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Abstract. If N is a proper Polish metric space and M is any countable dense submetric space of N , then
the Scott rank of N in the natural first order language of metric spaces is countable and in fact at most

ωM
1 +1, where ωM

1 is the Church-Kleene ordinal of M (construed as a subset of ω) which is the least ordinal

with no presentation on ω computable from M.
If N is a rigid Polish metric space and M is any countable dense submetric space, then the Scott rank

of N is countable and in fact less than ωM
1 .

1. Introduction

A common task in mathematics is to distinguish different mathematical structures subjected to the restric-
tion of various first order languages. The Scott analysis is a general model theoretic concept that attempts
to find an L -isomorphism invariant of an L -structure M, where L is a first order language. Informally, if
two tuples ā and b̄ ofM of the same length can be distinguished from each other by an infinitary L -formula,
the Scott analysis would attempt to assign an ordinal that indicates how difficult it is to distinguish these
tuples.

The Scott rank of tuples can be defined by the back-and-forth relations (see Definition 2.3): Let ā =
(a0, ..., ap−1) and b̄ = (b0, ..., bp−1) be tuples of length p from an L -structure M.

One says that ā ∼0 b̄ if and only if the map taking ai to bi for i < p is a partial L -isomorphism of M
into M.

Assume ∼α has been defined, one says that ā ∼α+1 b̄ if and only if for all c ∈ M, one can always find a
d ∈ M so that the elongated tuples satisfy the relation āc ∼α b̄d and similarly in the other direction with
the role of ā and b̄ reversed.

Assume that α is a limit ordinal and ∼β has been defined for all β < α, then one defines ā ∼α b̄ if and
only if for all β < α, ā ∼β b̄.

If there is an α so that ¬(ā ∼α b̄), then using the wellfoundedness of the class of ordinals, SR(ā, b̄) is
defined to be the minimal such ordinal. Otherwise, one will say SR(ā, b̄) = ∞. Intuitively, SR(ā, b̄) = ∞
indicates that the two tuples are indistinguishable by an infinitary L -formula. If SR(ā, b̄) 6=∞, then SR(ā, b̄)
is an ordinal measuring how difficult it is to distinguish these two tuples. For instance, SR(ā, b̄) = 0 means
¬(ā ∼0 b̄). Thus there is an atomic formula that evaluates differently between ā and b̄. SR(ā, b̄) = 1 would
mean that atomic formulas can not distinguish ā and b̄, but there is a formula consisting of an existential
quantifier over an atomic formula that evaluates differently between ā and b̄. In this way, the Scott ranks of
tuples are closely relate to the ranks of an infinitary L -formulas that can be used to distinguish tuples. By
taking supremum of all possible pairs of tuples of the same length (varying over all possible lengths), one
obtains an ordinal for the entire structure M, called the Scott rank of M.

Another useful perspective on the Scott rank of tuples ā and b̄ is through a two player game called the

Ehrenfeucht-Fräısse game EFM,ā,b̄
α , where α is an ordinal. Player 1 at each turn plays a pair (β, x) where

β < α is less than any previous ordinals Player 1 has played and x is a element of M chosen to elongate
the ā-side or the b̄-side. Player 2 then must choose y ∈M to elongate the side opposite which Player 1 has
chosen. By the wellfoundedness of the class of ordinals, Player 1 must eventually play the ordinal 0. After
Player 2 responds, the game ends. One says that Player 2 wins this game if and only if the mapping ā to
b̄ and the sequence of responses in the game form a partial L -isomorphism. Intuitively, Player 1 winning

EFM,ā,b̄
α indicates that with α-degree of flexibility, Player 1 can compel Player 2 to make a move that violates
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a relation between the two tuples ofM expressible in the language L . There is a close relationship between

Player 2 having a winning strategy in EFM,ā,b̄
α and the back-and-forth relation ∼α.

By a cardinality consideration, the Scott rank of a tuple in M is less than |M|+, the cardinal successor
of |M|. Thus the Scott rank of M is less than |M|+. In particular, if M is countable, then SR(M) < ω1,
the first uncountable ordinal. Moreover, Nadel showed there is a close relationship between the definability
of M and the bound on its Scott rank. Nadel ([14]) showed that SR(M) ≤ ωM1 + 1 when M is considered
as a subset of ω. Here ωM1 is the Church-Kleene ordinal relative to M which is the least ordinal α which
does not have a wellordering coded as a subset of ω of ordertype α which is (Turing) computable from M.
It is also the minimal ordinal height of an admissible set containing M. An admissible set containing M is
simply a transitive set containing M satisfying a weak set theory axiom system called Kripke-Platek (KP)
set theory. The reader can consider an admissible set containing M as essentially a miniature universe of
set theory containing M.

Let M be a countable L -structure. The back-and-forth process described above can be used to define a
countable infinitary L -sentence ψM so that for any countable L -structure N , N |= ψM if and only if M
and N are L -isomorphic. The rank of the sentence ψM is closely related to the Scott rank of M and ψM
is roughly the conjunction of all the associated distinguishing formulas for all possible pairs of tuples. For
more on the classical and effective Scott analysis for countable structures, see [12], [14], and [1].

A particular instance of the above is the study of isometries of metric spaces. The natural first order
language U for metric structures consists of two binary relation symbols for each positive rational q whose
intended interpretations are whether two points have distance less than or more than q. (See Definition 2.1.)

A general metric space can have arbitrarily large cardinality and Scott rank. The collection of Polish metric
spaces form a very interesting class of metric spaces. Polish metric spaces are complete separable metric
spaces. An uncountable Polish metric space N must have cardinality 2ℵ0 . A priori, one has SR(N ) < (2ℵ0)+.
There is some hope of doing better. IfN is a Polish metric space, there is a countable submetric spaceM⊆ N
whose completion is N . By the general theory of Scott analysis mentioned above, SR(M) < ω1 and in fact
SR(M) < ωM1 + 1 since M is a countable structure. In some sense, M has full metric information of it
own completion N . A very natural question asked by Fokina, Friedman, Koerwien, and Nies is whether
M captures the first order metric structure of it own completion N well enough to imply that SR(N ) is
countable. If so, the author asks whether the Polish metric space N with countable dense submetric space
M satisfies the natural analog of Nadel’s effective bounding result for countable structures.

Question 1.1. ([9] Fokina, Friedman, Koerwien, Nies) Let N be a Polish metric space. Is SR(N ) < ω1?
(Chan) If N is a Polish metric space andM is a countable dense submetric space of N , then is SR(N ) ≤

ωM1 + 1?

It appears that both questions are still open. (See [7] and [8].) There are partial answers to these
questions. Fokina, Friedman, Koerwien, and Nies [9] showed using some results of Gromov that if N is a
compact Polish metric space then SR(N ) ≤ ω+1. (See also Theorem 3.4.) Doucha [7] showed that although
the cardinality of a Polish metric space N is 2ℵ0 , SR(N ) is less than or equal to ω1, the first uncountable
ordinal. Thus Question 1.1 is reduced to whether it is possible that there is a Polish metric space N with
SR(N ) = ω1.

The goal of this paper is to extend a positively answer to Question 1.1 for other classes of Polish metric
spaces by producing effective countable bounds on Scott rank. This paper will pursue this in the direction of
admissibility theory and the Barwise and Jensen theory of infinitary logic in countable admissible fragments.
The advantage of this approach is that one produce not only some desired objects but also an entire miniature
universe (of a weak set theory KP) containing these objects. One can then perform a variety of arguments
internally and externally of this model of KP and attempt to reflect internal phenomenon to the real world
by absoluteness. This approach gives additional insight on the relation between the Scott rank of the Polish
metric space N and the definability complexity of any of its countable dense submetric space M. It also
seems to have the benefit of simplifying some technical arguments since the miniature universe of KP set
theory can absorb some combinatorics.

Section 2 provides the basic definitions. The first order language U of metric spaces, the back-and-forth
relations, the Ehrenfeucht-Fräıssé game, and the notion of Scott ranks of tuples and structures will be defined.
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Section 3 will give a proof of the following result of Fokina Friedman, Koerwien, and Nies :

Theorem 3.4. ([9] Fokina, Friedman, Koerwien, Nies) If M is a compact Polish metric space, then
SR(M) ≤ ω + 1.

This result serves as a warmup for the later theorems in the paper. It contains the approximation idea
but is simpler than the subsequent theorems since it involve only playing a single game and there are no
admissible sets or ordinals of illfounded models of KP which are externally illfounded. Nies has mentioned
to the author that they had originally proved this result using some theory develop by Gromov. The main
combinatorial tool for the proof in this paper is to use the König lemma to produce a compact approximation
system (see Definition 3.1). The König lemma is the statement that every finitely branching tree has an
infinite path. This is a natural combinatorial principle to apply in this setting since the König lemma is
equivalent to the compactness of a certain closed subsets of ωω, in it usual topology. (For instance, the weak
König lemma is equivalent to the compactness of the Cantor space, ω2.)

A countable metric spaceM along with all its distance relations can be identified with a subset of ω. Let
C(M) denote the metric completion ofM. Note that the elements of the completion ofM are represented by
M-Cauchy sequence which are essentially reals, i.e. elements of ωω. The Ehrenfeucht-Fräıssé game on C(M)
requires Player 2 to give perfect responses in the sense that partial isometries need to be produced. Even if
Player 1 plays elements ofM in the Ehrenfeucht-Fräıssé game on C(M), Player 2 may need to respond with
an element of C(M) \M to maintain the isometry. However allowing the move to be M-Cauchy sequences
makes the game no longer an integer game. This game can not be absorbed into any countable admissible
set. To resolve this, Section 4 defines a new approximation games Gf,ā,b̄α (see Definition 4.1), where all the
moves are ordinals and elements ofM. Instead of playing perfect responses, Player 2 only needs to produce
responses whose errors are no more than that prescribed by some f : ω → Q+ which is a computable function
that is strictly decreasing and converging to 0. Using this game, a new rank R(ā, b̄) for pairs of tuples (ā, b̄)
will be defined.

It will be shown that SR(ā, b̄) ≤ R(ā, b̄). Thus bounding R(ā, b̄) will suffice to give a bound on SR(ā, b̄).
A metric space is said to be proper if and only if every closed ball is compact. It will be shown that in
proper Polish metric spaces, if (ā, b̄) is a limit of a sequence of points 〈(ān, b̄n) : n ∈ ω〉 so that for all n ∈ ω,
R(ān, b̄n) > α, then R(ā, b̄) > α. The proof of this result requires playing countably infinite many games
simultaneously and thinning out to countably infinite many games at each subsequent stage. In contrast,
the main argument of [7] involves ω1-many simultaneous games and requires a thinning to uncountable
nonstationary subsets of ω1 at subsequent stages.

Section 5 reviews the basics of admissibility and the theory of infinitary logic in countable admissible
fragment including the Jensen’s model existence theorem and Barwise compactness. The main technical
simplification comes from Fact 5.6 which states that if there is an illfounded model A containingM and two
pairs of tuples ofM-Cauchy sequences, ā and b̄, so that A thinks that R(ā, b̄) is an A-ordinal which externally
V thinks is ∈A-illfounded, then one can find (in V ) an autoisometry of the completion C(M) taking ā to
b̄. This is proved by taking Player 2’s winning strategy in A for the game associated to the ordinal which
is externally illfounded and using it to play forever externally in V to produce an autoisometry. Using this
result and an application of Jensen’s model existence theorem, one can establish Fact 5.7 which asserts that

for any pair of tuples (ā, b̄) ofM-Cauchy sequences, SR(ā, b̄) ≤ R(ā, b̄) < ωM⊕ā⊕b̄1 . This also gives Doucha’s
result that SR(C(M)) ≤ ω1.

Section 6 contains the two main theorems of the paper. A metric space N is rigid if and only if there are
no nontrivial autoisometry of N .

Theorem 6.2. IfM is a countable metric space so that C(M) is a rigid metric space, then SR(C(M)) < ωM1 .

Usually, in applications of the Jensen’s model existence theorem, one can establish the consistency of
the relevant theory of an appropriate countable admissible fragment by simply using the real universe as a
model. For this theorem, one does not a priori know such an object exists in the real world and so one must
establish the consistency of the relevant theory by using Barwise compactness.
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If one assumes that the completion of a countable metric space is proper, one can prove the Scott rank of
the completion is countable and has the analog of Nadel’s effective bound:

Theorem 6.3. Let M be a metric space on ω. Suppose C(M) is a proper Polish metric space. Then
SR(M) ≤ ωM1 + 1.

These two theorems extend a positive answer to Question 1.1 (even the effective form) for the class of
rigid Polish metric spaces and proper Polish metric spaces.

Since an early draft of this paper, Nies and Turetsky ([15]) have produced proofs and expanded some of
the results here using recursion theoretic methods.

The techniques used here to analyze the first order Scott analysis of Polish metric spaces differ in flavor
considerably from the classical and effective Scott analysis of countable structures of a countable first order
language. The usual technique for finding bounds on Scott ranks for countable structures essentially involves
looking at the closure ordinal of an appropriate monotone operator on the countable structure. (See the
introduction of [6] for some more details.) [4] developed the Scott analysis for continuous logic for metric
structures. (See [4], [3] and [6] for the notation and more information.) [6] showed that if L is a recursive
language of continuous logic, Ω is a weak modulus of continuity with recursive code, D is a countable L -
pre-structure, and D̄ is its completion L -structure, then SRΩ(D̄) ≤ ωD1 . (The definition of Scott rank in
[4] and [6] is slightly different than the definition used in this paper resulting in a bound that differs by
1. See the introduction in [6] for a brief explanation.) [6] proves an effective bound on the continuous
Scott rank depending on the countable dense substructure which is analogous to the effective bound in the
classical Scott analysis for countable structure. Moreover in [6], the bound is obtained as a closure ordinal
of a certain monotone operator on the countable dense substructure which is positive Σ-definable in an
appriopriate admissible set; much like the classical case for countable structures. This may suggest that the
metric Scott analysis in continuous logic is the correct and fruitful way to generalize the Scott analysis to
Polish metric spaces.

The author would like to acknowledge Alexander Kechris and André Nies for comments on earlier drafts
of this paper.

2. Basics

Definition 2.1. The language of a metric space, denoted U , is the following: U = {ḋq, ḋq : q ∈ Q+}, where

for each q ∈ Q+, ḋq and ḋq are binary relation symbols.
If M = (M,d) is a metric space on the set M with distance function d, then M is given the canonical

U -structure by defining (ḋq)
M(x, y)⇔ d(x, y) < q and (ḋq)M(x, y)⇔ d(x, y) > q.

Fact 2.2. Let M and N be two U -structures which are metric spaces. There is a bijective isometry between
M and N if and only if there is a U -isomorphism between M and N .

Definition 2.3. Let L be any countable first order language. Let M be a L -structure. For each ordinal
α, the relation ∼α is defined on tuples from M of the same length as follows:

Let ā = (a0, ..., ap−1) and b̄ = (b0, ..., bp−1), where p ∈ ω.
ā ∼0 b̄ if and only if the map sending ai to bi for all i < p is a partial L -isomorphism.
ā ∼α+1 b̄ if and only if for all a ∈M , there exists a b ∈M so that āa ∼α b̄b and for all b ∈M , there exists

an a ∈M so that āa ∼α b̄b.
If β is a limit ordinals, then ā ∼β b̄ if and only if for all α < β, ā ∼α b̄.
Define SR(ā, b̄) = min{µ ∈ ON : ¬(ā ∼µ b̄)} if this set is nonempty. Otherwise SR(a, b) =∞.

Define SR(ā) = sup{SR(ā, b̄) : b̄ ∈ |ā|M ∧ SR(ā, b̄) 6=∞}.
Finally, SR(M) = sup{SR(ā) + 1 : ā ∈ <ωM}.

Definition 2.4. Let L be some countable first order language. Let M be a L -structure. For some p ∈ ω,
let ā = (a0, ..., ap−1) and b̄ = (b0, ..., bp−1) be tuples from M . Let α be an ordinal. The Ehrenfeucht-Fräıssé

game EFM,ā,b̄
α is defined as follows:

If α = 0, then Player 2 wins if and only if the map ai 7→ bi for each i < p is a partial L -isomorphism.
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If α > 0, then Player 1 and 2 play the following:

ā (α0,Γ0 = c0) (α1,Γ1 = c1) ... (αk−1,Γk−1 = ck−1)
b̄ Λ0 = d0 Λ1 = d1 ... Λk−1 = dk−1

Γ and Λ are formally either the symbol c or d. If Player 1 picks Γ to be c, then Player 2 must let the next Λ
be d. If Γ is d, then Λ must be c. Each Γi and Λi are elements of M . α0 < α and for all i < k−1, αi+1 < αi.
The game ends when Player 1 plays αk−1 = 0 and Γk−1 and Player 2 responds with Λk−1. When the games
ends, a sequence c0, ..., ck−1 and a sequence d0, ..., dk−1 have been produced. (The sole purpose of the Γ and
Λ notation is to indicate whether player 1 played ci (left side associated with ā) or di (right side associated
with b̄) and similarly for Player 2.) Player 2 wins if and only if the map ai 7→ bi for i < p and ci 7→ di for
i < k is a partial L -isomorphism.

The above diagram is a sample play: Here, Γ0 = c0, Λ0 = d0, Γ1 = c1, and Λ1 = d1. This means Player
1 plays first on the left side, Player 2 responds on the right side, Player 1 follows with a play on left side
again, and Player 2 responds on the right side, and so forth.

Fact 2.5. Let L be some countable first order language. Let M be an L -structure. Let ā and b̄ be tuples

from M of the same length. SR(ā, b̄) > α if and only if Player 2 has a winning strategy in EFM,ā,b̄
α .

3. Bounds for Compact Polish Metric Spaces

Fokina, Friedman, Koerwien, and Nies showed using results of Gromov about metric spaces that SR(M) ≤
ω + 1, when M is a compact Polish metric space.

This section will give a proof of this result using König’s lemma. This result will require looking at
partial maps that are not isometries but have a predetermined error in distances. This argument is a simple
approximation idea using a single game which will be a warmup for the later results on proper metric spaces
that combines the approximation idea with admissibility, ordinals of admissible sets which are externally
illfounded, and infinitely many games.

Definition 3.1. Let M be a compact Polish metric space. Let p ∈ ω and ā = (a0, ..., ap−1) and b̄ =
(b0, ..., bp−1) be tuples of elements from M . Let (An : n ∈ ω) be a sequence of finite subsets of M with the
property that for all n ∈ ω, An ⊆ An+1 and

⋃
z∈An B2−n(z) = M .

A compact approximation system (for M , ā, and b̄ with respect to (An : n ∈ ω)) is a sequence (ϕn : n ∈ ω)
with the following properties:

(i) ϕn : An → An.
(ii) For all i < p and z ∈ An, |d(ai, z)− d(bi, ϕn(z))| < 2−n.
(iii) For all m ≤ n, for all y ∈ Am and z ∈ An,

|d(y, z)− d(ϕm(y), ϕn(z))| < 2−m + 2−n.

(iv) For all n ∈ ω,
⋃
z∈An B2−(n−1)(ϕn(z)) = M .

A k-compact approximation system is a sequence (ϕn : n ≤ k) satisfying the above properties below k.

Lemma 3.2. Suppose (ϕn : n ∈ ω) is a compact approximation system for M , ā, and b̄ with respect to
(An : n ∈ ω), then there is an autoisometry Φ : M →M such that for all i < p, Φ(ai) = bi.

Proof. Let x ∈ M . Let (xn : n ∈ ω) be a sequence with the property that for all n ∈ ω, xn ∈ An and
limn→∞ xn = x. Define Φ(x) = limn→∞ ϕn(xn).

It remains to show that Φ is well-defined and Φ is an autoisometry with Φ(ā) = b̄.
First to show that (ϕn(xn) : n ∈ ω) is a Cauchy sequence: Let m ≤ n. By (iii)

d(ϕm(xm), ϕn(xn)) < d(xm, xn) + 2−m + 2−n

≤ d(xm, x) + d(xn, x) + 2−m + 2−n

Since limn→∞ xn = x, this shows that (ϕn(xn) : n ∈ ω) is a Cauchy sequence.
Next, to show that Φ(x) is independent of the sequence (xn : n ∈ ω) which is used to define it: Suppose

(yn : n ∈ ω) is another sequence with the property that yn ∈ An and limn→∞ yn = x. Since xn, yn ∈ An,
(iii) states

|d(ϕn(xn), ϕn(yn))− d(xn, yn)| < 2−n + 2−n
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Therefore
d(ϕn(xn), ϕn(yn)) < 2−(n−1) + d(xn, yn)

≤ 2−(n−1) + d(xn, x) + d(x, yn)

Since limn→∞ xn = limn→∞ yn = x, the above shows that limn→∞ d(ϕn(xn), ϕn(yn)) = 0. So limn→∞ ϕn(xn) =
limn→∞ ϕn(yn). This shows that Φ is a well-defined function.

Next, to show that for any i < p, Φ(ai) = bi: Let (xn : n ∈ ω) be a sequence such that xn ∈ An and
limn→∞ xn = ai. By (ii),

d(ϕn(xn), bi) < d(xn, ai) + 2−n

Since limn→∞ xn = ai, this shows that Φ(ai) = limn→∞ ϕn(xn) = bi.
Next, to show that Φ is an isometry: Suppose limn→∞ en = e and limn→∞ fn = f . Then

|d(e, f)− d(en, fn)| = |d(e, f)− d(e, fn) + d(e, fn)− d(en, fn)|

≤ |d(e, f)− d(e, fn)|+ |d(e, fn)− d(en, fn)| ≤ d(f, fn) + d(e, en)

Therefore, limn→∞ d(en, fn) = d(e, f).
Now suppose x, y ∈ M . Let (xn : n ∈ ω) and (yn : n ∈ ω) be such that xn, yn ∈ An and limn→∞ xn = x

and limn→∞ yn = y. By (iii),

|d(ϕn(xn), ϕn(yn))− d(xn, yn)| < 2−(n−1)

which implies that limn→∞ d(ϕn(xn), ϕn(yn)) = limn→∞ d(xn, yn). So using the observation of the previous
paragraph for the first and third equality,

d(Φ(x),Φ(y)) = lim
n→∞

d(ϕn(xn), ϕn(yn)) = lim
n→∞

d(xn, yn) = d(x, y).

This shows that Φ is an isometry.
Finally to show that Φ is surjective: Let y ∈ M . By (iv), for all n ∈ ω,

⋃
z∈An B2−(n−1)(ϕn(z)) = M .

For each n ∈ ω, let xn ∈ An be such that d(y, ϕn(xn)) < 2−(n−1). Observe that (xn : n ∈ ω) is a Cauchy
sequence. To see this, by (iii),

d(xm, xn) < 2−m + 2−n + d(ϕm(xm), ϕn(xn))

≤ 2−m + 2−n + d(ϕm(xm), y) + d(y, ϕn(xn))

≤ 3(2−m) + 3(2−n)

Therefore, let x = limn→∞ xn. Then y = limn→∞ ϕn(xn) = Φ(x). This shows that Φ is surjective and
completes the proof of the lemma. �

Lemma 3.3. Let M be a compact Polish metric space. Let ā = (a0, ..., ap−1) and b̄ = (b0, ..., bp−1) be tuples
from M . Let (An : n ∈ ω) be a sequence of finite subsets of M so that for all n ∈ ω, An ⊆ An+1 and⋃
z∈An B2−n(z) = M . Suppose SR(ā, b̄) > ω, then there is a compact approximation system for M , ā, b̄ with

respect to (An : n ∈ ω).

Proof. Define J to be the tree of all k-compact approximation system for M , ā, and b̄ with respect to
(An : n ∈ ω), where k varies over ω. J is ordered by (σi : i ≤ m) �J (τi : i ≤ n) if and only if m ≤ n and for
all i ≤ m, σi = τi. As each An is finite, J is a finitely branching tree. Any infinite path through J would be
a compact approximation system. By König’s lemma, J would have an infinite path if J was infinite.

As SR(ā, b̄) > ω, fix a winning strategy for Player 2 in EFM,ā,b̄
ω . To show J is infinite, it suffices to show

that there is a k-compact approximation system for each k ∈ ω. Let L = |Ak|. Enumerate Ak = {ci : i < L}.
Consider the following game of EFM,ā,b̄

ω where Player 1 plays (L− i, ci) (i.e. Player 1 plays Γ = c) and Player
2 always responds with the winning strategy:

ā (L, c0) (L− 1, c1) ... (1, cL−1)
b̄ d0 d1 ... dL−1

(Note that the last ordinal played is 1, which allows player 1 to play one more time.)
(Recall that if n ≤ k, An ⊆ Ak.) For each n ≤ k and ci ∈ An, define ϕn(ci) to be some element of An

so that d(di, ϕn(ci)) < 2−n, which is possible since
⋃
z∈An B2−n(z) = M . This completes the definition of

(ϕn : n ≤ k).
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Now to check that (ϕn : n ≤ k) is a k-compact approximation system: (i) is clearly true. For (ii): Pick
some i < p and cj ∈ An,

|d(ai, cj)− d(bi, ϕn(cj))| = |d(ai, cj)− d(bi, dj) + d(bi, dj)− d(bi, ϕn(cj))|
≤ |d(ai, cj)− d(bi, dj)|+ |d(bi, dj)− d(bi, ϕn(cj))|

≤ 0 + d(dj , ϕn(cj)) < 2−n

since Player 2 used its winning strategy for EFM,ā,b̄
ω and by the definition of ϕn(cj).

For (iii): Let m ≤ n ≤ k, ci ∈ Am, and cj ∈ An.

|d(ci, cj)− d(ϕm(ci), ϕn(cj))| = |d(ci, cj)− d(di, dj) + d(di, dj)− d(ϕm(ci), ϕn(cj))|
≤ |d(ci, cj)− d(di, dj)|+ |d(di, dj) + d(ϕm(ci), ϕn(cj))|

= 0 + |d(di, dj)− d(ϕm(ci), ϕn(cj))|
= |d(di, dj)− d(ϕm(ci), dj) + d(ϕm(ci), dj)− d(ϕm(ci), ϕn(cj))|
≤ |d(di, dj)− d(ϕm(ci), dj)|+ |d(ϕm(ci), dj)− d(ϕm(ci), ϕn(cj))|

≤ d(di, ϕm(ci)) + d(dj , ϕn(cj)) < 2−m + 2−n

For (iv): Fix n ≤ k. Let R = |An|. Let (cil : l < R) be the subsequence enumerating An ⊆ Ak. Suppose
that

⋃
l<RB2−(n−1)(ϕn(cil)) (M . Then there is some y so that for all l < R, d(y, ϕn(cil)) ≥ 2−(n−1).

Note that for all l < R, d(dil , y) ≥ 2−n: To see this, suppose that there were some l < R so that
d(dil , y) < 2−n. Then

d(ϕn(cil), y) ≤ d(ϕn(cil), dil) + d(dil , y) < 2−n + 2−n = 2−(n−1)

This is a contradiction.
Let dL = y. Now continue playing the game EFM,ā,b̄

ω one more time as follows:

ā (L, c0) (L− 1, c1) ... (1, cL−1) cL
b̄ d0 d1 ... dL−1 (0, dL)

(This means that Γ = d in the last time that Player 1 moves, i.e. Player 1 played on the right side.) Let cL
be the response by Player 2 using its winning strategy. The claim is that the map induced by this play is
not a partial isometry. To see this: Since

⋃
l<RB2−n(cil) = M , there is some l < R so that d(cL, cil) < 2−n.

Then d(y, dil) = d(dL, dil) < 2−n. This contradicts the result of the previous paragraph.
This completes the proof of the lemma. �

As an immediate corollary, one obtains the result of Fokina, Friedman, Koerwien, and Nies on Scott ranks
of compact Polish metric spaces.

Theorem 3.4. ([9] Fokina, Friedman, Koerwien, and Nies) If M is a compact Polish metric space, then
SR(M) ≤ ω + 1.

The next few sections will be concerned with finding an effective bound on the Scott rank of proper Polish
metric spaces.

4. Games and Ranks

For the rest of the paper, let M be a countably infinite metric space. By taking a bijection, one may
assume that the domain of the metric space M is ω. By considering the domain of M as ω, M can be
coded as a real, i.e. an element of ωω, by coding all the interpretations of symbols of U as relations on ω in
some fixed way. This section will consider M as a metric space; however, in the following section, one will
occasionally refer to M as a real which codes the structure in the above way.

If M is a metric space, then C(M) denotes the metric space completion of M.
Based on the method of constructing a bijective isometry in [7] Lemma 2.3, one defines a new rank on

tuples of elements of C(M) depending on whether Player 2 has a winning strategy in some game on M
(essentially on ω). Since the Ehrenfeucht-Fräısse game requires the construction of partial U -isomorphisms,
even if Player 1 always plays elements ofM, Player 2 generally needs to respond with aM-Cauchy sequence
(essentially an element of ωω). This makes the definability and absoluteness property of Scott rank (in
respect to descriptive set theoretic complexity) quite difficult to determine. A priori, it seems quite possible
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that playing the Ehrenfeucht-Fräıse game in different models of set theory with either more or less Cauchy
sequences could affect the outcome of the game. This new game will be played on M so any model of
set theory containing M (which includes the interpretations of the symbols of U ) will play these games
correctly. The Ehrenfeucht-Fräısse game asks Player 1 to play perfectly in the sense that it must produce
partial isomorphisms; this new game will be ostensibly easier for Player 2 since it demands only the response
be appropriately close to Player 1’s move.

The following convention in variable naming will be used: The variables a, c, and x will denote objects on
the left side. The variable b, d and y will denote objects on the right side. Throughout the paper there may
be bars or subscripts attached to these variables but they will always denote plays on the sides indicated.

Definition 4.1. Let M be a metric space on ω. Let C(M) be its completion. Let ā = (a0, ..., ap−1) and
b̄ = (b0, b1, ..., bp−1) be tuples of elements of C(M). Let f : ω → Q+ denote a recursive (i.e. computable)
strictly decreasing function converging to 0. Let α be an ordinal.

Define the following game Gf,ā,b̄α :

ā (α0, c0) c1 (α2, c2) c3 . . . (αk−1, ck−1)
b̄ d0 (α1, d1) d2 (α3, d3) . . . dk−1

Player 1 and Player 2 alternate playing (α0, c0), d0, (α1, d1), c1, (α2, c2), d2, (α3, d3), c3, ..., (αk−1, rk−1),
sk−1, where r = c and s = d if k is odd and r = d and s = c if k is even. For all i < k, αi is an ordinal less
than α. For all i < k, ci and di are elements of M. Since M is a metric space on ω, ci and di are natural
numbers. For all i < k− 1, αi+1 < αi. The game ends when Player 1 plays αk−1 = 0 and Player 2 responds.
Player 2 wins if and only if the following holds:

(I) For all i < p and j < k, |d(ai, cj)− d(bi, dj)| < f(j).
(II) For all i, j < k, |d(ci, cj)− d(di, dj)| < f(i) + f(j).

In the above, the distance function d refers to the distance function of C(M).

Definition 4.2. Let M be a metric space on ω. Let REC be the set of all f : ω → Q+ which are recursive,
strictly decreasing, and converge to 0.

Let ā and b̄ be two tuples of elements from C(M) of the same length. Let f ∈ REC. Say ā ∼fα b̄ if and

only if Player 2 has a winning strategy in Gf,ā,b̄α .
Define

R(ā, b̄) = min{µ ∈ ON : (∃f ∈ REC)¬(ā ∼fµ b̄)}
if the above set is nonempty. Otherwise let R(ā, b̄) =∞.

The use of the class REC of recursive, strictly decreasing functions taking values in the positive rational
numbers and converging to 0 is merely for convenience. The important property of these functions is that
they are coded in any admissible set. By inspecting the proof, one can find a much smaller class of such
functions that would be adequate for the following arguments.

Next, the relationship between R and SR will be determined:

Fact 4.3. Let M be a metric space on ω. Let ā and b̄ be two tuples of elements of C(M) of the same length.
For all ordinals α and f ∈ REC, if ā ∼α b̄, then ā ∼fα b̄. Hence SR(ā, b̄) ≤ R(ā, b̄).

Proof. Let α < SR(ā, b̄). Let f ∈ REC. A winning strategy for Player 2 in Gf,ā,b̄α will be produced.
The idea is that ā ∼α b̄ allows Player 2 to find perfect responses (albeit in C(M) notM) in the Ehrenfeucht-

Fräısse game in the sense that the responses form a partial isometry. So Player 2 will respond in the game
Gf,ā,b̄α by simply choosing some element of M (i.e. ω) which is sufficiently close to the perfect response given
by ā ∼α b̄. The details follows:

Consider a play of Gf,ā,b̄α . Now suppose (α0, c0), y0, d0, (α1, d1), x1, c1, ..., (αj−1, dj−1), xj−1, and cj−1

has appeared in the construction thus far (assuming j is even) and satisfies the following: For all i < j,
(i) ā̂ c0ˆx1 ĉ2ˆx3 .̂..̂ ci ∼αi b̄̂ y0 d̂1 ŷ2 d̂3 .̂..̂ yi if i is even. If if i is odd, the same holds with the last ci

replaced by xi and yi replaced by di.
(ii) d(yi, di) < f(i) if i is even or d(xi, ci) < f(i) if i is odd.
Assuming that αj−1 6= 0, suppose Player 1 chooses to play (αj , cj) where αj < αj−1. Since

ā̂ c0ˆx1 ĉ2ˆx3 .̂..̂ yj−1 ∼αj−1
b̄̂ y0 d̂1 ŷ2 d̂3 .̂..̂ dj−1
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one can find some yj so that

ā̂ c0ˆx1 ĉ2ˆx3 .̂..̂ yj−1 ĉj ∼αj b̄̂ y0 d̂1 ŷ2 d̂3 .̂..̂ yj−1 ŷj

Now let dj ∈M be chosen so that d(yj , dj) < f(j).
Now continue this process as long as Player 1 has not played the ordinal 0. Of course, depending on

whether the stage is even or odd, the variable needs to be appropriately changed.
At some stage k, Player 1 will have played αk−1 = 0. After Player 2 responds, the process finishes.

The claim is that the following play of Gf,ā,b̄α is winning for Player 2:

ā (α0, c0) c1 (α2, c2) c3 . . . (αk−1, ck−1)
b̄ d0 (α1, d1) d2 (α3, d3) . . . dk−1

First pick some i < p and j < k. Without loss of generality, suppose j is even. Then

|d(ai, cj)− d(bi, dj)| = |d(ai, cj)− d(bi, yj) + d(bi, yj)− d(bi, dj)|

Recall d(ai, cj) = d(bi, yj) hence

= |d(bi, yj)− d(bi, dj)| ≤ d(yj , dj) < f(j)

Now pick some i, j < k. Without loss of generality suppose i is even and j is odd. Then

|d(ci, cj)− d(di, dj)| = |d(ci, cj)− d(ci, xj) + d(ci, xj)− d(di, dj)|

Recall that d(ci, xj) = d(yi, dj). Therefore

= |d(ci, cj)− d(ci, xj) + d(yi, dj)− d(di, dj)|

≤ |d(ci, cj)− d(ci, xj)|+ |d(yi, dj)− d(di, dj)|
≤ d(cj , xj) + d(yi, di) < f(j) + f(i)

All the other even and odd combinations are handled similarly. �

Definition 4.4. A metric space N is proper if and only if {y : d(x, y) ≤ r} is compact for all x ∈ N and
r ∈ R.

The key property of proper metric spaces that will be used is that every bounded sequence has a convergent
subsequence. In the following, suppose N is some metric space with distance dN . Then the distance on kN
is defined as dkN (ā, b̄) =

∑k−1
i=0 dN (ai, bi).

Now suppose ā and b̄ are two tuples of length p of elements of C(M). The next technical lemma asserts
that if α is an ordinal, C(M) is a proper metric space, and (ā, b̄) is a limit (in the (C(M))2p metric) of points
of the form (ē, f̄) so that R(ē, f̄) > α, then R(ā, b̄) > α.

Fact 4.5. Let M be a metric space on ω. Suppose C(M) is a proper metric space. Let α be an ordinal.
Let ā and b̄ be two tuples of elements of C(M) of the same length p. Suppose that (ā, b̄) is the limit of the
sequence 〈(ān, b̄n) : n ∈ ω〉 in (C(M))2p so that for all n ∈ ω, R(ān, b̄n) > α. Then R(ā, b̄) > α.

Proof. Fix f ∈ REC. Let g ∈ REC be defined by g(n) = f(n)
3 for all n ∈ ω.

Suppose ā and b̄ take the following form: ā = (a0, ..., ap−1) and b̄ = (b0, ..., bp−1). For each n ∈ ω, suppose
ān and b̄n take the form: ān = (an0 , ..., a

n
p−1) and b̄n = (bn0 , ..., b

n
p−1).

It suffices to show that for all ordinals α, if ān ∼gα b̄n for all n ∈ ω, then ā ∼fα b̄.
Fix a winning strategy for Player 2 in each game Gg,ān,b̄nα . In the following proof, when a response from

Player 2 in Gg,ān,b̄nα is required, it is always assumed it is taken from this fixed winning strategy.

Now a winning strategy for Gf,ā,b̄α will be described:
By refining 〈(ān, b̄n) : n ∈ ω〉 to a subsequence, one may assume that

dp((ān, b̄n), (ā, b̄)) <
1

n
(?)

where dp is the metric on C(M)2p mentioned above which is defined by summing the distance in each
coordinate.

Let A−1 = ω.
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Fix j and suppose the following have been constructed: For all i < j, Ai and αi have been defined. If i
is even, then ci, yi, and dni for each n ∈ Ai have been constructed. If i is odd, then di, xi, and cni for each
n ∈ Ai have been constructed. These objects satisfy the following:

(i) For all i < j, minAi >
1
g(i) and Ai is an infinite subset of ω. Hence by property (?) on the sequence,

one has d((ān, b̄n), (ā, b̄)) < g(i), for all n ∈ Ai.
(ii) For all i < j − 1, Ai+1 ⊆ Ai.
(iii) If i is even, for all n ∈ Ai, d(yi, d

n
i ) < g(i). If i is odd, for all n ∈ Ai, d(xi, c

n
i ) < g(i).

(iv) For each i < j and n ∈ Ai, the following is a play in Gg,ān,b̄nα according to the fixed winning strategy
for Player 2:

ān (α0, c0) cn1 (α2, c2) cn3 . . . (αi, ci)
b̄n dn0 (α1, d1) dn2 (α3, d3) . . . dni

when i is even. A similar diagram when i is odd with the appropriate variable change.
Without loss of generality, suppose that j is odd. Suppose that αj−1 6= 0. Suppose Player 1 plays (αj , dj)

where αj < αj−1.

For each n ∈ Aj−1∩( 1
g(j) ,∞), let cnj be the response of Player 2 in the following play of Gg,ān,b̄nα according

to the fixed winning strategy:

ān (α0, c0) cn1 (α2, c2) cn3 . . . (αj−1, cj−1) cnj
b̄n dn0 (α1, d1) dn2 (α3, d3) . . . dnj−1 (αj , dj)

Claim: Lj = {cnj : n ∈ Aj−1 ∩ ( 1
g(j) ,∞)} is a bounded set

To see this: Note that for all n ∈ Aj−1,

d(a0, c
n
j ) ≤ d(a0, a

n
0 ) + d(an0 , c

n
j )

Since Player 2 plays according to its winning strategy in Gg,ān,b̄n , |d(an0 , c
n
j )− d(bn0 , dj)| < g(j) so

≤ d(a0, a
n
0 ) + d(bn0 , dj) + g(j) ≤ d(a0, a

n
0 ) + d(bn0 , b0) + d(b0, dj) + g(j)

Since n > 1
g(j) and property (?) on the sequence, d(a0, a

n
0 ) < g(j), d(b0, b

n
0 ) < g(j). Thus

< 3g(j) + d(b0, dj) = 3
f(j)

3
+ d(b0, dj) = f(j) + d(b0, dj)

This shows that for all n ∈ Aj−1, d(a0, c
n
j ) < f(j) + d(b0, dj). Hence Lj is bounded. The claim has been

established.
Since Lj is bounded and C(M) is a proper metric space, the sequence 〈cnj : n ∈ Aj−1 ∩ ( 1

g(j) ,∞)〉
has a convergent subsequence. Let xj ∈ C(M) be a limit point of a convergent subsequence. Let Aj ⊆
Aj−1 ∩ ( 1

g(j) ,∞) be an infinite set so that d(xj , c
n
j ) < g(j) for all n ∈ Aj . This completes the recursive

construction at stage j.
Continue this construction until at some point Player 1 plays αk−1 = 0.

Now the claim is that the following is a winning play for Player 2 in Gf,ā,b̄α :

ā (α0, c0) cminA1
1 (α2, c2) cminA3

3 . . . (αk−1, ck−1)

b̄ dminA0
0 (α1, d1) dminA2

2 (α3, d3) . . . d
minAk−1

k−1

Let l < p and i < k. Without loss of generality, suppose i is even:

|d(al, ci)− d(bl, d
minAi
i )|

= |d(al, ci)− d(aminAi
l , ci) + d(aminAi

l , ci)− d(bminAi
l , dminAi

i ) + d(bminAi
l , dminAi

i )− d(bl, d
minAi
i )|

≤ |d(al, ci)− d(aminAi
l , ci)|+ |d(aminAi

l , ci)− d(bminAi
l , dminAi

i )|+ |d(bminAi
l , dminAi

i )− d(bl, d
minAi
i )|

≤ d(al, a
minAi
l ) + |d(aminAi

l , ci)− d(bminAi
l , dminAi

i )|+ d(bminAi
l , bl)

The first and third terms are less than g(i) by (i). The middle term is less that g(i) since these are responses

that come from the winning strategy of G
g,āminAi

,b̄minAi
α .

≤ g(i) + g(i) + g(i) = 3g(i) = 3
f(i)

3
= f(i)
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Now let i < j < k. As an example, assume i is even and j is odd:

|d(ci, c
minAj
j )− d(dminAi

i , dj)|

= |d(ci, c
minAj
j )− d(d

minAj
i , dj) + d(d

minAj
i , dj)− d(yi, dj) + d(yi, dj)− d(dminAi

i , dj)|

≤ |d(ci, c
minAj
j )− d(d

minAj
i , dj)|+ |d(d

minAj
i , dj)− d(yi, dj)|+ |d(yi, dj)− d(dminAi

i , dj)|

≤ |d(ci, c
minAj
j )− d(d

minAj
i , dj)|+ d(d

minAj
i , yi) + d(yi, d

minAi
i )

The last two terms are less than g(i) since Aj ⊆ Ai and (iii). The first term is less than g(i) + g(j) since

these come from Player 2 winning response in the appropriate play of G
g,āminAj

,b̄minAj
α .

≤ g(i) + g(j) + g(i) + g(i) = 3g(i) + g(j) = 3
f(i)

3
+
f(j)

3
< f(i) + f(j)

So the above describes a winning strategy for Gf,ā,b̄α . ā ∼fα b̄. This completes the proof. �

These are all the results in pure metric space theory that will be needed.

5. Admissibility

In order to establish bounds on the Scott rank that come from recursion theory or constructibility theory,
one needs to look at admissible sets. KP has language {∈̇} where ∈̇ is a binary relation symbols. KP is a weak
axiom system for set theory: It includes the basic axioms of set theory such as pairing, union, foundation,
and others. The more distinguishing axioms schemes are ∆1-separation and Σ1-replacement. An admissible
set is a transitive set A so that (A,∈) |= KP. See [2], [5], [10], or [11] for more on admissible sets.

As usual in set theory, V will refer to the real universe.

Definition 5.1. An ordinal α is an admissible ordinal if and only if there is an admissible set A so that
A ∩ ON = α. If x ∈ ωω, then α is an x-admissible ordinal if and only if there is an admissible set A with
x ∈ A so that A ∩ON = α.

For any x ∈ ωω, ωx1 is the smallest ordinal α so that Lα(x) |= KP.

Fact 5.2. An ordinal α is an x-admissible ordinal if and only if Lα(x) |= KP.
If x ∈ ωω, Lωx1 (x) is the smallest admissible set containing x. The reals of Lωx1 (x) are the x-hyperarithmetic

elements.
ωx1 is the supremum of the x-hyperarithmetic ordinal as well as the supremum of the x-recursive ordinals.

An important fact about KP is that the well-founded part of any model of KP is a model of KP:

Fact 5.3. (Truncation Lemma) Let B = (B, ∈̇B) |= KP. Let WF(B) be the collection of ∈̇B well-founded (in
V ) elements of B. Then WF(B) |= KP. Hence the Mostowski collapse of WF(B) is an admissible set.

Proof. See [2], Lemma II.8.4. �

Let L be any language. Let L∞,ω denote infinitary logic in the language L . If A is an admissible
set, then LA = (L∞,ω)A. This is the admissible fragment of L∞,ω determined by A. LA is a countable
admissible fragment if A is a countable admissible set. (See [2] or [11] for more information.) The following
will be a useful method of constructing admissible sets:

Fact 5.4. (Jensen’s model existence theorem) Let A be a countable admissible set. Let L be a language which
is ∆1 definable over A and contains a binary relation symbol ∈̇ and constant symbols â for each a ∈ A. Let
T be a consistent theory in the countable admissible fragment LA which is Σ1 definable over A and contains
the following sentences:

(I) KP
(II) For each a ∈ A, (∀v)(v∈̇â⇔

∨
z∈a v = ẑ).

Then there is a B |= T so that WF(B) is transitive, A ⊆ B, and ON ∩B = ON ∩A.

Proof. See [10] Section 4, Lemma 11 and [5]. Arguments using some form of this fact appear in the proof
of Sacks theorem about countable admissible ordinals by Friedman and Jensen. A similar fact is used in
Grilliot’s omitting type proof of this theorem of Sacks (see [11], Theorem 15). �
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Fact 5.5. (Barwise Compactness) Let A be a countable admissible set. Let L be a language which is ∆1

over A. Let T be a theory in the countable admissible fragment LA which is Σ1 over A. If every F ⊆ T so
that F ∈ A is consistent, then T is consistent.

Proof. See [2] Theorem III.5.6, [10], Section 4, Corollary 8, or [5]. �

Now returning back to metric spaces. The following fact expresses how to use an ill-founded ordinal α to
play the game Gf,ā,b̄α forever in V to produce an U -automorphism:

Fact 5.6. Let ā and b̄ be tuples in C(M) (that is, tuples of M-Cauchy sequences) of the same length. If
there exists an ill-founded model A of ZFC− P with WF(A) transitive so that M, ā, b̄ ∈ A, A |= ā ∼fα b̄ for
some f ∈ REC, and α is an ordinal of A which is ill-founded (in V ), then there is a U -automorphism of
C(M) taking ā to b̄.

Proof. Note that sinceM is a metric space on ω, the setsM, ā, and b̄ belong to WF(A). In A, fix a winning

strategy for Gf,ā,b̄α for Player 2.
Let Φ : ω → ω be a surjection such that for all k ∈ ω, Φ−1({k}) is infinite. Let c2i = Φ(i). Let

d2i+1 = Φ(i). (Recall that M is assumed to be a metric space with domain ω.)
Since α is ill-founded, externally in V , choose in V an infiniteA-decreasing sequence ofA-ordinals (αn)n∈ω:

that is, for all n ∈ ω, A |= αn+1 < αn.
Using the winning strategy for Player 2, play as follows:

ā (α0, c0) c1 (α2, c2) c3 . . . (αk−1, ck−1)
b̄ d0 (α1, d1) d2 (α3, d3) . . . dk−1

where for even i, ci are defined above and for odd i, di are defined above. For even i, di comes from the
response of Player 2. Similarly for odd i, ci comes from the response of Player 2. Since distance in C(M)
can be expressed as a ∆1 statement in KP, ∆1 absoluteness from A down to WF(A) and then up into V

shows that distance is computed correctly in A. Hence in V , Player 2 has not lost any finite play of Gf,ā,b̄α

described above. Since (αn)n∈ω is infinite decreasing, the game can always be extended. Playing the game
forever in V produces a sequence (cn)n∈ω and (dn)n∈ω so that each finite portion of the sequence fits into
the above play where Player 2 has not lost.

Let Ψ : ω → ω be defined by Ψ(k) = dk. Let Λ(k) = ck.
Now to define a map Ξ : C(M) → C(M): Let e ∈ C(M). Let e = (en)n∈ω be some M-Cauchy sequence

representing e. Let ` : ω → ω be a strictly increasing sequence so that for all n, Λ(`(n)) = en. Let Ξ(e) be
the element of C(M) represented by the M-Cauchy sequence (Ψ(`(n)))n∈ω.

It straightforward (using argument similar to those of Section 3) to check that Ξ is well-defined, that is,

it does not depend on the Cauchy representation of e or the choice of `. Using the definition of Gf,ā,b̄α , one
can check that Ξ is a U -homomorphism and that ā is mapped to b̄. By how Φ was chosen, one can show
that Ξ is actually surjective. Hence Ξ is a U -automorphism taking ā to b̄. (It should be noted that the fact
that Φ−1({i}) is infinite for each i ∈ ω is important for establishing these properties.) �

In the following, ā and b̄ are considered as tuples of M-Cauchy sequences. Since M is a metric space on
ω, ā and b̄ may be coded as elements of ωω.

Fact 5.7. If there is no U -automorphism taking ā to b̄, then R(ā, b̄) < ωM⊕ā⊕b̄1 and in particular, SR(ā, b̄) <

ωM⊕ā⊕b̄1 .
([7] Doucha) If there is no U -automorphism taking ā to b̄, then SR(ā, b̄) is countable. Therefore, the Scott

rank of a Polish metric space is at most ω1.

Proof. Suppose R(ā, b̄) ≥ ωM⊕ā⊕b̄1 .
Let A = L

ωM⊕ā⊕b̄1
(M⊕ ā⊕ b̄). A is a countable admissible set.

Let L be a language consisting of the following:
(i) A binary relation symbol ∈̇.
(ii) For each a ∈ A, a constant symbol â.

L is a language which is ∆1-definable in A.
Now let T be the theory in the countable admissible fragment LA consisting of sentences indicated below:
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(I) ZFC− P.
(II) For each a ∈ A, “(∀v)(v∈̇â⇔

∨
z∈a v = ẑ)”.

(III) For each α < ωM⊕ā⊕b̄1 , “
∧
f∈REC

ˆ̄a ∼fα ˆ̄b”.
T is Σ1 definable in A.
T is consistent. To see this, consider the structure B defined by: Let its domain be B = Hℵ1

, the collection
hereditarily countable sets. Let ∈̇ =∈� Hℵ1

. For each a ∈ A, let âB = a. B |= T since it was assumed that

R(ā, b̄) ≥ ωM⊕ā⊕b̄1 .

By Fact 5.4, there is a L -structure B so that B |= T , WF(B) is transitive, ON∩B = ON∩A = ωM⊕ā⊕b̄1 ,

and A is an end extension of B. B must be ill-founded since no transitive set of ordinal height ωM⊕ā⊕b̄1

containing M⊕ ā⊕ b̄ can be a model of ZFC− P. Hence by (III), there must be some illfounded B-ordinal

β so that for any f ∈ REC, B |= ā ∼fβ b̄.
Fact 5.6 shows that there is a U -automorphism taking ā to b̄. Contradiction. �

Next, it will be shown that if R(ā, b̄) ≥ ωM1 , then R(ā, b̄) is a limit of elements (ē, f̄) so that there is a
U -automorphism of C(M) taking ē to f̄ .

In fact, in [7] Proposition 2.4, it is shown that certain points have the property that every open neigh-
borhood contains a perfect set of (ē, f̄) so that there is a U -automorphism of C(M) taking ē to f̄ . It can
also be shown that if R(ā, b̄) ≥ ωM1 , then every open set containing (ā, b̄) has a perfect set of such (ē, f̄).
However, this fact is not necessary for producing the effective bound on Scott rank. The reader may choose
to skip all the comments about perfect sets in the following two results.

If one wants the perfect set result, one will need the following effective perfect set theorem:

Fact 5.8. (Harrison) Let r ∈ ωω. Suppose X is a r-recursively presented Polish space. If a Σ1
1(r) set A

contains a member which is not ∆1
1(r) (i.e. r-hyperarithmetic), then A contains a perfect subset.

Proof. See [13] for more on recursively presented Polish space and [13] Theorem 4F.1. �

Fact 5.9. Let ā and b̄ be tuples of elements of C(M) of the same length p. Suppose R(ā, b̄) ≥ ωM1 and there
are no U -automorphisms of C(M) taking ā to b̄. Then for any n̄ ∈ 2pM and m ∈ ω, if (ā, b̄) ∈ B 1

m
(n̄) (the

open ball around n̄ of size 1
m in the metric on 2pC(M)), then there is some (ē, f̄) ∈ B 1

m
(n̄) for which there

is a U -automorphism taking ē to f̄ .
In fact, there is a perfect set of such (ē, f̄).

Proof. Fix m ∈ ω and n̄ ∈ 2pM so that (ā, b̄) ∈ B 1
m

(n̄).

Let A = LωM1 (M). A is a countable admissible set.

(Some remarks before continuing: Since ā and b̄ are tuples of M-Cauchy sequences, they are coded by
reals. As it will be shown below, ā and b̄ can not belong to A. Thus one cannot mention ā or b̄ in any
countable fragment associated to the admissible set A. However, n̄ is a tuple of elements of M which is
essentially a tuple of integers (since M was assumed to be a metric space on ω). Thus n̄ belongs to any
admissible set. One is permitted to refer to n̄. Although ā and b̄ cannot be mentioned in the theory, these
elements will be used to (externally in V ) verify the consistency of the theory. The details follow as the
proof resumes below.)

Let L be a language consisting of the following:
(i) A binary relation symbol ∈̇.
(ii) For each a ∈ A, a constant symbol â.

(iii) Two new constant symbols ˙̄e and ˙̄f .
L is a language which is ∆1 definable in A.

Now let T be the theory in the countable admissible fragment LA consisting of the sentences indicated
below:

(I) ZFC− P.
(II) For each a ∈ A, “(∀v)(v∈̇â⇔

∨
z∈a v = ẑ)”.

(III) “d2p(ˆ̄n, ( ˙̄e, ˙̄f)) < 1
m” where d2p is the metric on 2pC(M).

(IV) For each α < ωM1 , “
∧
f∈REC

˙̄e ∼fα ˙̄e”.
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If one want the perfect set version of this result, add on the following

(V) For all α < ωM1 , “( ˙̄e, ˙̄f) /∈ Lα(M̂)”.
In either case, T is Σ1 definable in A.

T is consistent. To see this: Consider the following structure B. Its domain is B = Hℵ1
. ∈̇B =∈� Hℵ1

.

For each a ∈ A, let âB = a. Let ˙̄eB = ā and ˙̄fB = b̄. B |= T since R(ā, b̄) ≥ ωM1 .

For those interested in the perfect set version, to see (V), note that ωM⊕ā⊕b̄1 > ωM1 . If not, then

R(ā, b̄) ≥ ωM1 ≥ ωM⊕ā⊕b̄1 . By Fact 5.7, there is a U -automorphism taking ā to b̄. This contradicts the

assumption on (ā, b̄). Since ωM⊕ā⊕b̄1 > ωM1 ,M⊕ ā⊕ b̄ can not belong to any admissible set of ordinal height
ωM1 . In particular, (ā, b̄) /∈ LωM1 (M). This shows the model B satisfies (V).

By Fact 5.4, there exists some model B |= T so that WF(B) is transitive and ON ∩ B = ON ∩ A. Let
ē = ˙̄eM and f̄ = ˙̄eM. As before, B must be ill-founded. In B, there is some ill-founded B-ordinal α so
that B |= ē ∼fα f̄ , for any f ∈ REC. So by Fact 5.6 in V , there is a U -automorphism taking ē to f̄ . By
absoluteness, (ē, f̄) ∈ B 1

m
(n̄). Hence (ē, f̄) is the desired element.

For the perfect set version, note that the set of C of elements (ū, v̄) ∈ B 1
m

(n̄) so that there is a U -

automorphism taking ū to v̄ is a Σ1
1(M) set. By (V), the element (ē, f̄) produced above is not in LωM1 (M),

so in particular not ∆1
1(M). Hence C must contain a perfect subset by Fact 5.8. �

6. Main Results

Definition 6.1. Let L be a language and let N be an L -structure. N is rigid if and only if there are no
nontrivial L -automorphisms of N .

Theorem 6.2. Let M be a metric space on ω. Suppose C(M) is a rigid Polish metric space. Then
SR(C(M)) < ωM1 .

Proof. Suppose SR(C(M)) ≥ ωM1 . This means for each α < ωM1 , there is some āα and b̄α so that āα 6= b̄α
(as elements of C(M)) and ā ∼fα b̄ for any f ∈ REC. Note that for α 6= β, the length of āβ and āβ may not
be the same.

Let A be LωM1 (M). Let L be a language consisting of:

(i) A binary relation symbol ∈̇.
(ii) For each a ∈ A, a constant symbol â.

(iii) Three new constant symbols ṅ, ė, and ḟ .
L is ∆1 definable over A.

If n ∈ ω and r ∈ ωω, let cn(r) denote the element of n(ωω) coded by r (under some fixed recursive coding
of n-tuples of reals by a single real).

Let T be the following theory in the countable admissible fragment LA consisting of the sentences indicated
below:

(I) ZFC− P
(II) For each a ∈ A, “(∀v)(v∈̇â⇔

∨
z∈a v = ẑ)”.

(III) “ṅ∈̇ω̂”. “ė and ḟ are functions from ω̂ to ω̂”.

(IV) “cṅ(ê) and cṅ(f̂) are tuples of M-Cauchy sequences”. “cṅ(ê) 6= cṅ(f̂) as M-Cauchy sequences”.

(V) For each α < ωM1 , “
∧
f∈REC cṅ(ė) ∼fα cṅ(ḟ)”.

T is Σ1 definable over A.
To see that T is consistent, one needs to use Barwise compactness. Let F ⊂ T be such that F ∈ A. Since

F ∈ A, there is an α < ωM1 that bounds all the β’s that appear in statements of type (IV). Consider the

model B defined by: Its domain is B = Hℵ1
. ∈̇B =∈� B. For each a ∈ A, âB = a. Let ṅB = |āα|. Let e and

f be two reals so that c|āα|(e) = āα and c|āα|(f) = b̄α. It is clear that B |= F . By Barwise compactness, T
is consistent.

Now Fact 5.4 gives a model B |= T so that WF(B) is transitive, A ⊆ B, and ON ∩ B = ON ∩ A = ωM1 .

Let ē = cṅB(ėB), f̄ = cṅB(ḟB). Since M is a metric space on ω, all M-Cauchy sequences in B belong to
WF(B). Hence ē, f̄ ∈WF(B). By ∆1-absoluteness from B down to WF(B) and then up to V , one can show
that for all α < ωM1 , ē ∼fα f̄ for all f ∈ REC. Also by ∆1-absoluteness, ē 6= f̄ . However M⊕ ē⊕ f̄ is in the

admissible set WF(B) (by Fact 5.3) which has ordinal height ωM1 . Hence ωM⊕ē⊕f̄1 = ωM1 . Fact 5.7 implies
14



there is a U -automorphism taking ē to f̄ . This contradicts the assumption that C(M) is a rigid metric
space. �

Theorem 6.3. Let M be a metric space on ω. Suppose C(M) is a proper Polish metric space. Then
SR(M) ≤ ωM1 + 1.

Proof. Suppose not, then there exists some tuples ā and b̄ of elements of C(M) of the same length so that
R(ā, b̄) ≥ ωM1 but there is no U -automorphism taking ā to b̄. By Fact 5.9, there exist a sequence (ān, b̄n)n∈ω
so that (ā, b̄) is its limit and for all n ∈ ω, there is a U -automorphism taking ān to b̄n. Let α be an ordinal

greater than ωM⊕ā⊕b̄1 . The existence of these automorphisms implies that ān ∼fα b̄n for all n ∈ ω and any

f ∈ REC. Then Fact 4.5 implies that ā ∼fα b̄. However since α > ωM⊕ā⊕b̄1 , Fact 5.7 implies that there is a
U -automorphism taking ā to b̄. Contradiction. �
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