BOLDFACE GCH BELOW THE FIRST UNCOUNTABLE LIMIT CARDINAL
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ABSTRACT. If k is an infinite cardinal, the boldface GCH at « is the statement that 1 does not inject into
P (k). It will be shown here that w1 — (w1)3" (the strong partition property at wi1) and j,1 (w1) = w2
“1

(the ultrapower of w; by the club filter on w; is w2) implies that the boldface GCH holds at wy, for all n < w
using combinatorial arguments. In particular, AD implies the boldface GCH holds at w, for all n < w.

1. INTRODUCTION

This paper will work with the Zermelo-Frankel axiom ZF for set theory (without the axiom of choice,
AC). Let x be an infinite cardinal. There is a cardinal which does not inject into &?(x). What is the
smallest cardinal which does not inject into Z?(k)? Since k always injects into &(x), the smallest that
this cardinal can be is xT, the cardinal successor of x. Cantor showed that x does not surject onto & (k).
Thus |k| < |2 (k)|. If the axiom of choice holds, then all sets are wellorderable and one must have that <™
injects into #(k). Assuming the axiom of choice, the smallest cardinal which does not inject into &(k)
must be greater than k*. The usual generalized continuum hypothesis at x (under AC) is the assertion that
|2(k)| = 2% = k. Assuming AC and the generalized continuum hypothesis at , one has that ™" is the
smallest cardinal which does not inject into #(x). However, without the axiom of choice, it is potentially
possible to have the most elegant answer to the above question: x* is the smallest cardinal that does not
inject into &(k). Steel ([18], Theorem 8.26) calls this phenomenon the boldface GCH at s which is the
assertion that k™ does not inject into (k). Say that the boldface GCH holds below « if the boldface GCH
holds for all § < k.

The boldface GCH at w or the statement that there are no uncountable wellorderable subsets of R is a
very important property of many nice choiceless framework for the set theoretic universe. It follows from
classical regularity properties. If countable choice for R, ACS holds and all subsets of R have the property of
Baire, then wellordered unions of meager sets are meager. This implies R is not wellorderable. If in addition,
all subsets of R have the perfect set property, then every uncountable subset of R cannot be wellorderable.
Thus the boldface GCH at w holds under AC% and all subsets of R have the property of Baire and the perfect
set property. If w; is measurable (there is a countably complete nonprincipal ultrafilter on wy ), then also the
boldface GCH at w holds (see Fact . These properties are all consequences of the axiom of determinacy,
AD, which states that every infinite two player game has a winning strategy for one of the two players. AD™
is Woodin’s extension of the axiom of determinacy.

The boldface GCH at w is very important for the basic theory of determinacy. One important consequence
is that if the boldface GCH at w holds, M is an inner model of ZFC, and P € M is a forcing which is countable
in the real world, then in the real world, there is a generic G C P which is P-generic over M. The existence
of generics for forcings countable in the real world is used in Woodin’s analysis of nice models of AD" as
symmetric extension of their HOD-type submodels using Vopénka forcing or ordinal definable co-Borel code
forcing. The boldface GCH at w synergizes well with the Baire property. For example, Woodin ([I5] Theorem
5.42 Claim 2) showed that AC%, the boldface GCH at w, and all subsets of R have the Baire property, then
for any set A, if P € HOD,, is a forcing which is countable in the real world, then there is a comeager set

of G C IP which are P-generic over HODy 4} and moreover HODy 43[G] = HODy4 ). Recently, [2] used this
observation of Woodin to show the following cardinality computations: Assume ACE7 all subsets of R have
the Baire property, and the boldface GCH at w holds, then |“wq| < |<*“*w1]|, “w; does not inject into R x ON,

and 57 does not inject into “wy (where S; = {f € [w1|<** : sup(f) = wf[‘ﬂ}).
May 6, 2025. The first author was supported by the Austrian Science Fund (FWF) 10.55776/Y1498. The third author was

supported by NSF grant DMS-1945592.
1



The boldface GCH at w and all subsets of R have the Baire property proves the following result: (][9]
Proposition 3.5) For every @ : R — Z(ON), there exists a comeager K and countable £ C #(ON) so that
for all » € K, there exists an F C & so that ®(r) = |JF. This result is used to prove some interesting
combinatorial results under ADT. Let © be the supremum of the ordinals onto which R surjects. By [9]
Lemma 3.8 and Theorem 4.3, under AD™, if k < © is an cardinal of uncountable cofinality, then there
are no maximal almost disjoint family A on  such that —(|A| < cof(x)). More recently, the above fact
was used to obtain large sets with respect to a normal measure or partition filters which are simultaneous
homogeneous for many partitions. This is used in [I] to show under AD™ that there is a four-element basis
for linear ordering on R x x when k < © is a regular cardinal and there is a twelve-element basis for the
linear orderings on R x k when k < © is a singular cardinal of uncountable cofinality.

The axiom of determinacy influences most strongly the sets which are surjective images of R. Steel ([I8§]
Theorem 8.26) showed that in L(R), the boldface GCH holds below ©. Woodin ([I9] Theorem 2.16) extended
these methods to show that ADT proves the boldface GCH holds below ©.

The general boldface GCH plays an important role in the structure of the cardinality of sets which are
nonwellorderable but linearly orderable (or equivalently, sets which are in bijection with subsets of the
power set of an ordinal). If x is a cardinal, let &g (k) be the set of bounded subsets of k. By [2] and [6]
Theorem 4.8, if the boldface GCH holds below &, then —([s]°°f(®)| < |2g(k)|). If & is regular cardinal and
the boldface GCH at  holds, then |[x]<"| < |#(k)|. Let B(w, k) be the set of all f : w — & such that
sup(f) < k. If cof(k) > w, then “k = B(w, k). However, [2] shows that if the boldface GCH holds below x,
then |B(w, k)| < |“k| if cof (k) = w.

Steel’s and Woodin’s result that the boldface GCH holds below © can be regarded as the first step in
classifying the cardinal exponentiations below ©. Substantial evidence from [5], [6], [8], [7], and [10] suggests
that cardinal exponentiation follows a very elegant simple behavior called the ABCD Conjecture: Under
AD™, for all cardinals w < a < < ©and w <y < § < O, |*B| < |74] if and only if & < v and 8 < §.
Recently, [2] showed that under AD™, if w < & < © and € < &, then Pg(k) does not inject into “ON, the
class of e-length sequences of ordinals. By combining the latter result and the the boldface GCH below O,
[2] proved the ABCD conjecture under AD™.

The proof of the boldface GCH below © uses the inner model theory analysis of HOD. First, Steel ([I7],
[20], and [I8] Theorem 8.26) showed that if L(R) = AD, then L(R) = “the boldface GCH below ©”. To show
this, Steel showed that HOD* (R) [ 6% is a direct limit of a directed system of certain iterable mice. Woodin
(as sketched in [T9] Theorem 2.16) generalized this argument to show AD™ proves the boldface GCH below
©. To do this, one first applies Suslin-co-Suslin reflection to bring the question of the boldface GCH at some
k < © into a nice model of AD". Woodin then showed that a certain HOD-type submodel of this nice AD™
model has a direct system analysis using hybrid strategy mice.

More recently, many purely combinatorial questions of determinacy have been resolved below w,, or the
projective ordinals by classical determinacy methods to provide evidence before a general proof using inner
model theory is found. The boldface GCH at w was known by the classical regularity properties or using the
fact that wy is measurable. The boldface GCH at w; was known by the fact that w, is measurable since it is
a weak partition cardinal as shown by Martin. Remarkably, it seems that Steel established the full boldface
GCH below © without even knowing that the boldface GCH holds at ws by classical determinacy arguments.

This paper will give a proof that the boldface GCH holds below w,, using combinatorial methods of AD.
(It should be noted that by the Moschovakis coding lemma, if x < ©L®) | the boldface GCH at x holds in
the real world if and only if L(R) = “the boldface GCH holds at x”. Thus Steel’s result actually implies that
AD proves the boldface GCH below ©X(®).) The paper will work with a combinatorial principle of w; which
is true in AD. Let % denote the following principle. (See Definition M)

% For every function f :w; — wi, there is a Kunen function IC which bounds f.

w1 =« (w1)5' is the strong partition relation on w;. Martin showed that AD implies w; —. (w1)5*. See

Definition [2.10] for the definition of a Kunen function. Essentially, a Kunen function bounding f : wy — wy

is a sequence (@, : @ < wi) such that there is a club C' C wy so that for all @ € C, ¢, is a surjection of «

onto f(«). Kunen proved that AD implies every function f : w; — w; has a Kunen function bounding it

by defining what is known as a Kunen tree. Both of these results are important elementary consequences of

AD, but this paper will only use w; —, (w1)5* and . One can show that over w1 —. (w1)%, % is equivalent
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to j%l (w1) = wa where ,ui,l is the club filter on wy. Kleinberg [14] studied the cardinals below w,, using
the hypothesis that w1 —. (w1)5* and jﬂbl (w1) = wa. It seems that s is much more directly practical than
b, (w1) = wa. AD is the only theory in which wy —. (w1)5" and % (or Jut, (w1) = wa) is known to hold.
AD, using the method of good coding system by Martin, is the only known theory that implies the existence
of a strong partition cardinal. Radin forcing was used by Mitchell ([16]) to produce a model in which the
club filter ,uil is a countably complete ultrafilter and by Woodin to produce a model in which w; is a weak
partition cardinal (w; —, (wq)§ for all € < wy). However, it seems that AD is still the only known theory in
which , is a countably complete ultrafilter and Ju, (w1) = wa.

The main result of the paper is that wy —. (w1)5* and Y imply the boldface GCH below w,,. The paper is
completely self-contained. The combinatorial methods used here can be generalized using Jackson’s theory
of descriptions ([I1]) for the projective ordinals to show the boldface GCH holds below the supremum of the
projective ordinals, sup{(s,l1 :n € w}, and a bit beyond under AD. These methods show the boldface GCH at
a level far below ©. Only inner model theory is known to prove the boldface GCH below © assuming AD™.

2. PARTITION RELATIONS AND ULTRAPOWERS BY PARTITION FILTERS

If X is a set and Y is a class, then XY is the class of all functions f: X — Y. If e € ON and X C ON is
a set, then [X]¢ is the set of all increasing functions f : € — X. If k is a cardinal, ¢ < k and v < 4, then the
ordinary partition relation k — (k) is the assertion that for all P : [k] — v, there isa 8 <y and an A C &
with |A| = & so that for all f € [A]¢, P(f) = 5. However one will need the correct type partition relations
here since one will be primarily interested in the ultrapowers by the partition measures obtained using the
correct type partition relations.

Definition 2.1. Let e € ON and f : ¢ — ON be a function.
e f is discontinuous everywhere if and only if for all a < e, sup(f | o) = sup{f(@): a < a} < f(«).
e f has uniform cofinality w if and only if there is a function F': € x w — ON so that for all o < € and
n€w, F(a,n) < Fla,n+1) and f(a) =sup{F(a,n): n € w}.
e f has the correct type if and only if f is both discontinuous everywhere and has uniform cofinality
w.

If X C ON and € € ON, then let [X]¢ denote the set of all increasing function f : ¢ — X of the correct type.
Note that [k]} is the set of ordinals below & of cofinality w.

*

Definition 2.2. Let x be an uncountable cardinal, ¢ < k, and 7 < k. The correct type partition relation
K — (k)5 is the statement that for all P : [k] — v, there is a # < v and a C' C & which is a club subset of
& so that for all f € [C]S, P(f) = 6.

If k is an uncountable cardinal, ¢ < k, and v < k, then Kk —, (/i),f6 is the statement that for all € < ¢,
K — (K;)i If k is an uncountable cardinal, € < k, and v < k, then kK —, (H)iw is the statement that for all
¥ <7, k =4 (k)5 If £ is an uncountable cardinal, e < k, and v < k, then K —. (k)Z5 is the statement that
for all € <eand ¥ <7, k = (K)S.

If kK —. (k)5", then £ is called a weak partition cardinal. If kK —. (k)5, then  is called a strong partition
cardinal. If Kk =, (k)%,, then & is called a very strong partition cardinal.

One can show that k — (k)4 implies k —. (k)5 and k —. (k)5 implies £ — (k)5 for all e <k and v < k.

Note that every function of uniform cofinality w must take range among the limit ordinals. Thus for
any cardinal k and 1 < € < K, []S # 0 requires that x be an uncountable cardinal. Thus the notions of
correct type function and the correct type partition relations are only meaningful for uncountable cardinals.
Partition on w (and notions such as the Ramsey property) can only be expressed using the ordinary partition

relation.

Definition 2.3. Let k be an uncountable cardinal and € < k. Define the e-exponent (correct type) partition
filter u& on [k]S by A € p& if and only if there is a club C' C & so that [C]S C A. Note that pl is the w-club
filter.

If X C ON, then let enumx : ot(X) — X be the increasing enumeration of X. An ordinal v is indecom-
posable if and only if for all a, 8 < v, a4+ 8 <y and a- 8 <. If k is a cardinal, X C &, ot(X) = K, a < K,
and vy < K, then let next} (a) be the (1 + v)*t-element of X greater than «.

3



The following results says that if C' C k is a club, then there is a club D C C which is very thin inside of
C. This club is particularly useful for many constructions.

Fact 2.4. Let k be an uncountable regular cardinal. Let C' C Kk be a club consisting entirely of indecomposable
ordinals. Let D = {a € C : enumg(a) = a}. Then D is a club subset of C and for any e € D and
a,B,7,0 < e, nextgﬂ%’(&) <e.

Proof. D is easily seen to be closed. Let o < k. Let ag = a4+ 1. If an, € C has been defined, then let
ant1 = enumg(ap, +1). Let a, = sup{a,, : n € w} and note that a < «, € C since C is a club. For all
B < ay, there is an n € w so that 8 < ay,. Thus enume(8) < enume(ay,) < enume(ay, +1) = @y <
a. Since {enumg(B) : f < aw} C{y e C :v < au},ot{y € C: v < a,} = a. Since o, € C,
enumg(ay,) = a,. Thus a < «,, and o, € D. This shows that D is unbounded. Thus D is a club. Now
suppose € € D and «,3,7,0 < €. Since e € D C C and C consists entirely of indecomposable ordinals, €
is an indecomposable ordinal. Since € is in particular a limit ordinal and € = enumg(e) > 0, there is some
v < € so that § < enumg(v) < enumg(e) = e. Since € is indecomposable, v + o - 8 + v < e. Note that

next’s "7 (8) < enumo (v + a - B+ 7) < enume(e) = €. O

Fact 2.5. Let k be an uncountable cardinal.

(1) k — (k)3 implies that k is regular.

(2) For all e < K, k =« (k)5 implies ps, is an ultrafilter.

(8) For alle <k and vy < K, k = (k) implies pg, is a v -complete ultrafilter.

(4) If € < K, then k —. (k)3T implies k —« (K)S,.. Thus k —. (k)5 implies k —, (K)SE.

Proof. (1) Suppose & is not regular. Let 6 = cof(k) < k and p : § — K be an increasing cofinal function.
Define P : [k]? — 2 by P(a,3) = 0 if and only if there exists an 7 < § so that a < p(n) < 8. By k —. (k)3,
let C' C k be a club homogeneous for P. First, suppose C is homogeneous for P taking value 0. For each
a < K, let 7, = enumg(w - a +w). For all @ < K, (N, Nat1) € [C]2. P(Na,Nar1) = 0 implies there is a
& < d so that 4 < p(§) < Nat1. Let &, be the least & such that 1, < p(§) < ney1. For any a < a < &,
(&) < Nat1 < na < p(€s)- Since p is an increasing function, this implies that (£, : @ < k) is an increasing
function of k into d which is impossible since § < k. Next, suppose C' is homogeneous for P taking value 1.
Let a be any element of [C]L. Since p is cofinal, fix £ < § so that o < p(€). Since C is a club, let 3 be any
element of [C]! so that p(¢) < 8. Thus a < p(£) < B. However, P(a, 3) = 0 implies that there is no & < &
with a < p(§) < 8 which is contradiction. So C' is not homogeneous for P which also a contradiction.

(2) Let X C [wi1]¢. Define Px : [k] = 2 by Px(¢) =1 if and only if £ € X. By k —. (k)5, there is a club
C homogeneous for P. If C' is homogeneous for P taking value 1, then [C]S C X and hence X € p. If C'is
homogeneous for P taking value 0, then [C]¢ C [£]¢ \ X and thus [s]¢ \ X € u€.

(3) Suppose pf is not yT-complete. Let § < 77 and (X¢ : & < 4) is a sequence in u such that
Ne<s Xe & wi.- Let ¢ 1 v — & be a surjection. For n < 1, let ¥; = Xy(,) and note that (¥, : n <) is a
sequence in pf and (1, . Yy & py. Let Co C & be a club so that [Col C [£]S\), <, Yy Define P [ColS — v
by P(f) is the least n < v so that £ ¢ ;. By k —. ()5, there is an 1) <y and a club C; C Cp so that for
all £ € [C1]S, P(¢) = 7. Thus [C1]S NY; = 0. Thus Y; ¢ put. Contradiction.

(4) Let v < k and P : [k]S — 7. If £ € [k]°T¢, then let 0, € [k]¢ be defined by £° = ¢ | € and
' (a) = £(e + a). Define Qq : [k]° — 2 by Qo(£) = 0 if and only if P(£°) = P(¢'). By k —. (k)5¢, let Co
be a club homogeneous for Q. Suppose Cj is homogeneous for @ taking value 1. Define @y : [x]*T¢ — 2 by
Q1(f) = 0 if and only if P(¢°) < P(£1). By k —. (k)5 there is a club C; C Cy which is homogeneous for
Q1. First, suppose C; is homogeneous for (); taking value 1. For each n € w, let ¢,, : € — k be defined by
tn (@) = enumg, ((w-€) n+w-atw). Let I,, : exw — wy be defined by I, (e, k) = enumg, ((w-€)-n+w-a+k). For
all n € w, 1, is discontinuous and I,, witnesses that ¢,, has uniform cofinality w. Thus ¢,, € [C1]S. Note that
for all n < w, sup(t,) < tne1(0). For each n € w, there is an £,, € [C1]¢7€ so that £ = 1, and £} = 1,,41. For
each n € w, Qo(£,) =1 and Q1(£,) = 1 imply that P(s,) = P(£9) > P(¢L) = P(tn41). Thus (P(t,) : n € w)
is an infinite descending sequence of ordinals which is a contradiction. Now suppose C is homogeneous for
@1 taking value 1. For each & < v+ 1, let 7¢(a) = enume, ((w-€) -+ w-a+w). Let Tz : € x w = wq by
Te(a, k) = enume, ((w-€)-§+w-a+k). For each § < v+1, ¢ is discontinuous and has uniform cofinality w as
witnessed by T¢. For each & < & < y+1, thereis an fg, ¢, € [C1]$7€ so that £ . = 7¢, and £ . = 7¢,. For
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all § < & <v+1, QO(K&),&) =1 and Q1(£§o,£1) = 0 imply that P(Tgo) = P(g(f)(),&) < P(géo,ﬁl) = P(T§1)~
Thus (7(£) : € < v+ 1) is order embedding of v + 1 into v which is impossible. Thus Cy must have
been homogeneous for Qo taking value 0. Let vg,t1 € [Cp]s. Let T € [Colé be any element such that
max{sup(zo),sup(t1)} < #(0). Then there are £y, ¢ € [ColS so that €} = 1o, ) = 11 and £} = T = (}.
Then Qo(¢p) = 0 = Q1(¢1) implies that P(ig) = P(£3) = P(¢}) = P(t) = P(£3) = P(¢9) = P(u1). Since
Lo, t1 € [CplS were arbitrary, one has that P is constant on [Cp]s. O
Fact 2.6. Let k be an uncountable cardinal, 1 < e < k, § < €, K =, (H)g+1+(€_6), and Kk —, (k)S2. Let
® : [k]© — K has the property that {v € [k]° : ®(¢) < 1(0)} € uS,. Then there is a club C C k and a function
U : [C]0 — K so that for all v € [C]S, (1) = V(¢ | 6).

Proof. It £ € [n]g+1+(676), let / € [wi]¢ be defined by /(o) = £(a) if @ < § and #(a) = £(6 + 1+ (a — §)) if
d < a<e Let Cy C k be a club consisting entirely of indecomposable ordinals so that for all ¢ € [Cp]¢,
®(1) < 1(8). Define P : [C]P+1+(=8) — 2 by P(¢) = 0 if and only if ®(0) < £(6). By k —, (k)5 T,
there is a club €y € Cp which is homogeneous for P. Let Co = {a € Cy : enumg, (@) = a}. Pick any
1 € [Cy]s. Since ®(v) < 1(0) because ¢ € [Ca]s C [CoS, nexty (®(1)) < u(d) by FactH Let ¢ € [Cl]i+1+(e_6)
be such that ¢ = ¢ and () = nextg, (®(¢)) (and note that £ has uniform cofinality w since ¢ does and
cof (next&, (®(¢))) = w). Since () = d(1) < next¢, (®(t)) = £(0), one has P(£) = 0. Thus C; is homogeneous
for P taking value 0. For any o € [Cs]?, let ®, : [C2\ (sup(c)+1)]$7% — & be defined by ®,(7) = ®(c"7). For
any 7 € [C2 \ (sup(0) + 1)]57°, let £y, = 0" (nextg (sup(c))) . Note that {5, € [Cl]iﬂﬂﬁé), lgr
and £(0) = nextg (sup(c)). P({y,) = 0 implies that ®,(7) = ®(o'7) = D(l,,) < L) = nextg, (sup(a)).
By k —. (k)52, p<% is k-complete. There is a v, < & so that for u¢ %-almost all 7, ®,(7) = 7,. Define
Q : [C2]e — 2 Dby Q(v) = 0 if and only if ®(¢) = v,1s. By £ —« (k)§, there is a club C3 C Cy which is
homogeneous for . Pick any o € [C3]°. There is a club D C C3 \ (sup(c) + 1) so that for all 7 € [D]<°,
®,(7) =7,. Fix 7 € [D]S7%. Let + = 0”7 and note that ¢ € [C3]S. ®(1) = ®,15(7) = P, (7) =75 = Yu1s5. Thus
Q(1) = 0. This shows that C3 is homogeneous for Q) taking value 0. Define ¥ : [C5]0 — & by ¥(0) = 7,.
For any ¢ € [Cs]¢, Q(¢) = 0 implies that ®(¢) = vy,;6 = U(¢ [ 0). O

=0T,

Fact 2.7. Let x be an uncountable cardinal satisfying k —. (k)3. Then u: is normal.

Proof. Note that x —. (x)3 implies £ —, (x)L, by Fact This result now follows from Fact with
0=0and e=1. O

Fact 2.8. Suppose ¢ < ki and k —, (k)5 . Let ® : [k]° — k. Then there is a club C C & so that for all
felCl, ©(f) < nexté(sup(f)).

Proof. Define P : [k]<T! — 2 by P(g) = 0 if and only if ®(g [ €) < g(e). By & —. (x)5"!, there is a club
C C k which is homogeneous for P. Pick any f € [C]S. Let v = next4(®(f)). Let ¢ = f"(v) and note
that g € [C]<TL. Since ®(g | €) = ®(f) < nextZ(®(f)) = v = g(e), one has that P(g) = 0. Since C is
homogeneous for P and g € [C]¢*!, one has that C' is homogeneous for P taking value 0. For any f € [C]€,

let gy = f (next&(sup(f))). P(gs) = 0 implies that ®(f) = ®(gy [ €) < g¢(e) = next (sup(f)). |
Note that the ordinary partition relation w — (w)% for n € w is the finite Ramsey theorem. For an
uncountable cardinals &, the ordinary partition relation x — (k)3 is equivalent to the weak compactness of

k which is compatible with the axiom of choice. However, the correct type partition relation x —, (k)3

implies p} is normal which can be used to show “& is not a wellorderable set. The finite exponent correct
type partition relation already seems to imply many of the consequences of the infinite exponent ordinary
partition relation. If ACE holds and € < wy, then a function f : € — w; has uniform cofinality w if and only
if the range of f consists of limit ordinals. However if u}, , is a normal ultrafilter, then one can show that
the identity function id : w; — w; does not have uniform cofinality w. The notion of a correct type function
is a nontrivial concept when handling functions f : w; — w; which will happen frequently in this paper.

Fact 2.9. (Martin; [12], [11], [4], [B]) Assume AD. wi —, (w1)<L,, -
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Since AD implies w; — (w1)%l,,, one has that for all € < wy, p, are countably complete ultrafilters.
Actually, AD implies there are no nonprincipal ultrafilters on w which can be used to show any ultrafilter on
any set is countably complete.

Definition 2.10. Let [[,_, a = {(o,3) : B < a}. A Kunen function is a function K : [[,_,,
such that for all o < wy, {K(a,8) : B < a} is an ordinal which will be denote x%. Define =X : w; — w; by
EX(a) = xX. If B < wy, then let KB : (w1 \ B+ 1) = wy be defined by K?(a) = K(a, B).

Let f: wl — wy. The Kunen function K bounds f if and only if {a < w; : f(a) < EX(a)} € p),. The
Kunen function K strictly bounds f if and only if {a € wy : f(a) < ZX(a)} € pl,.

a — w1

Fact 2.11. (Kunen; [I1] Lemma 4.1)) AD. For every function f : w; — w1, there is a Kunen function
K : Tlacw, @ = w1 which bounds f.

Definition 2.12. Let % be the following statement.
e For any function f :w; — wq, there is a Kunen function K : Ha<w1 « — w1 which bounds f.

Note that w; —. (w1)3* and % follows from AD by Fact and Fact The main result of the paper
will be proved from the combinatorial principles w1 —, (w1)5* and %*.

Definition 2.13. If y is an measure on a set X. If f and g are two functions on X, then let f ~, g if
and only if {x € X : f(z) =g(z)} € p. If f: X — ON and ¢g : X — ON, then write f <, g if and only if
{reX: f(z) <g(x)} ep If f: X — ON, then let [f], be the class of all functions g with g ~,, f. The
ultrapower [[, ON/pu is the set of ~, equivalence class of functions f : X — ON. The ultrapower ordering
on [[ ON/p is defined by x <, vy if and only if there exists f,g : X — ON so that « = [f], and y = [g],
and f <, g. ju : ON — []y ON/p is defined by j,(a) = [ca], where ¢o : X — {a} is the constant function.
If 41 is a measure and x € j,(wi), then let init,(z) = {y € ju(w1) : y <, =}
Fact 2.14. Assume wy; —« (w1)5" ]Mw (w1) < wy implies %k.

Proof. w1 —, (w1)3 implies xf, , the club filter on wy, is a normal ultrafilter on wy by Fact Thus
wy = [id]%1 where id : w; — wy is the identity function. Now suppose jﬂbl (w1) < wsy. Let f:w; — wy be
any function with [id]%1 < [f]ui)l. Thus wy = [id]%1 < [f}%l <y, (w1) <wsz. Let b:wp — init%l([f]%l)
be a bijection. Define a wellordering < on wy by a < g if and only if b(a) < b(5). Let W = (w1, <) and
note that ot(W) = [f]ubl' For each a < wy, let W, = (, <] a). If 8 < a < wy, then let ot(W,, 3) be the
rank of 8 in W,. Define K : [],_,, @ = w1 by K(«, 8) = ot(Wa, B). One seeks to show that £ is a Kunen
function for f. It is clear that for all @ € wy, {K(a, ) : 5 < a} = {ot(W,,8) : B < a} = ot(W,). Thus
ZX(a) = ot(W,). Suppose < [f}%l. Let &, = b=*(n). Define g, : w1\ (&,+1) — w1 by g,(a) = ot(Wy, &,).
Note that for all a € w1\ (§ + 1), gq(a) < ot(Wa) = EX(a). Define ¥ : init,y ([fluy ) = init, ([, )
by ¥(n) = [gn]uil' Suppose 19 < 171 < [f]uil' Let ¢ = max{&,,,&, }. Forall a € wi \ ((+1), gy () =
otWa, o) < 0t(Wa, &y) = g (@) since b(Ey,) = no < m < b(&,,). Thus ¥(ng) = [gno}ul,l < [gm]%1 =
U(ny). ¥ is an order embedding of initM([f]ulwl) into init,;1 ([ZX]). Thus [f}%l < [E’C]%l. This shows that
{acw: fla) <EN(a)} € pl,. K is a Kunen function bounding f. O

Fact 2.15. Assume w; — (w1)3. Let f :w; — wy and K be a Kunen function strictly bounding f. Then
there is a v < w1 so that f ~, K7.

Proof. wy =, (w1)3 implies that 4}, is a normal ultrafilter by Fact Let A={acw: fla) <EX(a)} e
. For each a € wy, one has that f(a) < EX(a) = x& = {K(a, B) : B < a}. Define g : A — w; by g(a) is
the least 8 < a so that K(«, 3) = f(a). For all a € A, g(a) < a. Since p,, is normal, there is a v < w; and
B C A with B € py and g(«) =« for all « € B. Thus K7 (a) = f(«) for all « € B. O

Fact 2.16. Assume w1 — (w1)3. Let f: w1 — wy and K be a Kunen function bounding f. Then there is
an injection I' : init,; ([f]% ) = wy so that for all x € init,; ([fhﬂ ) [ICF(I)]%l =2.

Proof. Suppose x =l [f]“ Let g : w1 — w1 represent x. Then g <, L f and hence K is also a Kunen

function bounding g. By Fact 2.15] there is a v < wy so that K7 ~, g. Tet I'(z) be the least v such that
(K]0 uy, = . This defines the desired injection I : [f]%1 — wi. O
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Dependent choice implies ultrapowers of ordinals are wellordering. However the existence of Kunen
functions bounding functions from w; to w; is sufficient to show that the ultrapower of w; by the finite
exponent partition measures on w; are wellorderings.

Fact 2.17. Assume wy —, (w1)3 and %. The ultrapower j%l (w1) =1L, w1/pd, is a wellordering.

Proof. Suppose the ultrapower is not wellfounded. There is an A C le w1/ Mil which has no minimal
element according to the ultrapower ordering <, Pick any element € A. Let f : w; — w; be a
representative for z. Let K be a Kunen function bounding f. By Fact [2.16] there is an injection T' :
init%l([ﬂ%l) — wi so that for all y <1 [f}%l, Yy = [ICF(y)]M}”. Let B = F[m/til] be the range of I
Let 09 be the least ordinal 6 € B. Suppose d, has been defined. Since [f] ul, has no <-least element,
there is some § € B so that K° <ul, Ko, Let 0,41 be the least § € B so that K° <ul, K% . For each
n € w, Dy = {a € wy : KO+ (a) < K% (a)} € pl,. Since p}, is countably complete, D =, ., Dn € pd,
and hence nonempty. Let @ € D. Then (K% (&) : n € w) is an infinite descending sequence of ordinals.
Contradiction. |

Fact 2.18. Assume w; —» (w1)3 and *. jubl (w1) < ws.

Proof. By Fact Jut, (wq) is a wellordering. By Fact cach initial segment of j,,1 (w1) injects into
wy. Thus juil (w1) < ws. O

Fact 2.19. Assume wy —. (w1)3. % and Jub, (w1) < wy are equivalent.
Proof. This follows from Fact an Fact O

Fact 2.20. Let k be an uncountable cardinal and p be a normal ultrafilter on k containing no bounded subsets
of k. Let ¢ : k — K be a function and A € p. Then the set B={a € A: (Vo' < a)(¢(c/) < a)} € p.

Proof. Suppose not. Then C' = k\ B € u. Let f: C — k be defined by f(«) is the least o/ < « so that
a < g(a’). Since p is normal, there is a D C C with D € p and a 8 < k so that for all & € D, h(a) = 8.
Thus for all « € D, a < g(h(a)) = q(B). This is impossible since D is an unbounded set. O

Fact 2.21. Let k be an uncountable cardinal and p be a normal ultrafilter on k containing no bounded subsets
of k. If A €, then {a € A :enumy(a) = a} € p.

Proof. By applying Fact [2.20] to enum, the set A = {a € £ : (Vo/ < a)(enumy(e/) < @)} € p. Let
B =AnNA € p If a € B, then sup(enumy [ @) = « and thus enumg(a) = « since o € A. So
B C{a€ A:enumy(a) = a}. O

Fact 2.22. (Martin) Assume k is an uncountable cardinal satisfying k —. (k)5.

(1) Let pv be an ultrafilter on k such that j, (k) is a wellordering. Then j, (k) is a cardinal.
(2) Let p be a normal ultrafilter on k which contains no bounded subsets of x such that j,(k) is a
wellordering. Then j,(k) is a regular cardinal.

Proof. (1) First assume p is an ultrafilter on an uncountable cardinal satisfying x —. (k)5 and j,(x) is a
wellordering (and thus one may assume j, (k) is an ordinal). For the sake of contradiction, suppose j,, (k) is
not a cardinal. Then there is a A < j,(x) and an injection @ : j, (k) — A. If f : K — £ is a function, then let
f°=f(2 a)and f' = f(2-a+1). Define P : [s]¥ — 2 by P(f) = 0 if and only if ®([f°],) = ®([f'],). By
Kk =« (K)5, there is a club Cy C x which is homogeneous for P. Take any f € [Cp]%. Note that for all o < &,
(@) < fY(«) and hence [f°],, < [f'],. Since ® is injective, ®([f°],) # ®([f'],) and thus P(f) = 1. So Cy
is homogeneous for P taking value 1. Define Q : [Cp]¥ — 2 by Q(f) = 0 if and only if ®([f°],) < ®([f*],.).
By k =4 (k), there is a club Cy C Cy which is homogeneous for Q). First suppose C is homogeneous for Q
taking value 1. For each k € w and « < &, let gx(a) = enumg, ((w-w) - a4+ w - k +w). Note that g € [C1]%.
For each k € w, there is an fy € [C1]% so that f) = gx and fl = gr+1. Then P(f) = 1 and Q(fx) = 1
imply that ®([gr+1],) = ®([fi].) < ®([f2].) = ®(lgx],)- Thus (@([gx],) : k € w) is an infinite descending
sequence in the ordinal A which is a contradiction. Suppose C; is homogeneous for @ taking value 0. Since
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X < ju(k), let h : k = Kk be such that [h], = A\. Define T' = {(o, ) : « < K A B < h(a) + 2}E| Let <jex
be the lexicographic ordering on T. Note that the ordertype of (T, <jex) is . Let ¢ : T — Cy be an order
preserving function from (T, <jex) into (C7, <) of the correct type which means the following two conditions
hold:

e Forall z € T, sup{¢(y) : y <iex #} < ().

e There is a function ¥ : T' X w — k so that for all z € T and k € w, ¥(z,k) < ¥(x,k+ 1) and

Y(z) = sup{¥(x,k) : k € w}.

For any function g : Kk — &, define § : kK — C7 by

mw{wmym» 9(@) < h(a) +1

(e, 0) otherwise

Define G : k X w — k by

- _JY((e,g(a), k) gla) < h(a)+1
Glot) = {\II((a,O), k) otherwise '

Note that G witnesses that ¢ has uniform cofinality w. Since % is discontinuous everywhere, § is discontinuous
everywhere. Thus § : kK — C is an increasing function of the correct type and hence § € [C;]%. For any
n<A+1,let §, =[g], for any g : K — x such that [¢g], = 7. Note that 9, is independent of the choice of g
representing 7. Let 1o < n1 < A+ 1. Let go, 91 : kK = & be such that 7y = [go], and 71 = [g1],. For i € 2, let
Jo, g1 € [C1]% be defined by

o(a)) go(a) < g1(a) < h(a) +1
) otherwise

Y(a, 1) otherwise

Note that for all a < &, go(a) < g1(«) by the definitions above and the fact that ¢ is order preserving on
(T, <1ex). Forall @ < &, §1(a) < go(a+1) since §1 (o) = (e, §) for some £ < h(a)+2, go(a+1) = P(a+1,¢)
for some ¢ < h(a+ 1) + 2, and by comparing the first coordinates since v is order preserving on (7, <jex)-
Thus there is an f € [C1]F so that f© = gy and f! = ;. Since [go], < [g1], < A+ 1, one has that
A={a € w :gola) < gi(a) < h(a) + 1} € p. Hence for all @ € A, jo(a) = go() and §1(a) = g1(«).
Thus 0y, = [golu = [o]u = [f*]u and 6y, =[Gl = [G1]u = [f']u- P(f) = 1 and Q(f) = 0 imply that
6o = [ < [fYy = 6y Thus (6, : 7 < A+ 1) is an order preserving injection of A + 1 into A which is
impossible. (Note that since j,(x) is an ordinal, A < j,(x) is also an ordinal. For ordinals A, A + 1 cannot
inject into \.)

(2) Now suppose p is a normal ultrafilter on x which does not contain any bounded subsets of x and j, (k)
is an ordinal. For the sake of contradiction, suppose j, (k) is not regular. Then there is an infinite cardinal
A < ju(k) and an increasing map p : A = j, (k). Define V' : [k]f — 2 by V(f) = 0 if and only if there exists a
€ < X so that [f%], < p(&) < [f'], (where fO, f! € [x]” is obtained from f € [k]" as before). By k —, (k)5,
there is a club Cy homogeneous for V. First suppose Cj is homogeneous for V' taking value 0. Let h: k — &k
be such that [h], = A\. Define W = {(o,8) : 5 < h(a) 4+ 2}. As before, (W, <iex) has ordertype . Let
¥ : W — Cp be a order preserving function from (W, <jex) — Cp of the correct type. For any g : k — &,
define gg, g1 : K — Kk by

ir(a) = {w ag1(@)  go(@) <gi(a) <h(a)+1

o Jw(eng(e)  gla+1) < h(a) +2
o(a) =

(0, 0) otherwise
v(){wmm®+n gla+1) < h(a) +2
! (0, 1) otherwise '

Note that for all g : k = &, go, g1 € [Co]? and for all a < &, go(a) < g1(a) < Jo(aw+ 1) by arguments similar
to the above. Thus there is some f € [Cp]% so that f° = gy and f' = g;. Now suppose n < A+ 1. Let
g : £ — K be such that n = [g],. Let f € [Cy]% be such that f = gy and f! = gi. V(f) = 0 implies that

IThe purpose for adding 2 rather than 1 is to ensure that («,0), (a,1) € T for all a < k.
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there is a & < A so that [go], = [f%), < p(&) < [f'], = [§1],- Let &, be the least such ¢ and note that
&y is independent of the choice of g representing 7. Now suppose o < 71 < A+ 1. Let g,p: K — & be
such that 79 = [g], and n1 = [p],. Note that B = {a € £ : g(a) < p(a) < h(a) +2} € p. For all a € B,
g1(a) < po(a). Thus p(&,) < [G1)p < Polp < p(&,;,). Since p is an increasing function, one must have
that &,, < &,,. Thus (&, : n < A+ 1) is an order preserving injection of A + 1 into A. This is impossible.
Now suppose Cj is homogeneous for V' taking value 1. Let gy € [Co]f. Since p : A — j,(k) is cofinal,

there is some £ so that p(§) > [go],. Since j,(Cp) is order isomorphic to j,(x), let g1 € [Co]F be so that

[91], > p(§). Since go is an increasing function, for all a < &, there is an o’ so that g1 () < go(c’). Let ¢(a)
be the least o’ so that g1(a) < go(a’). Since [go], < p(€) < [g1]u, let Ag € p be such that for all a € Ao,
go(a) < g1(a). Let Ay = {a € Ay : (Vo' < a)(g(e’) < a)} and note that A; € p by Fact Define
fir—=rby f(2-a) = golenumy, () and f(2-a+ 1) = gi(enumy, (a)) for all & < k. Note that for all
a < K, f(2-a) = go(enumy, (o)) < gi(enumy, (o)) = f(2-a+1) since go(y) < g1(7y) for all v € A;. Note also
that for all & < K, f(2-a+1) = gi(enumy, () < go(g(enumy, («))) < golenuma, (e + 1)) = f(2- (e + 1))
by the definition of ¢ and A;. This shows that f : K —  is an increasing function. It is clear that f € [Cp)¥
since go, g1 € [Col%. Let As = {a € A; : enumy, (o) = a} which belongs to u by Fact For all i € 2 and
a € Ay, f(a) = gi(enumy, (a)) = gi(a). Thus [f’], = [g:], for both ¢ € 2. V(f) = 1 implies that there is
no & < A with [go], = [f%], < p(€) < [fY], = [91],. This is contradiction since [go], < p(§) < [g1],. It has
been shown that V' has no homogeneous club which violates kK —, (k)5. O

Fact 2.23. (Martin) Assume wy —, (w1)5' and %. Then Jut, (w1) = wa and wy is a regular cardinal.

Proof. By Fact , Jui, (w1) is a wellordering. By Fact ﬂeach initial segment of Jui, (w1) injects into wy.
2

Thus wy = [id]ulw1 < Jud, (w1) < (w1)T = wsy. Since Fact [2.22] implies Jui, (w1) must be a cardinal, one has
that Jui, (w1) = wy. Since pl, is a normal ultrafilter by Fact [2.7, Fact [2.22| also implies that wy = Jui, (w1)
is regular. O

Fact 2.24. Assume wy —« (w1)5'. % and Jui,, (w1) = wo are equivalent.
Proof. This follow from Fact and Fact O

Next, one will show that for all 1 < n < w, jqul (w1) = wp41 and cof (wp4+1) = wa (without assuming any
form of dependent choice or even countable choice).

Fact 2.25. Assume wi —, (wl)gﬂ. For each 1 < n < w and g : wi — wy, let f]n(g) D wr]™ = wy be
defined by X(g)(¢) = g(t(n —1)). Let X, Sk, (w1) — Ju, (w1) be defined by Zn([g]%l) = [Z(g)]%l. Then
Tt s, (1) = Jup, (w1) is cofinal.

Proof. Suppose x € j“31 (w1). Let f: [w1]™ — wy represent x. Define Py : [w1]"™! — 2 by Pf(¢) = 0 if and
only if f(¢ [ n) < £(n). By wy —. (w1)y™", there is a club C' C w; which is homogeneous for Py. Pick any
L € [C]?. Let v € [C]! be such that f(:) < 7. Let £ =1:"(y) and note that £ € [C]?T!. Then P;(¢) = 0 since
f I n)= f(t) <~ =~£(n). This shows that C' is homogeneous for P, taking value 0. Let g : w3 — w1
be defined by g(a) = next%(a). Let ¢ € [C]? and let £, = " (g(¢(n — 1))). Note that ¢, € [C]?*! and thus
P;(£,) = 0. This implies that f(¢) = f(¢, [ n) < £,(n) = g(t(n—1)) = £,(g)(¢). Since ¢ € [C]" was arbitrary,
it has been shown that = = [fuy  <ur_, [En(9)]un, = Znllglu)- O

Fact 2.26. Assume 1 < m <n <w and wy =, (w1)3. There is an order embedding of jum (w1) into a
proper initial segment of jyn (w1).

Proof. It f : [w1]™ — w1, then let f ¢ [w1]™ — w1 be defined by f(é) = f(£ | m). Define ¥ : jule (w1) —
Juz, (w1) by ¥(x) = m/tljl where f : [w1]™ — w; represents x. One can check that ¥ is well defined
independent of the choice of representative f for z and is an order embedding.

Let g : [w1]" — w1 be defined by g(¢) = £(m). The claim is that the range of ¢ is below [g],n . Let
It wi]™ — wi. Let Pp i [wi1]™™ — wy be defined by Pf(o) = 0 if and only if f(o | m) < o(m). By
wi — (w1)5 ™t let Cp C w; be a club homogeneous for Py. Pick ¢ € [Co|™. Let 0 = "(nextg, (f(¢))
and note that o € [Co]/"™'. Since f(o | m) = f(r) < nextg (f(:)) = o(m), one has that P;(o) = 0.
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Thus Cp is a homogeneous for P; taking value 0. For any ¢ € [Coll", let o, = "(nextg, (t(m — 1))).
Ps(o,) = 0 implies that f(1) < nextg (t(m —1)). Let C1 = {a € Cp : enumg,(a) = a}. Let £ € [Cq]".
One has f(£) = f(¢ | m) < nextg, (£(m — 1)) < £(m) = g({) since {(m) € C; and using Fact M Thus
\II([f}#gLI) < [g]%l. This shows that ¥ maps j,,m (w1) into an initial segment of Juz, (w1). O

Definition 2.27. Suppose f : [wi]® — w;. For each 1 < k < n, define I}“ wr]® — wy by I]’?(J) =
sup{f(7°o) : 7 € [w1]"* Asup(7) < 0(0)}. (Note that It =f.)

Note that if f, g : [wi]" — wy with [f]un =un  [g]uz , then it is not necessarily true that [I}],ﬂwl < [Igl]%l.

However, one has the following.
Fact 2.28. Suppose 1 <n < w1, f,g: [w1]™ = w1 with [f]%1 S, [g]ﬂgl. Then there is a f : [w1]™ — wy
so that [f]“31 = [f]%1 and for all o < wy, I};(a) < Iy(a).

Proof. Since [f]un Zun [glun , A={L € [w]": f(£) < g(0)} € p, - Define fifwi]® = w1 by

fo) = {5(6) ﬁ;j.

Note that [f]u; = [f]ugl. For all a € wy, I}(a) =sup{f({) : L € [wi]" ANl(n—1) = a} =sup{f({) : L €
ANUn—1)=a} <sup{g(f) : £ € ANLn—1) = a} <sup{g(f) : £ € [wi]" Al(n—1) = a} = I](a) where
the first inequality uses the fact that f(¢) < g(¢) for all £ € A. O

Definition 2.29. Suppose 1 < n < w, K is a Kunen function, and h : [w1]® — w;. Define K™ : [wy]"+! —
wy by K™ (0) = K(¢(n), (¢ | n)) when h(€ | n) < £(n) and K™"(¢) = 0 otherwise.

Fact 2.30. Assume w1 —« (w1)5' and %. For alll <n < w, Ju, (w1) = wpa1 and cof (wp41) = wa.

Proof. Suppose 1 < n < w and the following has been shown:
(1) Ju, (w1) = wpt1 and cof (wp41) = wa.
(2) If A C wyy1 with |A| < wy, there is a function ¥ so that for all & € A, ¥(«) : [w1]|} — wi and
[S()]n, = af]
For n = 1, both properties have been shown. (1) is Fact To see (2), suppose A C wo with |A| < wy.
Since ws is regular, sup(A) < ws. Let f : wy — wy represent sup(A4) and K be a Kunen function bounding f.
By Fact there is a function I' so that for all & < sup(4), a = [Kr(a)]#il. For o € A, let $(a) = K@),
Now suppose the two properties have been established at n. One seeks to establish the two properties at
n+ 1.
First, one will show that j, «+1(w1) is wellfounded. Suppose X C j n+1(w1) has no < n+i-minimal ele-
w1 w1 w1
ments. Pick x € X and let f: [wl]”H — wq represent x. Let I be a Kunen function bounding I} TW1 — W1
For any y < ,n+1 @, use Fact to pick a g : [wi]"*! — w; which represents y and I} <, I;. Thus K is
& 5
also a Kunen function which bounds I. Let Ay = {a € wy : I}(a) < Z%()} and note that Ay € pl, . For
any £ € [Ag]mT, () < I3(6(n)) < EF(L(n)). Let h(€) be the least ordinal y < £(n) so that g(¢) = K(€(n),~).
Since %L(ﬁ) < {(n) for p+t-almost all ¢, Fact implies there is an h : [wi]™ — wy so that for uF!-almost
all ¢, h(¢) = h(£ | n). By (1) at n, one has that [h]%1 € Juz, (w1) = Wp+1. It has been shown that for

n

all y < untt T there is an ordinal § < wp41 so that for any h : [w1]™ — w; representing d, the function
w1

Krhs [w]" Y — wy defined (in Deﬁnition by Km(¢) = K(£(n), h(£ | n)) represents y. Let &, be the
least such ¢ for y. Let B={d,:y € X Ay <t x} and note that B C wy,41. Let dg be the least member
of B according to the usual ordering on w, 1. Suppose d; has been found and let y; be the element of
X represented by K™" for any h : [w1]" — w; representing J;. Since X has no minimal element, there is
some & so that for any h : [w;]™ — w; representing §, the function ™" represents an element of X which
is =t below yg. Let d;11 be the least such ordinal 6. This defines a sequence (0 : k € w) of ordinals

2For this proof, one only needs the result for |A| < w. However, the proof is no different for A with |A| < wy. There are
other applications which require the stronger form.
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below w, 11 and corresponding sequence (y : k € w) in X. Note that for all k € w, yg41 =t Yk Since
wy
{0k : k € w}[ = w < w1, property (2) at n gives a sequence (hy : k € w) so that [hy]un = dk. For each

n € w, let By = {{ € [wy|" 1 : K™Met1(0) < K™he(0)} and note that Ej € pF! since yy41 =it Uk Since

2n+2 n+1
2 w1

w1 =4 (w1) implies p5 ! is countably complete, E = (., Ex € pt and hence nonempty. Let £ € E.
Then (K™"*(¢) : k € w) is an infinite descending sequence of ordinals which is a contradiction. It has been
shown that j it (w1) is a wellordering.

Next, one will show that jﬂzlﬂ(wl) < wpio. Let x € juzlﬂ(wl), f o wi]™™ — wy represent x, and K be
a Kunen function bounding I}. The argument above showed that for any y < untt T there is an ordinal
§ < wpy1 so that for any A : [wi]® — w; which represents §, K™" : [wi]"T! — w; represents y. Let dy
be the least such 0 for y. The map T : initﬂgﬂ(w) — wp41 defined by T(y) = 0, is an injection. So

inituzj—l(fﬁ) has cardinality less than or equal to wyy1. Since z € jugj—l(W1) was arbitrary, this shows that
jugjl(wﬁ < (wn+1)T = wWnto.

By Fact Wnt1 = Juz, (w1) < juzrl(wl) < wpy2. Since Fact implies j‘ug-{—l(wl) is a cardinal,
one has that juglﬂ(wl) = Wpy2. cof(wpia) = Jui, (w1) = wa by Fact Property (1) at n + 1 has been
established.

Now to establish property (2) at n + 1. Suppose A C wp4o with |A| < w;y. Since cof(wp42) = wa, one
has that sup(A4) < wpi2. Let f: [wi]"™ — w; represent sup(A) and let K be a Kunen function bounding
I}. As argued above, there is a sequence (0, : @ € A) in w,y; with the property that for all a € A, for any
h : [w1]™ — wy representing d,, K™" represents a. The set {5, : @ € A} is a subset of w, 1 of cardinality
less than or equal to wy. By property (2) at n, there is a sequence (h, : @ € A) so that hy : [w1]® — wq
represents 6. Then (K™/« : a € A) has the property that for all & € A, K™"e represents a. This verifies
property (2) at n + 2.

By induction, this completes the proof. O

As mentioned in the footnote, the proof of Fact actually showed that one can find representatives
for wi-many elements of j%l (w1). Although this is not needed in the proof of Fact [2.30|or anywhere else in
this paper, this is a very important instance of choice that is required for many combinatorial results below
w,,. For example, it is needed to show ws is a weak partition cardinal. This fact proved within the proof of
Fact [2:30] is explicitly isolated below.

Fact 2.31. Assume w1 —, (w1)3" and k. Let 1 <n <w and A C jup (w1) = wpir with [A| < wy. There
is a function I on A so that for all « € A, T'(a) : [1]" = w1 and a = [(a)]uy -

[3] shows that these combinatorial methods using the Kunen functions can show that j,e (w.,) is well-
founded and even show that j ", (ww) < Wyt for all € < wy. However this seems to be the limit of the purely
combinatorial methods. These methods cannot be used to calculate j%l (wya1) for € < wy. These combi-
natorial methods have no influence on the ultrapower by the strong partition measure p>!. Using Martin’s
good coding system for “¢w; for € < wy to make complexity calculations, [3] showed that j%l (Wyt1) = Wt1
for all € < wy. Calculating the ultrapowers by the strong partition measure on wy is an important question
concerning the strong partition property. [3] showed that e (wy) is wellfounded in AD alone by using
Martin’s good coding system for “*w; to bring the ultrapower into L(R) to apply a result of Kechris [13]
which states that AD implies L(R) = DC. The first step in understanding the ultrapower by the strong
partition measure on w; was completed in [3] by answering a question of Goldberg that Ju (w1) < W1

w1

Fact 2.32. Assume wi; —, (w1)s* and %. Let 1 < n < w. If§ € wpt1 \ wn, then there is a function
[ lwn]™ = wy such that [f],y, = 0 with the property that for all v, 11 € [wi]}, if to(n —1) <u(n—1), then
fo) < f(02)-
Proof. Let fo : [wi]® — wi be any representative for § with respect to uf, . Let Ag = {¢ € [wi]} :
f(¢) > ¢(n —1)}. One must have that Ay € p} since otherwise Fact implies there is a function
g : [w1]"t — wy so that for p? -almost all £, fo(¢) = g(¢ | n —1). This would imply that § = [fO]/tZI
[g}lu‘n—l IS j‘unfl(w:[) = w,, which contradicts the assumption that § € w11 \ w,. Let Cp C wq be a club
wq wq
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so that [Co]? C Ag. Define P : [Co]?™ — 2 by P(¢) = 0 if and only if fo(¢ | n) < £(n). Let C; C Cy
be homogeneous for P using w; —. (w1)3 ™' Pick any ¢ € [C1]7. Let £ = ¢ “(nextg, (f(¢))) and note that
€ € [Ch]2Fh. Then f(€ [ n) = f(u) < nextg (f()) = £(n + 1). Thus P(£) = 0 and hence C; must be
homogeneous for P taking value 0. For any « € [C1]}, let £, = " (next$ (¢(n —1))). P(£,) = 0 implies
that f(t) = f(l, [ n) < £(n) = nextg («(n —1)). Let Co = {a € Cy : enumg, (o) = a}. Note that
if £ € [w1]?, then enumg, o £ € [Co]?. Define f1 : [w1]? — wi by fi(¢) = fo(enumg, o). Now suppose
10,1 € [w1]} with to(n — 1) < ¢1(n — 1). By the observations above and the definition of C5, one has that
J1(t0) = fo(enume, 01g) < nextd, (enumg, (to(n—1))) < (enumg, ouy)(n—1) < fo(enume, ot1) = fi(e1). Let
Cs ={a € Cy : enumg, (o) = a}. For all « € [C3], one has that enumc, ov = . Thus § = [folu = [filuz, -
f1 is the representative of § with the desired properties. O

Definition 2.33. Let C, be the reverse lexicographic ordering on [wq]™ defined as follows: Let <jox be
the lexicographic ordering on n-tuples. If ¢ € [w;1]™ (so ¢ is an increasing function), let ¢* € ™w; be defined
by *(k) = ¢«(n — 1 — k). Define C,, on [wq]} by ¢ T, £ if and only if ¢* <jex £*. (Even more explicitly,
let g < ... < ap—1 < wy and By < ... < Bpo1 < wi. (Qoy-yan—1) Cn (Bo, ..., Bn—1) if and only if
(an—la QAp—2, ...y Oé()) <lex (ﬂn—la ﬂn—Za ceey ﬂO))
A function f : [w1]™ — wy has type n if and only if the following hold:
e f is order preserving from ([w;]™, C,) into the usual ordinal ordering (wy, <).
e (Discontinuous everywhere) For any £ € [w1]", sup{f(¢) : ¢t T, £} < f(£).
e (Uniform cofinality w) There is a function F' : [w1]™ X w — wq so that for all £ € [wq]™ and k € w,
Fl,k) < F({,k+1) and f(£) =sup{F({, k) : k € w}.
Note that a function f : w; — w; has type 1 if and only if it is an increasing function of the correct type
(that is, f € [w1]¥1).
Define B,,11 C wp41 to be the set of § € wy41 so that there is a function f : [w1]™ — w; of type n with
§ = [flun . If C C wy, then let B, | be the set of § € wy41 so that there is a function f : [wi]™ — C of type

Definition 2.34. Let V,, = {(an_1,...,00,7) € "wi 1 ap < a1 < ... < a1 Ay < ap_1}. Let < be
the lexicographic ordering on V;,. Let V,, = (V,,, <) which is a wellordering of ordertype w;. A function
¢ : V, = wi has the correct type if and only if the following holds:
e ¢ is order preserving from V), into (w1, <), the usual ordering on wy.
e ¢ is discontinuous everywhere: for all z € V,,, ¢(z) > sup{o(y) : y < z}.
e ¢ has uniform cofinality w: there is a function ® : V,, x w — wy with the property that for all x € V
and k € w, ®(z, k) < ®(z,k + 1) and ¢(z) = sup{®(x,k) : k € w}.

w1

Fact 2.35. Assume w; —, (w1)5' and . Let C C wy be a club. There is an order embedding of w,y1 into
%0,

Proof. Let ¢ : V,, — C be a function of the correct type. It is clear that the order type of wp+1 \ wy
is wp+1. One will define an order embedding of wy,+1 \ wy into %n+1 Let § € wpi1 \ w,. By Fact
2.32) there is an f : [wi]} — wy so that § = [f],r and has the property that for all ¢, i1 € [wi]}, if
to(n —1) < t1(n—1), then f(r9) < f(¢1). Suppose ap < ay are two limit ordinals. Let 79,71 be such that
ag <7 <7 <aj. Forie€ 2, let v, =(0,1,...,n—2,7;). By the property of f, one has that f(c,,) < f(t4,)-
Hence I} () < flivy) < fleyy) < I} (a1). So I} is an increasing function on the limit ordinals below w;. This
implies that (I}(¢(n — 1)), I;(e(n —2)), ..., I}(1(0)), f(¢)) € Vi, when ¢ € [wn]?. Let [ [w1]? = wp be defined
by £(0) = G(IHeln— 1)), IH(u(n = 2)), oy THE0), £(0)): Define W : (@opr \wn) — BE,, by ¥(6) = [flg, for
any f : [w1]™ = w; such that § = [f]%1 and for all 1, ¢1 € [w1]™, if to(n —1) < t1(n—1), then f(uo) < f(e1).
¥ is well defined independent of the choice of such f representing §. Suppose tg T, t1. If E < n is largest
such that 1o (k) # ¢1(k), then to(k) < 11(k). By the obervation above, I;(1o(j)) = I}(1(4)) for all k < j <n
and I}c(bo(k)) < I}(Ll(k')). Since ¢ is order preserving on V,, one has that f(19) < f(¢1). This shows that
f is order preserving on ([w1]?,C,). f is discontinuous everywhere and has uniform cofinality w since ¢ is
discontinuous everywhere and has uniform cofinality w. So f has type n. This shows that ¥ does map into
%S_H. Suppose 09,1 € wpt1 \ wy, and Jp < d1. Let go, g1 ¢ [w1]™ — wy represent dy and dq, respectively,
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with the necessary properties stated above. Let D C wi be a club so that for all ¢ € [D]}, go(t) < g1(¢).
For i € 2, define f; : [w1]" — wi by fi(¢) = gi(enump o {). Let D = {a € D : enump(a) = a}. Note that
for all £ € D and i € 2, f;(¢) = gi(¢). Thus 6; = [g]un = [fi]uy, and f still has the necessary properties.
Moreover, for all ¢ € [wy]™, fo(¢) < fi(£). Thus for all o € [wy]™, I}O(a) < I}l (o). So for all ¢ € [wy]™,
(I7,(e(n=1)),...; I}, (¢(0)), fo(r)) < (I}, (e(n—1)), ..., I}, (1(0)), f1(¢)) and therefore fo(t) < f1(¢). This shows
that ¥(dp) = [fo]%,l < [fl]%l = W(61). This shows that U : (wp41 \ wp) = B, is an order preserving
injection. (]
Definition 2.36. Suppose 1 < n < w and § € B, ;. Forany 1 < k < n, let I(? = [I}“]“Bl for all

f i [w1]™ = wr of type n such that [f]%1 = 4. (Note that Z¥ is independent of the choice of f representing
d but f must be a function of type n.)

Fact 2.37. Assume wy —. (w1)5"* and %. Let 1 <n <w, C Cw be a club, and ¢ : V,,11 — C be a function
of the correct type. Let 1) : [w1]™ — wy be defined by ¥(ag, ..., tn—1) = sup{d(an_1,...,20,¢,0) : ¢ < ap}.
Let § = [¢]up - The set |[{n < By I =60} = |wnyal.

Proof. Let A= {n < B,y : ;' = 0}. Let v € wyi1. Let f : [w1]™ — wy be such that [flun, =v- By Fact
there is a club Dy C wy so that for all £ € [D]}, f(£) < next}, (£(n—1)). Let Dy = {a € Dy : enump,(a) =
For all £ € [Dy]"*!, f(£ | n) < next}, (£(n—1)) < £(n) using Fact Define a function f : [Dy]"*! — C by

flag, ..., an) = dla, ..., ag, flag, .y an_1)).

Note that this is well defined since (au,, .., aq, f(Qg,-..;n—1)) € Viut1 by the property of D;. Let f

[w1]" Tt — C be defined by f(¢) = f(enump, of). Let Dy = {a € D; : enump, (o) = a}. Note that for all

¢ € [Do]" ", ¢ = enump, o £. Thus [f]n+1 = [f],n+1. Note that f has type n + 1 since ¢ has the correct
wy wq

type from V, ;1 into (C, <). So [f]uzlﬂ € BY,,. Observe that for all (ag, ..., an_1) € [Da]?,
I}L(Oém "'7an—1) = SUP{J;(QO‘Oa "-7an—1) : C < Oéo} = Sup{f(<70503 "'aan—l) : C < Oé()}
= Sup{qb(anflu cey QY0 Ca f(a07 ceey anfl)) : C < Oé()} = Sup{(b(anfh seey OZ(),C, 0) : C < aO} = w(a(h seey an71>
Let T(n) = []E]#Sfl = [f]#zlﬂ. By the above discussion, Y(n) € B, , and Iy = [I}f]%l = Y]z, = 9.

Thus Y : wyy1 — A. Suppose 19 < n1. Let fo, f1 : [w1]™ — w1 be such that 7y = [fo]ugl and n; = [fl]“ﬁl'

For p -almost all ¢, fo(¢) < fi(€). Thus for pF'-almost all ¢, fo(t) < fi(e). Thus T : w,pq — A is order
preserving and hence an injection. Thus |A| = |wy41]- O

3. BoLpFACE GCH BELOW w,,

Definition 3.1. Let x be a cardinal. The boldface GCH holds at & if and only if there is no injection of x*
into #(k). The boldface GCH below & is the statement that for all § < x, the boldface GCH holds at ¢.

Fact 3.2. Let x be a cardinal and § < k. If there is a 0T -complete nonprincipal ultrafilter on k, then there
is no injection of K into P (9).

Proof. Let p be a §+t-complete nonprincipal ultrafilter on k. Suppose (A, : @ < k) is an injection of & into
P(8). Foreach € < §,let B} ={a € r:{¢ Ay} and Ef = {a € r: € € Ay}. Since p is an ultrafilter, there
is a unique i¢ € 2 so that Eég € u. Let B = ﬂ€<5 E25 and note that E € u since p is §T-complete. Since u
is nonprincipal, let ag, a1 € E with ag # a;. For all £ < 4, since ag, oy € E C Ef, € € Aq, if and only if
i¢ = 1if and only if £ € A,,. Thus A,, = Aa,. This contradicts the injectiveness of (4, : o < k). O
Fact 3.3. If k —, (k)3, then there is no injection of k into P (8) for any § < k.

Proof. k —. (x)3 implies that pl is a k-complete ultrafilter by Fact The result follow from Fact (3.2, O

Fact 3.4. w; —, (w1)3 implies the boldface GCH at w.
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Martin [I2] (and Kleinberg [I4]) (also see [4]) showed that w; —. (w1)s* and % imply that wy is a
weak partition cardinal (satisfies wy — (w2)5“?). Thus under these assumptions, Fact implies that the
boldface GCH holds at wy. Although the proof of the weak partition property on ws can be shown by similar
techniques used here, it is very enlightening to see a direct proof of the boldface GCH at w; to motivate the
proof of the boldface GCH at w,, for 2 <n < w.

Definition 3.5. Let U; = {(0,0)} U{(1,0,%) : @ < w1 A < 2}. Let < be the lexicographic ordering on
Ui. Let Uy = (Uy,<1). Note that (0,0) is the minimal element of U;. Note that the ordertype of U is wy.
Suppose F : U — wy. Define F°, F! : w; — w; and F? € wy by F%(a) = F(1,,0), F*(a) = F(1,a,1), and
F? = F(0,0). (Note that F? is just a countable ordinal.) A function F : U; — w; has the correct type if
and only if the following two conditions hold.

e F is discontinuous everywhere: For all z € Uy, sup{F'(y) : y <1 z} < F(x).

e [ has uniform cofinality w: There is a function F : U; X w — w so that for all x € U; and k € w,

Flx, k) < Flx,k+1) and F(x) = sup{F(z,k) : k € w}.

If F : Uy — wy has the correct type, then FO, F' : w; — w are functions of the correct type and cof (F?) = w.
If X C wy, then let [X ]Z’l be the set of all F': Uy — X of the correct type and order preserving between U
and (X, <), where < is the usual ordinal ordering.

Lemma 3.6. Assume wi — (wl)gﬂ. Let fo, f1 : w1 — w1 be functions of type 1 such that [fo]ﬂil < [fl]uil
and let & € [wi]L (i.e. is a limit ordinal). Then there is an F € w4 so that [FO]%1 = [fo]uil’ [F1]
(il » F2 =6, FOlwn] € folwi], and FHwi] € filwi].

1
Moy

Proof. Since fy and f; are of type 1, they are both increasing, discontinuous, and have uniform cofinality
w. Let Gy : wy X w — wy witness that fy has uniform cofinality w and let G; : wy X w — w; witness that
f1 has uniform cofinality w. Since § < w; is a limit ordinal, let p : w — ¢ be an increasing cofinal function.
For each a < wy, let h(a) be the least element & € w; so that fi(a) < fo(@). Since [fo]%1 < [fl]ulwl, there
is a club Cy C wy so that for all « € [Co]l, fo(a) < fi(a). Let Oy = {a € Cp : (V! < a)(h(c!) < a)}. Cy
is a club subset of Cy. One may assume ¢ < min(Cy). For notational simplicity, let ¢ = enum(c,j1. Define
F :U; — w by F(0,0) = 0, and F(1,a,i) = fi(e(a)) for i < 2 and o < wy. Fix @ < w;. Note that
F(1,a,0) = fo(e(a)) < fi(e(a)) = F(1,,1) by the property of the club Cy and the fact that ¢(a) € [C1]L.
F(1,a,1) = fi(e(a)) < fo(h(e(a))) < fole(aw+ 1)) = F(1,a + 1,0) since the first inequality comes from
the property of h and the second inequality comes from the property of C';. This shows that F' is order
preserving from U into the usual ordering on w;. The elements of U; of limit rank take the form (1, «,0)
where « is a limit ordinal. Note that sup{F(z) : * <1 (1,,0)} = sup{F(1,a/,0) : &/ < a} = sup(fo |
e(a) < fole(a)) < F(1,a,0) using the discontinuity of fy. This shows that F' is discontinuous everywhere.
Let F:U; X w — w; be defined by

Flok) = {p<k> = (0,0)

Gi(e(), k) x=(1,a,1i)

F witnesses that F has uniform cofinality w. Thus F has the correct type. By construction, it is clear that
FOlw] C folw1] and FYwi] C fi[wi]. Let Co = {a € C; : enum¢, () = a} which is a club subset of Cj.
For all « € Cy and i € 2, F/(1,a,i) = fi(e(a)) = fi(enumioj1(a)) = fi(a) since enume, (a) = o implies
that ot({a € C1 : @ < a Acof(a) = w}) = a and thus enumic,j1 (o) = . This shows that for all i < 2,
[Fl}u}ul = [fi]ltil' 0
Theorem 3.7. Assume wy —« (w1)5* and %. Then the boldface GCH holds at wy.

Proof. By Fact one has that the boldface GCH holds at w. Suppose the boldface GCH at w; fails.

Let (A, : n < ws) be an injection of wy into & (w;). Define P : [wi]¥* — 2 by P(F) = 0 if and only

if miﬂ(A[FO]“l AA[Fl]“l ) < F? (where A refers to symmetric difference). Since U; has ordertype wi,
wy wq

w1 = (w1)5" implies there is a club C' C wy homogeneous for P. Pick any fo, f1 : w1 — C of type 1 so that
[fo]%1 < [fl]%l. Since (A4, : n < wsy) is an injection, A[fo]“1 % A[fl]ul and thus A[fo]ul AA[fl]ul # 0.
wq w w1 w1
Let § € [C]! be such that rni1r1(A[f0]Ml DAy, ) < §. By Lemma there is an F € [w1]¥ so that
wi w1
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[FO]%l = [foluz, - [Fl]%l = [filu, F? =4, FPlwy] C folwr] € C, and F'lwi] C fifwi] € C. Thus

F € [C]¥. Thus min(Ajpoj , AdApry ) < F? implies that P(F) = 0. This shows that C' must be
w1 Wy

homogeneous for P taking value 0. Fix a § € [C]L. By Fact wy order embeds into BY. Pick any

*

v € BY so that BY | v = {n € BY : n < v} has cardinality w;. Let ng,n; € BY | v with 1y # n1. Without
loss of generality, suppose 19 < n1. Let fo, f1 : w1 — C be functions of type 1 so that ny = [fo]%l and

m = [fl]%l. By Lemma thereis an F' € [C]4 so that [FO]%1 = [fo]#lwl = 1o, [Fl]%l = [fl]#}ul =, and
F? =§. Thus P(F) = 0 implies that min(4,,AA,,) < 6. This implies that the function ® : BS | v — P2(6)
defined by ®(n) = A, N ¢ is an injection. Since § < w; implies |2 (8)| = |2 (w)| and |BY | v| = w1, one has
an injection of wy into & (w). This violates the boldface GCH at w. O

Definition 3.8. Let 2 < n < w. Let U, = {(an-1,0,@n-2,...,;ap,%) : ag < ... < @p_1 < w1 Ai <
2} U{(a,1) : n—1 < a < wy}. Let <, be the lexicographic ordering on U,. Let U, = (U,, <y).
Observe that ot(U,) = w;. Suppose F : U, — w;. Define FO F! : [w]® — w; and F? : w; — w; by
FO®) = F(«(n—1),0,u(n—2),...,.(0),0), F1(:) = F(«(n —1),0,¢(n —2),...,.(0),1), and F?(a) = F(a,1). A
function F': U,, — wj has the correct type if and only if the following two conditions hold:

e F' is discontinuous everywhere: For all 2 € Uy, sup{F(y) : y <, z} < F(z).

e [ has uniform cofinality w: There is a function F : U,, X w — w; so that for all x € U,, and k € w,

F(x, k) < Flx,k+1) and F(x) = sup{F(z,k) : k € w}.

Note that if F: U, — w; has the correct type, then F°, F'' : [w]" — wy has type n, [F%],n < [F']us , and
F? : w; — w; has the correct type. If X C wy, then let [X]¥» be the set of all F: U, — X of the correct
type and order preserving between U,, and (X, <) with the usual ordering.

Lemma 3.9. Suppose 2 < n < w. Assume wy —>4 (wl)gﬂ. Let fo, f1 i [w1]™ = w1 and fo 1 wy — wy be

functions with the following properties.
o fo and f1 have type n. fo has type 1.
b [I?O_I]I not = [1}11_1]/ not and [fO]u$1 < [fl}uﬁl'
A [I}O]Mjl = [I}Juljl < [f2]uil'
Then there is an F € [wy]%" with the following properties.
o (P, = ol - U, = Uil - and (P2, = [l
o Fllwn]"] C follwi]"], FHwr]"] € fillw:]"], and F2[wi] C falw].

Proof. Let Cy C wy be a club with the following properties:

(1) For all £ € [w]?, IT1(0) = I771(0).

(2) For all £ € [wq]?, fo(€) < f1(£).

(3) For all a € Cy, I}O(a) = I}l (o) < fa(av).

If £ € [wy]™FL, let €901 € [wq]™ be defined by ¢} (k) = £(k + 1) and
(

eO(k){ 0) k=0
U(k+1) O<k<mn
Define P : [Co]"t! — 2 by P(¢) = 0 if and only if f1(£°) < fo(¢'). By w1 —. (w1)5 T, there is a club C; C Cy
which is homogeneous for P. Let Cy = {a € C1 : enumg, (o) = a}. Pick (g, a1, ..., n—1) € [C2]?. Since
a1 is a limit point of C; and I}‘O*l(al,...,an,l) = I}’:l(al,...,an,l) because (aq,...,a,_1) € [Co]?™1 C
[Co]™~1, there must be some v € C so that ap < v < a; and fi(ag,...,an_1) < fo(vy,a1,...,an_1). Pick
¢ € [C1]7*! so that 0 = (ap,aq,...,ap—1) and €' = (vy,a1,...,a,—1). Then P(¢) = 0 since f;(°) =
filag, oy an_1) < fo(v,a1,..;an_1) = fo(¢'). This shows that C; is homogeneous for P taking value 0.
Since fp and f; have type n, I}O and I}l are increasing functions. For any a € wj, there is some v € Cy
so that fa(a) < I} (y) = I; (7). Let h : wi — Ci be defined by h(a) is the least such v € Cy. Let
Cs ={a e Cy:enumg, (a) =a A (Vo' < a)(h(a’) < o)} which is a club subset of Cj.

For notational simplicity, let ¢ = enum¢,j1. Define F' : U, — wy by F'(ap—1,0,...,a1,7) = fi(e(ao), ..., e(an_1))
for all (ag, .., n—1) € [w1]™ and i € 2 and F(«, 1) = fa(e()) for all o < wy.
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First, one will show that F' is an order preserving map from U,, into the usual ordering on w;. Suppose
z,y € U, and = <, y. One seeks to show F(z) < F(y).

e Suppose z = (a, 1) and y = (8,1) with o < S
F(z) = F(a,1) = fa(e(a)) < f2(e(B)) = F(B,1) = F(y)

since f5 has type 1.
e Suppose z = (a,1) and ¥y = (Bn_1,0, Bn_2,..., B0,1) for some i < 2 and By < ... < B,_1 with
a < Bn_1: Note that

F(z) = F(a,1) = fa(e(@)) < I}, (h(e(a)))

< fi(e(ﬂo)a ) e(ﬁn—l)) = F(/Bn—hovﬂn—Qv --'75072.) = F(y)
The first inequality comes from the definition of h, the second inequality comes from h(e(a)) <
¢(Bn—1) by the definition of ¢(8,_1) € Cs, and the last inequality comes from f; having type n.
e Suppose z = (@p—1,0,p—2,...,0,%) and y = (B,1) for some i < 2 and g < ... < @1 with
Qp—1 § 6:
F(Z) = F(an—la 0; Qn_1, -"70407i) = fi(e(a())a ey e(an—l)) < 1}7 (Q(O‘n—l))
< fa(e(an—1)) < fa(e(B)) = F(B,1) = F(y).
The first inequality comes from the definition of I}w the second inequality comes from property (3)
of the club Cy, and the third inequality comes from the fact that fs has type 1.

e Suppose = (@p-1,0,Qp—1,...,0,%) and y = (Bn—1,0, Bn—1, ..., Bo,j) for some i,j € 2, ap < ... <
Qn—1, Bo < ... < Bn_1, and there is some k > 0 so that aj < B; and for all k < k' < n, ap = B

F(z) = Flan—1,0,ap_1,...,00,7) = fi(e(ag), ...,e(an-1)) < I}’i_k(e(ak), coye(ap—1))
= I}T’“(e(ak), v e(ap_1)) < I]’}j*k(nextcl(e(oz;c)),e(ozkﬂ)7 oy e(an—1))
= I} " (nextc, (e(ar)), e(Brt1)s -orr €(Bn1)) < fi(e(Bo); s e(Bn-1))

= F(ﬁn—lgo;ﬂn—h -~',607j) = F(y)

e Suppose z = (ap—1,0,p_1,...,20,0) and y = (Br-1,0, Bn-1,-.-,580,1) for ag < ... < ay,_1 and
Bo < ... < Pn—1 such that for all 0 < k < n, ar = B and oy < fy:

F(I) = F(Oén_l, 0, Ap—1,.--5 0, 0) = fo(e(Oéo), ceey Q(Ozn_l)) < fl(e(ao), ceey B(Oén_l))
< fl(?(ﬁ())a ) e(ﬁnfl)) = F(ﬂnflvovﬁnf% ~~~7B07 ]-) = F(y)

hd Suppose T = (an—laoaan—la e O, 1) and y= (/67L—17O7Bn—17 -"7B070) for ap < ... < ap-1 and BO <
wo. < Bn—1suchthatforall0 < k < n, ar = B and ag < Bo: Let £ = (e(ag), e(Bo),e(B1), ..., ¢(Brn-1)) =

(e(ap),e(Bo), e(a1), ..., e(an—1)). In the notation above, £° = (¢(ap), ..., e(an—1)) and £} = (e(Bo), -, ¢(Bn—1))-

P(¢) = 0 implies that fi(e(a),...,e(an—1)) = f1(£%) < fo(€') = fo(e(Bo),-..;e(Bn-1)). So we have
the following.

F(z) = Flap—1,0,ap_2,...,0a0,1) = fi(e(apg), ..., e(n—1))

< fo(e(Bo)s -y e(Bn-1)) = F(Bn-1,0,Bn-2, ..., 0,0) = F(y)

This shows that F'is order preserving.
Next one will show that F' is discontinuous everywhere. Suppose x € U,, has limit rank in <,.

e Suppose z = (v, 1) for some a € wy. Thensup(F | z) = sup{F(«, 0, ap—_2,...,a0,%) : i € 2Aqg < ... <

Op—1 < Oé} = Sup{F(aaOaan—Q; -~'705030) T < o< ap—2 < Oé} = Sup{f()(e(a())7 2(0&1), ey e(an—Q)a e(a)) :

g <oy <..<apg<af= I}O(e(a)) < fa(e(e)) = F(x).
e Suppose = (@n-1,0,@n_2,...,0,0) and has limit rank. Then sup(F | z) = sup{fo(¢) : £ C,
(g, ooy n—1)} < fo(ag, ..., an—1) = F(z) using the discontinuity of fo.
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This shows that F' is discontinuous everywhere.
Let Gy, Gy : [wi]™ X w — wy witness that fy and f; have uniform cofinality w. Let G2 : w; X w — wq
witness that fo has uniform cofinality w. Define F : U,, X w — w; be defined as follows.

G k = (a,1
./T"(J?,k') _ Q(Q(O[)a ) €z (Oé, ) ' . )
Gi((e(ao)v 8] e(anfl))a k) T = (Oénfla 07 QAp—2, ..., Ao, 1) Ni€2
F witness that F' has uniform cofinality w. It has been shown that F' is a function of the correct type.

It is clear from the construction that FO[[w1]"] C fo[lw1]"], F[wi1]™] C fillw1]™], and F?[w1] C falwi].
Let Cy = {a € C3 : enumg, (o) = a} which is a club subset of C5. For all a € [C4]l, o = enumg,(a) =
enumc, (@) = e(a). For all (ap,...,0n—1) € [C4]™ and i € 2, Fi(ag,...,an—1) = fi(e(ao), ..., ea,_,) =
£i(@0s s @ 1). For all a € [C]1, F2(a) = fa(e(a)) = fa(a). This shows that [F'],n = [folus, » [Fllun,
[fl]uzla and [FQ]ubl = [f2]ui,l' U

Theorem 3.10. Assume wy — (w1)5"' and . The boldface GCH holds below w, .

Proof. The boldface GCH at w,, for all n < w will be shown by induction. For n = 0, the boldface GCH at w
has already been shown by Fact For n = 1, the boldface GCH at w; has already been shown by Theorem
Suppose n > 1 and the boldface GCH has been shown at w,_1. Suppose for the sake of contradiction,
the boldface GCH at wy, fails. Let (A, : 7 < wy,41) be an injection of wy, 41 into Z(wy,). Recallh,, = (Uy, <5)
from Definition By Fact cof (Wpt1) = wy for all 1 < n < w. Fix p : we — w, be an increasing
cofinal map. Define P : [wi]¥" — 2 by P(F) = 0 if and only if min(A[Fo]H[31 AA[qul) < p([Fz]%l),
where A refers to the symmetric difference. (Note that here one is using the fact that juil(wl) = wy
and jugl (w1) = wpy1 established in Fact W) Since ot(Uy,) = w1, w1 —« (w1)5" implies there is a club
C' C wy which is homogeneous for P. Let fo, f1 : [w1]™ — C be any two function of type n with [fo]%,1 <
[filup, and [I}‘O*l]ml_l = [I}Tl]ﬂzl_l. Since (A, : 7 < wpy1) is an injection, Az ) # A[fl]uzl and thus

ni
A[fO]HZjl AA[fl]MZZ‘;l 75 (. Let fQ twp — Cbe any function oftype 1 so that p([fQ]Nzl) > min(A[fo]“gl AA[fl]

and [fo] ;> [I}‘o]ﬂil = [I}]u - By Lemma there is an F € [w1]4" so that [FOun, = [folun, > F'un, =

Ky )
Mwl
ilug, [F2, = [felup, s FOllwn]] € follwi™]] € C, FH[w1]"] € fillwi]”] € C, and F?[w1] € falun] € C.
Thus F € [C]%". Then p([FQ]%l) > min(Apoy,,, AApy,, )implies that P(F) = 0. This shows that C' must
w1 w1
be homogeneous for P taking value 0. Pick any ¢ : V;, — C of the correct type from V, into (C, <) (where
recall V,, is defined in Definition [2.34). By Fact [2.37| there is a x < w, so that E, = {n € B, : I,';_l =x}
has cardinality w,. Let g : w3 — C be any function of type 1 so that [g]uil > I). Let e = [g]ui)l.
Suppose n9,m € Ey and 1y # m1. Without loss of generality, suppose 19 < n1. Let fo, fa : [w1]™ — C be
functions of type n so that [fo]%1 = 1o and [fl]“zl = n1. By definition of ng,m € Ey, [I}Tl]#
[I}i]%l =1 <n[g]u3)1 = efor both¢ € 2. By Lemma thereis an F' € [C]4" so that [FO]%1 = [foluz, = o,
[Fl]%1 = [f1)'"*r =1, and [FQ}M&I = lglu, = € By P(F) =0, one has that min(A,,AA,,) < p(e). This
shows that the function Y : E, — Z(p(¢)) defined by Y(n) = A, Np(e) is an injection. Since |E,| = w, and
|Z2(p(e))| = | P (wn-1)| because p(e) < wy,, T induces an injection of w, into & (w,_1) which violates the
inductive assumption that the boldface GCH holds at w,_1. O

not =X and

Under AD, w41 = 6:1), and there is a w,41-complete nonprincipal ultrafilter on w,41. Thus the boldface
GCH holds at w,, by Fact The combinatorial methods used here can be generalized with Jackson’s theory
of descriptions ([I1]) for the projective ordinals to show that the boldface GCH holds below the supremum of
the projective ordinals, sup{é,ll :m € w}, assuming AD. Jackson’s theory can go slightly beyond the projective
ordinals but not all the way through ©. The inner model theoretic techniques of Steel and Woodin are the
only known methods to prove the boldface GCH below © under AD™.
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