1, ..., α0, ζ, 0) : ζ < α0} = ψ(α0, ..., αn−1)

Let Υ(η) = [f̃ ]µn+1
ω1

= [f̂ ]µn+1
ω1

. By the above discussion, Υ(η) ∈ BC
n+2 and In

Υ(η) = [In
f̃
]µn

ω1
= [ψ]µn

ω1
= δ.

Thus Υ : ωn+1 → A. Suppose η0 < η1. Let f0, f1 : [ω1]
n → ω1 be such that η0 = [f0]µn

ω1
and η1 = [f1]µn

ω1
.

For µn
ω1
-almost all ℓ, f0(ℓ) < f1(ℓ). Thus for µn+1

ω1
-almost all ι, f̂0(ι) < f̂1(ι). Thus Υ : ωn+1 → A is order

preserving and hence an injection. Thus |A| = |ωn+1|. □

3. Boldface GCH below ωω

Definition 3.1. Let κ be a cardinal. The boldface GCH holds at κ if and only if there is no injection of κ+

into P(κ). The boldface GCH below κ is the statement that for all δ < κ, the boldface GCH holds at δ.

Fact 3.2. Let κ be a cardinal and δ < κ. If there is a δ+-complete nonprincipal ultrafilter on κ, then there
is no injection of κ into P(δ).

Proof. Let µ be a δ+-complete nonprincipal ultrafilter on κ. Suppose ⟨Aα : α < κ⟩ is an injection of κ into
P(δ). For each ξ < δ, let E0

ξ = {α ∈ κ : ξ /∈ Aα} and E1
ξ = {α ∈ κ : ξ ∈ Aα}. Since µ is an ultrafilter, there

is a unique iξ ∈ 2 so that E
iξ
ξ ∈ µ. Let E =

⋂
ξ<δ E

iξ
ξ and note that E ∈ µ since µ is δ+-complete. Since µ

is nonprincipal, let α0, α1 ∈ E with α0 ̸= α1. For all ξ < δ, since α0, α1 ∈ E ⊆ E
iξ
ξ , ξ ∈ Aα0

if and only if

iξ = 1 if and only if ξ ∈ Aα1
. Thus Aα0

= Aα1
. This contradicts the injectiveness of ⟨Aα : α < κ⟩. □

Fact 3.3. If κ→∗ (κ)22, then there is no injection of κ into P(δ) for any δ < κ.

Proof. κ→∗ (κ)22 implies that µ1
κ is a κ-complete ultrafilter by Fact 2.5. The result follow from Fact 3.2. □

Fact 3.4. ω1 →∗ (ω1)
2
2 implies the boldface GCH at ω.
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Martin [12] (and Kleinberg [14]) (also see [4]) showed that ω1 →∗ (ω1)
ω1
2 and ⋆ imply that ω2 is a

weak partition cardinal (satisfies ω2 → (ω2)
<ω2
2 ). Thus under these assumptions, Fact 3.3 implies that the

boldface GCH holds at ω1. Although the proof of the weak partition property on ω2 can be shown by similar
techniques used here, it is very enlightening to see a direct proof of the boldface GCH at ω1 to motivate the
proof of the boldface GCH at ωn for 2 ≤ n < ω.

Definition 3.5. Let U1 = {(0, 0)} ∪ {(1, α, i) : α < ω1 ∧ i < 2}. Let ≪1 be the lexicographic ordering on
U1. Let U1 = (U1,≪1). Note that (0, 0) is the minimal element of U1. Note that the ordertype of U1 is ω1.
Suppose F : U1 → ω1. Define F 0, F 1 : ω1 → ω1 and F 2 ∈ ω1 by F 0(α) = F (1, α, 0), F 1(α) = F (1, α, 1), and
F 2 = F (0, 0). (Note that F 2 is just a countable ordinal.) A function F : U1 → ω1 has the correct type if
and only if the following two conditions hold.

• F is discontinuous everywhere: For all x ∈ U1, sup{F (y) : y ≪1 x} < F (x).
• F has uniform cofinality ω: There is a function F : U1 × ω → ω so that for all x ∈ U1 and k ∈ ω,

F(x, k) < F(x, k + 1) and F (x) = sup{F(x, k) : k ∈ ω}.
If F : U1 → ω1 has the correct type, then F

0, F 1 : ω1 → ω1 are functions of the correct type and cof(F 2) = ω.
If X ⊆ ω1, then let [X]U1

∗ be the set of all F : U1 → X of the correct type and order preserving between U1

and (X,<), where < is the usual ordinal ordering.

Lemma 3.6. Assume ω1 →∗ (ω1)
n+1
2 . Let f0, f1 : ω1 → ω1 be functions of type 1 such that [f0]µ1

ω1
< [f1]µ1

ω1

and let δ ∈ [ω1]
1
∗ (i.e. is a limit ordinal). Then there is an F ∈ [ω1]

U1
∗ so that [F 0]µ1

ω1
= [f0]µ1

ω1
, [F 1]µ1

ω1
=

[f1]µ1
ω1
, F 2 = δ, F 0[ω1] ⊆ f0[ω1], and F

1[ω1] ⊆ f1[ω1].

Proof. Since f0 and f1 are of type 1, they are both increasing, discontinuous, and have uniform cofinality
ω. Let G0 : ω1 × ω → ω1 witness that f0 has uniform cofinality ω and let G1 : ω1 × ω → ω1 witness that
f1 has uniform cofinality ω. Since δ < ω1 is a limit ordinal, let ρ : ω → δ be an increasing cofinal function.
For each α < ω1, let h(α) be the least element ᾱ ∈ ω1 so that f1(α) < f0(ᾱ). Since [f0]µ1

ω1
< [f1]µ1

ω1
, there

is a club C0 ⊆ ω1 so that for all α ∈ [C0]
1
∗, f0(α) < f1(α). Let C1 = {α ∈ C0 : (∀α′ < α)(h(α′) < α)}. C1

is a club subset of C0. One may assume δ < min(C1). For notational simplicity, let e = enum[C1]1∗
. Define

F : U1 → ω1 by F (0, 0) = δ, and F (1, α, i) = fi(e(α)) for i < 2 and α < ω1. Fix α < ω1. Note that
F (1, α, 0) = f0(e(α)) < f1(e(α)) = F (1, α, 1) by the property of the club C0 and the fact that e(α) ∈ [C1]

1
∗.

F (1, α, 1) = f1(e(α)) < f0(h(e(α))) < f0(e(α + 1)) = F (1, α + 1, 0) since the first inequality comes from
the property of h and the second inequality comes from the property of C1. This shows that F is order
preserving from U1 into the usual ordering on ω1. The elements of U1 of limit rank take the form (1, α, 0)
where α is a limit ordinal. Note that sup{F (x) : x ≪1 (1, α, 0)} = sup{F (1, α′, 0) : α′ < α} = sup(f0 ↾
e(α) < f0(e(α)) < F (1, α, 0) using the discontinuity of f0. This shows that F is discontinuous everywhere.
Let F : U1 × ω → ω1 be defined by

F(x, k) =

{
ρ(k) x = (0, 0)

Gi(e(α), k) x = (1, α, i)

F witnesses that F has uniform cofinality ω. Thus F has the correct type. By construction, it is clear that
F 0[ω1] ⊆ f0[ω1] and F 1[ω1] ⊆ f1[ω1]. Let C2 = {α ∈ C1 : enumC1(α) = α} which is a club subset of C1.
For all α ∈ C2 and i ∈ 2, F (1, α, i) = fi(e(α)) = fi(enum[C1]1∗

(α)) = fi(α) since enumC1(α) = α implies
that ot({ᾱ ∈ C1 : ᾱ < α ∧ cof(ᾱ) = ω}) = α and thus enum[C1]1∗

(α) = α. This shows that for all i < 2,

[F i]µ1
ω1

= [fi]µ1
ω1
. □

Theorem 3.7. Assume ω1 →∗ (ω1)
ω1
2 and ⋆. Then the boldface GCH holds at ω1.

Proof. By Fact 3.4, one has that the boldface GCH holds at ω. Suppose the boldface GCH at ω1 fails.
Let ⟨Aη : η < ω2⟩ be an injection of ω2 into P(ω1). Define P : [ω1]

U1
∗ → 2 by P (F ) = 0 if and only

if min(A[F 0]µ1
ω1

△A[F 1]µ1
ω1

) < F 2 (where △ refers to symmetric difference). Since U1 has ordertype ω1,

ω1 →∗ (ω1)
ω1
2 implies there is a club C ⊆ ω1 homogeneous for P . Pick any f0, f1 : ω1 → C of type 1 so that

[f0]µ1
ω1
< [f1]µ1

ω1
. Since ⟨Aη : η < ω2⟩ is an injection, A[f0]µ1

ω1

̸= A[f1]µ1
ω1

and thus A[f0]µ1
ω1

△A[f1]µ1
ω1

̸= ∅.
Let δ ∈ [C]1∗ be such that min(A[f0]µ1

ω1

△A[f1]µ1
ω1

) < δ. By Lemma 3.6, there is an F ∈ [ω1]
U1
∗ so that
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[F 0]µ1
ω1

= [f0]µ1
ω1
, [F 1]µ1

ω1
= [f1]µ1

ω1
, F 2 = δ, F 0[ω1] ⊆ f0[ω1] ⊆ C, and F 1[ω1] ⊆ f1[ω1] ⊆ C. Thus

F ∈ [C]U1
∗ . Thus min(A[F 0]µ1

ω1

△A[F 1]µ1
ω1

) < F 2 implies that P (F ) = 0. This shows that C must be

homogeneous for P taking value 0. Fix a δ ∈ [C]1∗. By Fact 2.35, ω2 order embeds into BC
2 . Pick any

ν ∈ BC
2 so that BC

2 ↾ ν = {η ∈ BC
2 : η < ν} has cardinality ω1. Let η0, η1 ∈ BC

2 ↾ ν with η0 ̸= η1. Without
loss of generality, suppose η0 < η1. Let f0, f1 : ω1 → C be functions of type 1 so that η0 = [f0]µ1

ω1
and

η1 = [f1]µ1
ω1
. By Lemma 3.6, there is an F ∈ [C]U1

∗ so that [F0]µ1
ω1

= [f0]µ1
ω1

= η0, [F
1]µ1

ω1
= [f1]µ1

ω1
= η1, and

F 2 = δ. Thus P (F ) = 0 implies that min(Aη0
△Aη1

) < δ. This implies that the function Φ : BC
2 ↾ ν → P(δ)

defined by Φ(η) = Aη ∩ δ is an injection. Since δ < ω1 implies |P(δ)| = |P(ω)| and |BC
2 ↾ ν| = ω1, one has

an injection of ω1 into P(ω). This violates the boldface GCH at ω. □

Definition 3.8. Let 2 ≤ n < ω. Let Un = {(αn−1, 0, αn−2, ..., α0, i) : α0 < ... < αn−1 < ω1 ∧ i <
2} ∪ {(α, 1) : n − 1 ≤ α < ω1}. Let ≪n be the lexicographic ordering on Un. Let Un = (Un,≪n).
Observe that ot(Un) = ω1. Suppose F : Un → ω1. Define F 0, F 1 : [ω1]

n → ω1 and F 2 : ω1 → ω1 by
F 0(ι) = F (ι(n− 1), 0, ι(n− 2), ..., ι(0), 0), F 1(ι) = F (ι(n− 1), 0, ι(n− 2), ..., ι(0), 1), and F 2(α) = F (α, 1). A
function F : Un → ω1 has the correct type if and only if the following two conditions hold:

• F is discontinuous everywhere: For all x ∈ Un, sup{F (y) : y ≪n x} < F (x).
• F has uniform cofinality ω: There is a function F : Un × ω → ω1 so that for all x ∈ Un and k ∈ ω,

F(x, k) < F(x, k + 1) and F (x) = sup{F(x, k) : k ∈ ω}.
Note that if F : Un → ω1 has the correct type, then F 0, F 1 : [ω1]

n → ω1 has type n, [F 0]µn
ω1
< [F 1]µn

ω1
, and

F 2 : ω1 → ω1 has the correct type. If X ⊆ ω1, then let [X]Un
∗ be the set of all F : Un → X of the correct

type and order preserving between Un and (X,<) with the usual ordering.

Lemma 3.9. Suppose 2 ≤ n < ω. Assume ω1 →∗ (ω1)
n+1
2 . Let f0, f1 : [ω1]

n → ω1 and f2 : ω1 → ω1 be
functions with the following properties.

• f0 and f1 have type n. f2 has type 1.
• [In−1

f0
]µn−1

ω1
= [In−1

f1
]µn−1

ω1
and [f0]µn

ω1
< [f1]µn

ω1
.

• [I1f0 ]µn
ω1

= [I1f1 ]µn
ω1
< [f2]µ1

ω1
.

Then there is an F ∈ [ω1]
Un
∗ with the following properties.

• [F 0]µn
ω1

= [f0]µn
ω1
, [F 1]µn

ω1
= [f1]µn

ω1
, and [F 2]µ1

ω1
= [f2]µ1

ω1
,

• F 0[[ω1]
n] ⊆ f0[[ω1]

n], F 1[[ω1]
n] ⊆ f1[[ω1]

n], and F 2[ω1] ⊆ f2[ω1].

Proof. Let C0 ⊆ ω1 be a club with the following properties:

(1) For all ℓ ∈ [ω1]
n
∗ , I

n−1
f0

(ℓ) = In−1
f1

(ℓ).

(2) For all ℓ ∈ [ω1]
n
∗ , f0(ℓ) < f1(ℓ).

(3) For all α ∈ C0, I
1
f0
(α) = I1f1(α) < f2(α).

If ℓ ∈ [ω1]
n+1, let ℓ0, ℓ1 ∈ [ω1]

n be defined by ℓ1(k) = ℓ(k + 1) and

ℓ0(k) =

{
ℓ(0) k = 0

ℓ(k + 1) 0 < k < n
.

Define P : [C0]
n+1 → 2 by P (ℓ) = 0 if and only if f1(ℓ

0) < f0(ℓ
1). By ω1 →∗ (ω1)

n+1
2 , there is a club C1 ⊆ C0

which is homogeneous for P . Let C2 = {α ∈ C1 : enumC1(α) = α}. Pick (α0, α1, ..., αn−1) ∈ [C2]
n
∗ . Since

α1 is a limit point of C1 and In−1
f0

(α1, ..., αn−1) = In−1
f1

(α1, ..., αn−1) because (α1, ..., αn−1) ∈ [C2]
n−1
∗ ⊆

[C0]
n−1
∗ , there must be some γ ∈ C1 so that α0 < γ < α1 and f1(α0, ..., αn−1) < f0(γ, α1, ..., αn−1). Pick

ℓ ∈ [C1]
n+1
∗ so that ℓ0 = (α0, α1, ..., αn−1) and ℓ1 = (γ, α1, ..., αn−1). Then P (ℓ) = 0 since f1(ℓ

0) =
f1(α0, ..., αn−1) < f0(γ, α1, ..., αn−1) = f0(ℓ

1). This shows that C1 is homogeneous for P taking value 0.
Since f0 and f1 have type n, I1f0 and I1f1 are increasing functions. For any α ∈ ω1, there is some γ ∈ C1

so that f2(α) < I1f0(γ) = I1f1(γ). Let h : ω1 → C1 be defined by h(α) is the least such γ ∈ C1. Let

C3 = {α ∈ C1 : enumC1
(α) = α ∧ (∀α′ < α)(h(α′) < α)} which is a club subset of C1.

For notational simplicity, let e = enum[C3]1∗
. Define F : Un → ω1 by F (αn−1, 0, ..., α1, i) = fi(e(α0), ..., e(αn−1))

for all (α0, .., αn−1) ∈ [ω1]
n and i ∈ 2 and F (α, 1) = f2(e(α)) for all α < ω1.

15



First, one will show that F is an order preserving map from Un into the usual ordering on ω1. Suppose
x, y ∈ Un and x≪n y. One seeks to show F (x) < F (y).

• Suppose x = (α, 1) and y = (β, 1) with α < β:

F (x) = F (α, 1) = f2(e(α)) < f2(e(β)) = F (β, 1) = F (y)

since f2 has type 1.
• Suppose x = (α, 1) and y = (βn−1, 0, βn−2, ..., β0, i) for some i < 2 and β0 < ... < βn−1 with
α < βn−1: Note that

F (x) = F (α, 1) = f2(e(α)) < I1fi(h(e(α)))

< fi(e(β0), ..., e(βn−1)) = F (βn−1, 0, βn−2, ..., β0, i) = F (y).

The first inequality comes from the definition of h, the second inequality comes from h(e(α)) <
e(βn−1) by the definition of e(βn−1) ∈ C3, and the last inequality comes from fi having type n.

• Suppose x = (αn−1, 0, αn−2, ..., α0, i) and y = (β, 1) for some i < 2 and α0 < ... < αn−1 with
αn−1 ≤ β:

F (x) = F (αn−1, 0, αn−1, ..., α0, i) = fi(e(α0), ..., e(αn−1)) ≤ I1fi(e(αn−1))

< f2(e(αn−1)) ≤ f2(e(β)) = F (β, 1) = F (y).

The first inequality comes from the definition of I1fi , the second inequality comes from property (3)
of the club C0, and the third inequality comes from the fact that f2 has type 1.

• Suppose x = (αn−1, 0, αn−1, ..., α0, i) and y = (βn−1, 0, βn−1, ..., β0, j) for some i, j ∈ 2, α0 < ... <
αn−1, β0 < ... < βn−1, and there is some k > 0 so that αk < βk and for all k < k′ < n, αk′ = βk′ :

F (x) = F (αn−1, 0, αn−1, ..., α0, i) = fi(e(α0), ..., e(αn−1)) ≤ In−k
fi

(e(αk), ..., e(αn−1))

= In−k
fj

(e(αk), ..., e(αn−1)) < In−k
fj

(nextC1(e(αk)), e(αk+1), ..., e(αn−1))

= In−k
fj

(nextC1(e(αk)), e(βk+1), ..., e(βn−1)) < fj(e(β0), ..., e(βn−1))

= F (βn−1, 0, βn−1, ..., β0, j) = F (y).

• Suppose x = (αn−1, 0, αn−1, ..., α0, 0) and y = (βn−1, 0, βn−1, ..., β0, 1) for α0 < ... < αn−1 and
β0 < ... < βn−1 such that for all 0 < k < n, αk = βk and α0 ≤ β0:

F (x) = F (αn−1, 0, αn−1, ..., α0, 0) = f0(e(α0), ..., e(αn−1)) < f1(e(α0), ..., e(αn−1))

≤ f1(e(β0), ..., e(βn−1)) = F (βn−1, 0, βn−2, ..., β0, 1) = F (y).

• Suppose x = (αn−1, 0, αn−1, ..., α0, 1) and y = (βn−1, 0, βn−1, ..., β0, 0) for α0 < ... < αn−1 and β0 <
... < βn−1 such that for all 0 < k < n, αk = βk and α0 < β0: Let ℓ = (e(α0), e(β0), e(β1), ..., e(βn−1)) =
(e(α0), e(β0), e(α1), ..., e(αn−1)). In the notation above, ℓ0 = (e(α0), ..., e(αn−1)) and ℓ

1 = (e(β0), ..., e(βn−1)).
P (ℓ) = 0 implies that f1(e(α0), ..., e(αn−1)) = f1(ℓ

0) < f0(ℓ
1) = f0(e(β0), ..., e(βn−1)). So we have

the following.

F (x) = F (αn−1, 0, αn−2, ..., α0, 1) = f1(e(α0), ..., e(αn−1))

< f0(e(β0), ..., e(βn−1)) = F (βn−1, 0, βn−2, ..., β0, 0) = F (y)

This shows that F is order preserving.
Next one will show that F is discontinuous everywhere. Suppose x ∈ Un has limit rank in ≪n.

• Suppose x = (α, 1) for some α ∈ ω1. Then sup(F ↾ x) = sup{F (α, 0, αn−2, ..., α0, i) : i ∈ 2∧α0 < ... <
αn−1 < α} = sup{F (α, 0, αn−2, ..., α0, 0) : α0 < ... < αn−2 < α} = sup{f0(e(α0), e(α1), ..., e(αn−2), e(α)) :
α0 < α1 < ... < αn−2 < α} = I1f0(e(α)) < f2(e(α)) = F (x).

• Suppose x = (αn−1, 0, αn−2, ..., α0, 0) and has limit rank. Then sup(F ↾ x) = sup{f0(ℓ) : ℓ ⊏n

(α0, ..., αn−1)} < f0(α0, ..., αn−1) = F (x) using the discontinuity of f0.
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This shows that F is discontinuous everywhere.
Let G0, G1 : [ω1]

n × ω → ω1 witness that f0 and f1 have uniform cofinality ω. Let G2 : ω1 × ω → ω1

witness that f2 has uniform cofinality ω. Define F : Un × ω → ω1 be defined as follows.

F(x, k) =

{
G2(e(α), k) x = (α, 1)

Gi((e(α0), ..., e(αn−1)), k) x = (αn−1, 0, αn−2, ..., α0, i) ∧ i ∈ 2
.

F witness that F has uniform cofinality ω. It has been shown that F is a function of the correct type.
It is clear from the construction that F 0[[ω1]

n] ⊆ f0[[ω1]
n], F 1[[ω1]

n] ⊆ f1[[ω1]
n], and F 2[ω1] ⊆ f2[ω1].

Let C4 = {α ∈ C3 : enumC3
(α) = α} which is a club subset of C3. For all α ∈ [C4]

1
∗, α = enumC3

(α) =
enum[C3]1∗

(α) = e(α). For all (α0, ..., αn−1) ∈ [C4]
n and i ∈ 2, F i(α0, ..., αn−1) = fi(e(α0), ..., eαn−1

) =

fi(α0, ..., αn−1). For all α ∈ [C3]
1
∗, F

2(α) = f2(e(α)) = f2(α). This shows that [F
1]µn

ω1
= [f0]µn

ω1
, [F 1]µn

ω1
=

[f1]µn
ω1
, and [F 2]µ1

ω1
= [f2]µ1

ω1
. □

Theorem 3.10. Assume ω1 →∗ (ω1)
ω1
2 and ⋆. The boldface GCH holds below ωω.

Proof. The boldface GCH at ωn for all n < ω will be shown by induction. For n = 0, the boldface GCH at ω
has already been shown by Fact 3.4. For n = 1, the boldface GCH at ω1 has already been shown by Theorem
3.7. Suppose n > 1 and the boldface GCH has been shown at ωn−1. Suppose for the sake of contradiction,
the boldface GCH at ωn fails. Let ⟨Aη : η < ωn+1⟩ be an injection of ωn+1 into P(ωn). Recall Un = (Un,≪n)
from Definition 3.8. By Fact 2.30, cof(ωn+1) = ω2 for all 1 ≤ n < ω. Fix ρ : ω2 → ωn be an increasing
cofinal map. Define P : [ω1]

Un → 2 by P (F ) = 0 if and only if min(A[F 0]µn
ω1

△A[F 1]µn
ω1

) < ρ([F 2]µ1
ω1
),

where △ refers to the symmetric difference. (Note that here one is using the fact that jµ1
ω1
(ω1) = ω2

and jµn
ω1
(ω1) = ωn+1 established in Fact 2.30.) Since ot(Un) = ω1, ω1 →∗ (ω1)

ω1
2 implies there is a club

C ⊆ ω1 which is homogeneous for P . Let f0, f1 : [ω1]
n → C be any two function of type n with [f0]µn

ω1
<

[f1]µn
ω1

and [In−1
f0

]µn−1
ω1

= [In−1
f1

]µn−1
ω1

. Since ⟨Aη : η < ωn+1⟩ is an injection, A[f0]µn
ω1

̸= A[f1]µn
ω1

and thus

A[f0]µn
ω1

△A[f1]µn
ω1

̸= ∅. Let f2 : ω1 → C be any function of type 1 so that ρ([f2]µn
ω1
) > min(A[f0]µn

ω1

△A[f1]µn
ω1

)

and [f2]µ1
ω1
> [I1f0 ]µ1

ω1
= [I1f1 ]µ1

ω1
. By Lemma 3.9, there is an F ∈ [ω1]

Un
∗ so that [F 0]µn

ω1
= [f0]µn

ω1
, [F 1]µn

ω1
=

[f1]µn
ω1
, [F 2]µ1

ω1
= [f2]µn

ω1
, F 0[[ω1]

n] ⊆ f0[[ω1
n]] ⊆ C, F 1[[ω1]

n] ⊆ f1[[ω1]
n] ⊆ C, and F 2[ω1] ⊆ f2[ω1] ⊆ C.

Thus F ∈ [C]Un
∗ . Then ρ([F 2]µn

ω1
) > min(A[F 0]µn

ω1

△A[F 1]µn
ω1

) implies that P (F ) = 0. This shows that C must

be homogeneous for P taking value 0. Pick any ϕ : Vn → C of the correct type from Vn into (C,<) (where
recall Vn is defined in Definition 2.34). By Fact 2.37, there is a χ < ωn so that Eχ = {η ∈ BC

n+1 : In−1
η = χ}

has cardinality ωn. Let g : ω1 → C be any function of type 1 so that [g]µ1
ω1

> I1
χ. Let ϵ = [g]µ1

ω1
.

Suppose η0, η1 ∈ Eχ and η0 ̸= η1. Without loss of generality, suppose η0 < η1. Let f0, f2 : [ω1]
n → C be

functions of type n so that [f0]µn
ω1

= η0 and [f1]
µn
ω1 = η1. By definition of η0, η1 ∈ Eχ, [I

n−1
fi

]µn−1
ω1

= χ and

[I1fi ]µ1
ω1

= I1
χ < [g]µ1

ω1
= ϵ for both i ∈ 2. By Lemma 3.9, there is an F ∈ [C]Un

∗ so that [F 0]µn
ω1

= [f0]µn
ω1

= η0,

[F 1]µn
ω1

= [f1]
µn
ω1 = η1, and [F 2]µ1

ω1
= [g]µ1

ω1
= ϵ. By P (F ) = 0, one has that min(Aη0△Aη1) < ρ(ϵ). This

shows that the function Υ : Eχ → P(ρ(ϵ)) defined by Υ(η) = Aη ∩ ρ(ϵ) is an injection. Since |Eχ| = ωn and
|P(ρ(ϵ))| = |P(ωn−1)| because ρ(ϵ) < ωn, Υ induces an injection of ωn into P(ωn−1) which violates the
inductive assumption that the boldface GCH holds at ωn−1. □

Under AD, ωω+1 = δ13 and there is a ωω+1-complete nonprincipal ultrafilter on ωω+1. Thus the boldface
GCH holds at ωω by Fact 3.2. The combinatorial methods used here can be generalized with Jackson’s theory
of descriptions ([11]) for the projective ordinals to show that the boldface GCH holds below the supremum of
the projective ordinals, sup{δ1n : n ∈ ω}, assuming AD. Jackson’s theory can go slightly beyond the projective
ordinals but not all the way through Θ. The inner model theoretic techniques of Steel and Woodin are the
only known methods to prove the boldface GCH below Θ under AD+.
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