CODING AND ANTICODING OF A CARDINAL BY BOUNDED SUBSETS OF THE
CARDINAL

WILLIAM CHAN

ABSTRACT. This paper will consider combinatorial properties related to coding a cardinal by its bounded
subsets. These properties have traditionally been studied in the context of very large cardinals and variations
of these properties either reach the level of Kunen inconsistency or are very close to it. Within the descriptive
set theoretic framework with determinacy or partition properties, these combinatorial properties are quite
robust and have numerous natural examples.

Let k be a cardinal, ¢ < k, and X C k. Bl (¢, X) is the set of all subsets of k of ordertype ¢ which are
bounded below k. Bls (< €, X) is the set of all subsets of X of ordertype less than ¢ bounded below X. The
following will be shown which answer or address several questions of Ben-Neria and Garti.

o Let ui)l be the club filter on wi. Assume wi —« (11.11)‘2*}1 and jML (w1) = wa. For any function

D : Bl(< w1, ww) = ww, there is an X C w,, with | X| = |ww| so that ®[Bly,, (< w1, X)] # we -

e Let pl be the w-club filter on k. If Kk —4 (k)5*'“, then for any € < w - w and any function ® : Bl (<
€,k) — K, there is an X € pl so that ®[Bl.(< €, X)] # k.

e Let © be the supremum of the ordinal onto which R surjects. For any cardinal k£ with w; < kK < O,
there is a function @ : Bl (w - w, k) — & so that for all X € uL, ®[Bly(w - w, X)] = .

e Assume AD and DCg. For any uniform countably complete filter F on wi, there is a function & :
Bly, (w - w,w1) — wy so that for all X € F, ®[Bly, (w-w, X)] = w;.

e Assume AD. Let 8}, = sup{d] : n € w} be the supremum of the projective ordinals. For any e < 8},
and @ : Bls1 (< €,01) = 8L, there is an X C 8L, with |X| = |8}] so that P[Bls1 (<€, X)] # 3L. There
is also a uniform filter F on 8, so that for all € < w - w and function ® : Bls1, (<€, 8L) — 8L, there is
an X € F so that <I>[BI5L (< e, X)) #6L.

1. JONSSON AND MAGIDOR PROPERTIES

One will work over ZF and all other assumptions will be made explicit. If X and Y are two sets, then
XY is the set of all function f: X — Y. Let ON be the class of ordinals. If X C ON and € € ON, then [X]¢
is the set of all order preserving function f: e — X. Let [X]<¢ = [J;_ [X]°.

Definition 1.1. Let x be a cardinal and € < k. A e-J6énsson function for « is a function ® : [k]¢ — & with
the property that for all A C k with |A| = &, ®[[A]¢] = k. & is said to be e-Jénsson if and only if there are
no e-Jénsson functions for «.

A Jénsson function for k is a function @ : [k]<¥ — & so that for all A C k with |A| = &, ®[[A]<¥] =k. K
is Jénsson if and only if there are no Jénsson functions for «.

A function @ : [k]<¢ — k is a (< €)-Jénsson function for  if and only if for all A C x with |A] = &,
®[[A]<] = k. (Note that a Jénsson function for x is a (< w)-Jénsson function.) x is (< €)-Jénsson if and
only if there are no (< €)-Jénsson functions.

Under ZFC, the existence of a Jénsson cardinal implies 0% exists. Erdés and Hajnal ([10], [9]) showed
that under ZFC and CH, 2¢ (the cardinal in bijection with R) is not Jénsson. Solovay showed that assuming
the consistency of a measurable cardinal, 2% can be real-valued measurable and hence Jonsson. Erdés and
Hajnal ([I0]) showed under ZFC that every infinite set has an w-Jénsson function and thus there are no
w-Jénsson cardinals. The w-Jénsson functions appear in Kunen original proof of the Kunen’s inconsistency
and is an important aspect of the proof which requires the axiom of choice.

Fact 1.2. For any infinite cardinal k, k is not (< k)-Jénsson. In particular, w is not Jonsson.
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Proof. Define ® : [k]<" — & be defined by ®(f) = dom(f). (That is, if f € [k]<" and € < k with f : e — &,
then ®(f) =e.) For any A C k with |A| = k, ®[[A]<"] = k. Thus @ is a (< x)-J6nsson function. O
Definition 1.3. (Ordinary partition relation) Let x be a cardinal, ¢ < &, and v < k. £ — (k)5 is the
assertion that for all P : [s]° — =, there is an A C x with |A| = x and a 8 < « so that for all f € [A],
P(f) = 8. (In this situation, one says that A is a homogeneous set for P taking value f3.)

For a cardinal , € < x, and v < K, k — (k)5 is the assertion that for all ¢ <€, x — (/@)fy,.

For an uncountable cardinal , € < k, and v < K, k — (k)< is the assertion that for all v/ < v, k — (ﬁ);,.

For an uncountable cardinal x, ¢ < k, and v < K, kK — (n)é% is the assertion that for all ¢ < € and 7' < 7,

k= (K)S,.
vy
Kk is a weak partition cardinal if and only if k — (k)5". & is a strong partition cardinal if and only if
k — (k)5. K is a very strong partition cardinal if and only if k — (k)%,..

Note that k — (k)3 implies that x must be regular.

The Ramsey theorem states that for all 1 <n <w and 1 < m < w, w — (w)7. Under ZFC, if x is an
uncountable cardinal satisfying x — (x)3, then & is called weakly compact cardinal. For any infinite cardinal
K, one can show that k — (k)% implies []* is not wellorderable and thus the axiom of choice must fail.
w — (w)§ is often called the Ramsey property. Mathias ([22]) showed that assuming the consistency of an
inaccessible cardinal, w — (w)§ holds in the Solovay model obtained from Lévy collapsing the inaccessible
cardinal to wy. Mathias’s argument used highly absolute codes for partitions P : [w]* — 2 which exists in the
Solovay model to produce homogeneous sets using generics for Mathias forcing over an inner model of choice
containing the code set. AD is the axiom of determinacy which states all infinite games of a suitable form
has a winning strategy for one of the two players. AD" is Woodin’s extension of the axiom of determinacy.
Among the postulates of AD™ is the assertion that all subsets of R have co-Borel code. Woodin observed
that these oo-Borel code can be used in the same manner as Mathias’s argument in the Solovay model to
show that AD™ proves w — (w)4. Tt is open if AD proves w — (w)§.

Mitchell ([23]) used Radin forcing to show the consistency of ZF, DC, and the club filter on wy is countably
complete ultrafilter from the consistency of a measure sequence with suitable repeat point properties. Woodin
then used Radin forcing to show the consistency of ZF, DC, and the weak partition property wy; — (wy)y“"
from the consistency of a measure sequence with suitable repeat point properties. The axiom of determinacy
using Martin’s good coding system for functions by reals which satisfies strong definability conditions relative
to a pointclass is the only known setting with any strong partition cardinals. (Good coding system will be
briefly reviewed in Section [4} See [18], [17], [5], and [3] for more about the good coding systems.) Martin’s
method of good coding always establishes the very strong partition property. It is open if the strong partition
property at & (k — (k)5) always implies the very strong partition property (kx — (k)%,). Martin showed
AD proves that w, is a very strong partition cardinal, w; — (w1)%i,,. Martin also showed that AD implies
that wy is a weak partition cardinal satisfying wy — (w2)5y“?. Martin and Paris showed ws is not a strong
partition cardinal. (See [I8], [17], [5], and [3].) This result and many other properties of cardinals below
w,, were established by Martin by analyzing the ultrapower of wy by partition filters on w; using the strong
partition property (which will be discussed further below). Let p, , be the club filter on w;. Suitable partition
properties imply p, is a normal ultrafilter. Kleinberg ([21]) derived many of the results of Martin and many
other combinatorial results (discussed below) under the combinatorial assumption that w; — (wp)3" and
the ultrapower j,1 (w1) = wa (which does hold under AD). (AD also seems to be the only known theory in
which ,ui,l is a countably complete ultrafilter and j,,1 . (w1) = wa.) Let © be the supremum of the ordinals
onto which R surjects. Under ZFC and CH, ©® = wy. Under AD, O is very large. Sets which are images
of R are under the influences of determinacy and hence © can be regarded as the ordinal height of the
determinacy world. Using Martin’s good coding methods, Kechris-Kleinberg-Moschovakis-Woodin ([19])
showed that there are unboundedly many strong partition cardinals below ©. Kechris and Woodin ([20],
[21]) showed that if V' = L(R) then AD holds if and only if there are unboundedly many strong partition
cardinals below ©. Jackson ([I6], [I7], [L5]) showed that all the odd projective ordinals 3, , are very strong
partition cardinals and the even projective ordinals 83, 12 = (83, +1)7 are weak partition cardinal which are
not strong partition cardinals.

Suitable ordinary partition properties imply appropriate degrees of Jénssonness.
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If f:e— ON and § < ¢, then let drop(f,d) : € —J — ON be defined by drop(f,d)(a) = f(6 + «) (where
€ — ¢ is the unique ordinal +y so that e = d + 7).

Proposition 1.4. Let k be a cardinal and € < k. If K — (Fc)%“, then K is e-Jonsson.

Proof. Let @ : [k]¢ — k. Define P : [k]'T¢ — 2 by P(g) = 0 if and only if ®(drop(g, 1)) < g(0). By k — ()5,
there is an A C k with |A| = x which is homogeneous for P. Since & < 3 be the first two elements of A. Let
B = A\ (B +1). Suppose f € [B]*.
e A is homogeneous for P taking value 0: Let gy € [A]'™¢ be defined so that g;(0) = @& and
drop(gf,1) = f. P(gs) = 0 implies that ®(f) = ®(drop(g¢,1)) < g¢(0) = &. So a ¢ ®[[B]].
e A is homogeneous for P taking value 1: Let g € [A]'T¢ be defined so that g;(0) = 3 and
drop(gys,1) = f. P(gy) = 1 implies that ®(f) = ®(drop(gs, 1)) > g¢(0) = 3 > a. So a ¢ ®[[B]].
Thus ®[[A]¢] # k. Since ® was arbitrary, this shows that x is e-J6nsson. O

Without the axiom of choice, there can exists w-Jénsson functions.
Fact 1.5. If w — (w)¥, then w is an w-Jdnsson cardinal.
Proof. By Proposition |
Fact 1.6. Assume wy — (w1)5' and juil (w1) = wa. wy and wy are w-Jdnsson.

Proof. Martin and Kleinberg showed this hypothesis implies wy is a weak partition cardinals. The result
follow from Proposition (|

If k is a cardinal and p is an ultrafilter on &, then p is uniform if and only if every A € p, |A| = k. If k is
an uncountable cardinal and p is an ultrafilter on &, then x is normal if and only if for all f : kK — & such that
{a € k: f(a) <a} €pu, then there is a § < x such that {« € #: f(a) =6} € p. Let A= (Aq:a < k) C p.
Define AA = {a € k : (V8 < a)(a € Ag)}. The normality of p is equivalent to the fact that for all
A= (At a < K) C pu, AA e . Note that a uniform normal ultrafilter on x is k-complete.

Definition 1.7. Let k be an uncountable cardinal, ;¢ be a normal uniform ultrafilter on x, 1 < n € w, and
v < k. Let k —,, (k)5 be the assertion that for all P : [k]" — «, there is a (unique) 8 < and an A € p so
that for all £ € [A]", ®(¢) = .

Fact 1.8. (Rowbottom lemma) Assume k is an uncountable cardinal, p is a uniform normal ultrafilter on
K, 1 <n<w, andy < k. Then k —, (k).

Definition 1.9. Let x be an uncountable cardinal, ;1 be a uniform normal ultrafilter on , and let 1 < n < w.
Define p™ to be the filter on [k]", defined by X € p™ if and only if there is an A € p so that [A]™ C X.

The Rowbottom lemma (Fact implies that u™ is an k-complete ultrafilter on [k]" for all 1 <n < w.
Let p®" denote the n-fold product of p which is an ultrafilter on "x. The Rowbottom lemma can be used
to show that u" is equal to u®™ restricted to [k]™.

With ACZ™")_ the Rowbottom lemma (Fact , and Proposition it is easy to see any s which
possess a uniform normal ultrafilter on x is Jénsson. Under AD, AC§ holds by a simple game argument.
The Moschovakis coding lemma implies that if x < ©, then there is a surjection of R onto &(x). Thus AD
proves ACfZ ) for all k < ©. However, no form of countable choice is necessary to show that a cardinal x
which possesses a normal uniform ultrafilter is Jonsson if one carefully observe the uniformity in the proof
of Rowbottom’s lemma. This will be stated explicitly as follows:

Fact 1.10. Let k be an uncountable cardinal and let p be a uniform normal ultrafilter on k. There is a
sequence <QZZ 11 <n < w) such that for all 1 < n < w, &, : " = p has the property that for all B € p",
L(B) € p and [€}(B)]" C B. (In other words, €, picks for each B € u™, a homogeneous set in y for B.)

Proof. The function (Q:Z : 1 < n < w) will be defined by recursion on n. Let Q}L : u — i be the identity

function. Suppose 1 < n < w and €, : ™ — p has been defined with the property that for all B € p",

¢ (B) € pand [€}(B)]"* € B. Let B € p™*!. This implies there is some A € p so that [A]"*! C B. For

each a < k, let By, = {t € [k]" : @ < 1(0) A ()"t € B}. For each o € A, B, € pu™ since [A\ (a+ 1)]" C B,.
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Thus Dp = {a € Kk : By € p} € psince A C Dp. For all a € Dp, [€}(B,)]" C B, by the inductive
assumption. For each a < k, let EF = €7(B,) if a € Dp and EF = k otherwise. Let EB = (EB : o < k).
Define €*1(B) = Dp N AEB. Note that € t1(B) € p since p is normal. Suppose £ € [€T1(B)]"*!. Then
(0) € Dp. By definition of £(k) € AEB for all 1 < k < n + 1, one has that £(k) € Ey0) = €};(By(o)) since
€(0) € Dp. Thus drop(¢,1) € [€](Byo)]" € Byo). Thus £ = (£(0))"drop(¢,1) € B. Since £ € [€}T1(B)]"!
was arbitrary, one has shown that [€7+!(B)]"*! C B. This completes the construction. O

Fact 1.11. Let k be an uncountable cardinal such that there is a uniform normal ultrafilter on k. Then K is
Jonsson.

Proof. Fix a uniform normal ultrafilter 1 on k. Let (€}, : 1 < n < w) be obtained by Fact with the
properties stated there. Let ® : [k]<“ — k. For each 1 < n < w, define P, : [x]"T! — 2 by P,({) = 0
if and only if ®(drop(¢,1)) < £(0). By & —, (x)3T", there is a unique i,, € 2 so that P, [{i,}] € u"+!.
Let A = icpey, €H(P [{in}]). Note that A € p since p is x-complete. Note that [k]° = {D}. Let
@ be the least element of A greater than ®(()). Let 3 be the least element of A greater than a. Let
B=A\(B+1). Let n <w. If n =0, note that & # ®(0). Suppose 1 < n < w. Suppose i,, = 0. For any
t € [A]™, let £ € [B]"*! be defined so that ¢7(0) = @ and drop(¢?,1) = ¢. Then P, (¢?) = i, = 0 implies that
®(1) = ®(drop(¢™,1)) < £7(0) = &. Now suppose i,, = 1. For any ¢ € [B]", let 7" € [A]"! be defined so that
77(0) = 8 and drop(7",1) = v. Then P(7") = i, = 1 implies that & < § = 77(0) < ®(drop(7",1)) = ®(1).
In any case, & ¢ ®[[B]"]. Since n € w was arbitrary, & ¢ ®[[B]<“]. This shows that ® is not a Jénsson
function. Since ® was arbitrary, there are no Jénsson function for k. k is a Jénsson cardinal. O

w is never Jénsson as shown in Fact wi = (w1)5" and j,(w1) = we implies that w is a weak partition
cardinal. This hypothesis implies that club filter is a uniform normal measure on w; and the w-club filter
on woy is a uniform normal ultrafilter on wy. Fact implies w; and wy are Jonsson cardinals under these
hypothesis (and in particular under AD). Kleinberg then showed that these same hypothesis implies for all
n < w, wy are Jénsson cardinals. Jackson-Ketchersid-Schlutzenberg-Woodin ([14]) showed under AD™, every
uncountable cardinal k < © is Jénsson.

Jackson, Holshouser, Meehan, Trang, and the author have investigated Jonssonness property of non-
wellorderable sets. Greater care needs to be made in the definition of Jénssonness when X is not wellorder-
able by using injective tuples. (See [8] and [4] for the relevant definitions.) Holshouser and Jackson showed
that R is Jonsson (also see [§]) assuming AD. Let Ejy be the equivalence relation on “2 defined by = Ey y
if and only if there exists an m € w so that for all m < n < w, 2(n) = y(n). Meehan and the author ([§])
showed that R/Ey is 2-J6nsson but is not 3-Jénsson under AD. R/E, and minor variation are essentially
the only known example of a set which is not Jonsson in the determinacy context. Jackson, Trang, and the
author ([7]) showed that AD implies “wy is Jénsson. This argument essentially shows that for any cardinal
k satisfying k —. (k)5 (see below for the definition of the correct type partition relation), “x is Jénsson.
Jackson, Trang, and the author can show that for all cardinals k < w,,, “k is Jénsson. Using a higher dimen-
sional analog of generalized Namba forcing (or diagonal Prikry forcing) over HOD-type models as developed
by the author in [2], the author can show under AD™ that “x for x < © with cof(k) = w is Jénsson. The
Hjorth Ep-dichotomy ([13]) states that under AD™, if X is a surjective image of R, then exactly one of the
following holds:

e X injects into the power set of an ordinal (and hence X is linearly orderable).
e R/E, injects into X (and hence X is not linearly orderble).

In light of the known Jénssonness results and the Hjorth’s dichotomy, an appealing conjecture is that under
AD™, a set X is Jénsson if and only if X is linearly orderable.
Next, one will show that singular cardinals cannot be w-Jénsson.

Definition 1.12. Let s be a cardinal € < k, and X be a set. A (k,¢, X)-coding function is a function
® : [k]° — X so that for all A C k with |A] = &k, ®[[A]] = X. Note that an e-Jénsson function is a
(K, €, k)-coding function.

Fact 1.13. Let k be a cardinal.



(1) Let X be a set and eg < €1 < k. If there is a (k, €9, X)-coding function, then there is a (k,€1,X)-
coding function.

(2) Let X be a set, Y be a set that X surjections onto, and € < k. If there is a (k, €, X )-coding function,
then there is a (k,€,Y)-coding function.

(8) Let X be a set which surjects into k. If there is a (k, €, X)-coding function, then k is not e-Jonsson.

Proof. (1) If ® is a (k,¢€p, X)-coding function, then ¥ : [5]** — X defined by ¥(f) = ®(f | €) is a
(k, €1, X)-coding function.

(2) Let 7 : X — Y be a surjection and ® : [k]¢ — X be a (k,¢, X)-coding function. Then ¥ : [k]* - YV
defined by ¥(f) = n(®(f)) is a (k,€,Y)-coding function.

(3) If X surjects into x, then (2) implies there is a (k, €, k)-coding function or equivalently an e-Jénsson
function. 0

Theorem 1.14. If k is a singular cardinal with 6 = cof(k), then for all limit ordinals € < §, there is a
(K, €, P(€))-coding function.

Proof. Fix k a singular cardinal, § = cof(k), and € < § be a limit ordinal. Let p : § — & be an increasing
cofinal function. Let ¢ : kK — ¢ be defined by ¢(«) is the unique v < § so that sup(p [ 7) < a < p(7).
Let f € [k]°. Note that ¢ o f : € — J is a non-decreasing sequence. Let {; = ot((¢ o f)[e]). Note that
&r < e Let w(f): & — ¢ be the increasing enumeration of ¢ o f. Let ®(f) : [k] = Z(¢) be defined by
O(f)={n<& :|(po f) ' [{w(f)(n)}]| > 2}. The following intuitively describes ®(f). For each n < &y,
w(f)(n) appears in the non-decreasing sequence @ o f. If w(f)(n) only appears once in po f, then n ¢ ®(f).
If w(f)(n) appears more than once in p o f, then n € ®(f).

Suppose A C k with |A] = k. For each v < §, let A, = {a € A :sup(p [ 7v) < a < p(v)}. Note
that ot(Ay) < p(y) and A = U, 5A4,. Let B ={y < :|A,[ > 2}. B must be unbounded in é. To
see this, suppose B is bounded and let x = sup{2,p(y) : v € B}. Note that y < k and for all v < 0,
ot(A,) < x. Forall v < 4, let my : A, = ot(A,) be the Mostowski collapse map. Since ot(A,) < x, one
may regard m, : A, — x. Define ¥ : A — § x x by ¥(a) = (7, my(a)) where 7 is unique so that o € A,.
U is an injection and so |k| = |A| < |§ x x| < max{|d],|x|} < || which is a contradiction. This shows
that B is unbounded in §. Since ¢ is regular, ot(B) = 4. Since € < 6, let (v, : 7 < €) be the increasing
enumeration of the first e-many elements of B. For each ) € ¢, let ag < a717 be the first two elements of
A, . Note that for all 4,j € w and 1y < m, ozf,o < p(Yme) < sup(p | ) < 0‘271' Fix E € Z(¢). Let
Fg ={a) :n ¢ E}U{a),a, : 1 € E}. Note that ot(Fg) = ¢ using the assumption that € is a limit
ordinal. Let fr € [k]° be the increasing enumeration of F. Note that w(fg) = (v, : 7 € €). For all
0 E, (9o fe) Ul fe) | = (9o ) Hnlll = |f5 [{al})l = 1 and thus n ¢ D(E). For all n € E,
(% o f) =) = [(o o f2) [}l = 1/5'[a%, bl = 2 and thus € B(E). This shows that
®(fg) = E. Since E € P (e) was arbitrary. ®[[A]"] = P(¢). Since A C k with |A| = k was arbitrary, this
shows that ® is a (k,w, #(e€))-coding function. O

Theorem 1.15. If K < © and k is a singular cardinal, then k is not e-Jonsson for all w < € < k.

Proof. By Theorem k has a (k,w, Z(w))-coding function. Since x < © means & is a image of R, Fact
1.13| (2) implies there is a (k,w, k)-coding function. Then by Fact (1), for all w < € < kK, there is a
(k, €, k)-coding function. Since a (k, €, k)-coding function is an e-Jénsson function, this shows that x is not
e-Jénsson for all w < e < k. O

w

Fact 1.16. Assume w; — (w1)5"' and Jut, (w1) = wa (which holds under AD). For all 3 <n < w, wy, s not
e-Jonsson for any w < e < K.

Proof. Under these hypothesis, Martin showed that cof(w,) = ws for all 2 <n < w. Thus w, is singular for
all 3 < n < w. The result now follows from Theorem O

Under AD, if k is below the supremum of the projective ordinals, sup{di :n < w}, Jackson has verified
that k — (k)5 for all € < wy. Thus every regular cardinal below the supremum of the projective ordinals is
w-Jénsson by Proposition Steel (]25] Theorem 8.27) and Woodin ([26] Theorem 2.18) showed that AD™
implies that the w-club filter on any regular cardinal below © has a normal uniform ultrafilter on x. Thus
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the Rowbottom lemma implies that under AD™, for every regular cardinal k < © and n < w, k — (k)5. It
seem at least plausible that under AD" every regular cardinal x < © satisfies x — (k)y. If this conjecture
is true, then Proposition and Theorem m together would imply under AD" that the set of w-Jénsson
cardinals below O is exactly the set of regular cardinals below ©.

The correct type partition relation is often more practically useful when handling infinite exponent as it
directly influence the behavior of the (correct type) partition filter. These partition filters are essential for
the analysis of w,, and the cardinals below w,,,.

Definition 1.17. Let e € ON and f : e — ON.

e f is discontinuous everywhere if and only if for all @ < ¢, sup(f | @) < f(«) (and thus f is an
increasing function).

e f has uniform cofinality w if and only if there is a function F : € X w — ON so that for all k¥ € w and
a<e F(a, k) < F(a,k+1) and f(a) =sup{F(a, k) : k € w}.

e f has the correct type if and only if f is both discontinuous everywhere and has uniform cofinality
w

If X C ON, then let [X]¢ be the set of all functions f : € — X of the correct type. Note that [«]} is just the
set of o < k with cof(a) = w.

Note that if a function f : € — ON has uniform cofinality w, then in particular, for all « < ¢, f(a) > w and
cof (f(a))) = w. These notions are nontrivial only for uncountable cardinals. Thus the partition relation on
w cannot be formulated using the correct type notion and must be formulated using the ordinary partition
relation.

Definition 1.18. (Correct type partition relation) Let k£ be an uncountable cardinal, ¢ < k, and v < &.
K —r. (k)5 is the assertion that for all P : []® — «, there is a (unique) 8 < x and a club C C & so that for
all f € [Cle, P(f) = B.

One can similarly define k —. (k)5 for all e < x and v < &, & = (k)% for all e < x and v < &, and
K —s (KJ)E; for all e < k and v < k.

The following indicates the relation between the ordinary and the correct type partition relation.

Fact 1.19. Let k be an uncountable cardinal, ¢ < k, v < K.

o k= (K)S implies k — (k)5
o k— (k)3 implies k — (K)5.

In particular, K —. (k)5" is equivalent to k — (k)5", K —+ (k)5 is equivalent £ — (k)5, and kK —4 (k)%

is equivalent to k — (k)%,.. That is, the weak partition property, the strong partition property, and the very
strong partition property can be equivalently formulated using the ordinary partition relation or the correct
type partition relation.

For the correct type partition relation, the homogeneous sets are now clubs rather than simply sets of
large cardinalities. One nice benefit is that the homogeneous value for a partition is unique independent of
the choice of homogeneous set. Correct type partition relation are more directly related to the (correct type)
partition filter. The price to pay is that one cannot use simply increasing functions but must use functions
of the correct type. Sometimes one will need to put in effort to make and show functions are discontinuous
everywhere and have uniform cofinality w. (The type of the functions becomes especially important in
Section [3| when considering Magidor filters.)

Definition 1.20. If x is an uncountable cardinal and 1 < e < k, then let u& be the (correct type) partition
filter on [x]¢ defined by X € p if and only if there is a club C' C &, [C]¢ € X. (Note that ul is just the
w-club filter.)

Fact 1.21. Let k be an uncountable cardinal.
(1) For all e < K, k =« (k)5 implies us, is an ultrafilter.
(2) For all e < k, k —, (k)3T implies k —. (k)S,.. (Thus k —. (k)5" implies kK —, (k)SE.
(3) For alle <k and vy < K, k =, (k) implies that pg, is v+ -complete.
(4) Kk —« (k)3 implies the w-club filter ul is a normal ultrafilter.
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The ordinary partition relation x — (k)3 at an uncountable cardinal x is consistent with ZF (assuming
the consistency of a weakly compact cardinal). However, using the normality of Mil, one can show that
Kk —, (k)3 implies “x is not wellorderable. The finite correct type partition relations already exhibit many
of the properties of the infinite exponent ordinary partition relation. Also the normality of p, , can be used
to show that the identity function id : K — k does not have uniform cofinality w.

If X C ON, then let enumx : ot(X) — X be the increasing enumeration of X.

Fact 1.22. Let k be a cardinal and C C k be a club. Let E = {enumg(w - a+w) : @ < k}. For any € < K,
[El° = [E

Proof. 1t is clear that [E]S C [E]¢. Let f € [E]°. Let g € [r]¢ be so that for all & < ¢, f(a) = enumg(w-g(a)+
w). Pick an a < ¢, sup(f | @) = sup{f(8) : B < a} = sup{enumc(w-g(f)+w): < a} < enumc(w-g(a)) <
enume(w - g(a) + w) = f(«). This shows that f is discontinuous everywhere. Let F : € x w — £ be defined
by F(a,n) = enume(w - g(a) + n). F witnesses that f has uniform cofinality w. Thus f € [E]S. This shows
(E]* C [E]. 0

€
€

Proof. Let ® : [k]<¢ — k. For each v < ¢, let Py : [k]° — 2 be defined by P,(f) = 0 if and only
if ®(drop(f,1) [ v) < f(0). By K —, (k)$, there is a unique i, € 2 so that there is a club which is
homogeneous for P, taking value i,. Define @ : [k]* — 2 by Q(f) = 0 if and only if for all v < €, Py(f) = i5.
By £ =« (k)§, there is club Cy C k which is homogeneous for Q). Suppose Cj is homogeneous for @) taking
value 1. Define ¥ : [Cy]¢ — € by defined by ¥(f) is the least v < € so that P,(f) # iy. By k =« (k)¢, there
is a club €1 C Cp and a 4 < € so that for all f € [C1]S, ¥(f) = 4. Thus C; is homogeneous for Py taking
value 1 — i5. This is impossible since by definition, i5 is the unique homogeneous value for Py. Thus Cy
must be homogeneous for @) taking value 0. Let & < 3 be the first two elements of [Cy]! (i.e. @ and 3 are
the first two elements of Cj having cofinality w). Let D = Co \ (B +1). Let v < e. First, suppose i, = 0.
For each g € [Cy]i, let f, € [D]S be defined by

Proposition 1.23. Suppose & is an uncountable cardinal, € < k, and Kk — (k)S. Then k is (< €)-Jonsson.

! £E=0
fe(&) =< 9(0) I1<E<I+yNE=1+(.
nexts “ T (sup(g)) 1+vy<é<e

Note that f;(0) = & and drop(fy,1) [ v = g. (Note that & was chosen to have cofinality w in order to ensure
f4 has the correct type.) Since Q(f,) = 0, one has that P,(f;) = i, = 0 which implies ®(g) = ®(drop(fy,1) |
v) < f¢(0) = @&. Next, suppose i, = 1. If g € [D]!, then let hy € [Cp]$ be defined by

B £€=0
hg(§) = 4 9(¢) 1<E{<1+9AE=1+C.
nexts ST (sup(g)) 14y <E<e

Note that hgy(0) = B and drop(hg,1) | ¥ = g. Since Q(h,) = 0, Py(hy) = i, = 1 implies @ < 8 =
hg(0) < ®(drop(hg,1) [ v) = ®(g9). So & ¢ ®[[D]}]. Since v < € was arbitrary, & ¢ ®[[D] ¢]. Let E =
{enump(w-a+w) : @ < k}. Note that E C D and [E]<¢ = [E]$¢ by Fact[[.22] Since [E]<¢ = [E]|F¢ C [D]5*,
one has that & ¢ ®[[E]<¢]. It has been shown that ® is not a (< €)-Jénsson function. Since ® was arbitrary,
Kk is (< €)-Jénsson. O

The primary subject of this paper are Magidor cardinals which were introduced and studied under ZFC in
[11] by Garti, Hayut, and Shelah. Ben-Neria and Garti in [I] further investigated Magidor cardinals under
AD in [I].

Definition 1.24. Let x be a cardinal, X C k, and € < k. Define Bl (e, X) to be the set of bounded
increasing functions f : € — X such that sup(f) < . (Note that Bl (e, X) can be regarded as the bounded
subsets of X of ordertype €.) Let Bl (< €, X) =, Bli(v, X).

Let k be a cardinal and € < . A function @ : Bl (¢, k) — & is an e-Magidor function for & if and only if
for all A C k with |A| = &, ®[Bl.(¢, A)] = k. & is eMagidor if and only if there are no e-Magidor function
for k.
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Let x be a cardinal. & is lower-Magidor if and only if for all € < &, x is e-Magidor.

Let k be a cardinal and € < k. A function @ : Bl,(< €, k) — & is an (< ¢)-Magidor function for & if and
only if for all A C k with |A| = &, ®[Bl.(< €, A)] = k. A cardinal x is (< €)-Magidor if and only if there are
no (< €)-Magidor function for k. A cardinal x is Magidor if and only if k is (< w)-Magidor.

A cardinal & is super-Magidor if and only if for all € < k, k is (< €)-Magidor.

Fact 1.25. For any cardinal K, k is not (< k)-Magidor. In particular, wy is not Magidor.
Proof. Let @ : Bl (< k,w) — k be defined by ®(f) = dom(f). ® is a Magidor function for . O
Fact 1.26. A singular cardinal k < © of uncountable cofinality is not w-Magidor and hence not Magidor.

Proof. A singular cardinal k < © is not w-Jénsson by Propostion Since cof (k) > w, [k]¥ = Bl (w, k).
Thus any w-Jénsson function for x is an w-Magidor function for k. . O

By Fact under ZF, the only cardinals below © which could potentially be Magidor cardinals are
regular cardinal above w; and singular cardinals of countable cofinality. With the axiom of choice, only
singular cardinals of countably cofinality can be Magidor.

Fact 1.27. Assume the axiom of choice, AC. A cardinal of uncountable cofinality is not w-Magidor and
hence not Magidor.

Proof. Erdés and Hajnal [I0] showed that every infinite set has an w-Jénsson function. If cof(k) > w, then
[k]“ = Bl,;(w, k). Thus any w-Jénsson function for « is an w-Magidor function for &. O

Magidor observed that if A witnessed the axiom Il in the sense that there is a nontrivial elementary
embedding from V41 into V41, then A is a Magidor cardinal (and necessarily has countable cofinality).
Thus assuming very strong large cardinals strength, there can be Magidor cardinals in ZFC.

1+e
2

Proposition 1.28. Let k be a cardinal, 1 < € < k, and k — (k)5 . Then k is e-magidor.

Proof. By Proposition Kk is e-Jénsson. Since the partition relation implies k is regular, B, (e, k) = [K]c.
Thus being e-Jénsson is equivalent to being e-Magidor. O

Proposition 1.29. If k is a cardinal and k — (k)5". Then k is lower-Magidor.

Proof. This follow from Proposition [1.28 ]

Proposition 1.30. w is lower-Magidor.
w

Assume w1 — (w1)5* and juil (w1) = wa (s0 in particular, under AD). wy and wy are lower Magidor.
Proof. The Ramsey theorem implies for each n < w, w — (w)5. wy is lower-Magidor by Proposition m

Under AD, w; and ws are weak partition cardinals. Thus w; and wy are lower-Magidor by Proposition
1. 29) O

Thus w; is never Magidor, but w; is lower-Magidor assuming the weak partition property on w;. Note
that the notation of lower-Magidor and Magidor (and super-Magidor) have a key different. To establish that
k is lower-Magidor, one needs to show « is e-Magidor individually for each ¢ < k. To establish a cardinal
K is Magidor, one needs to simulteneously verify e-Magidorness for all € < w; by showing no function
® : Bl,(< w1,k) — Kk is a Magidor function. It seems potentially possible that a cardinal x > w; could be
lower-Magidor and yet not Magidor. However, no example is known to the author.

Without the axiom of choice, there are settings with regular Magidor cardinals. For example, AD has an
abundance of regular Magidor cardinals and even very small regular cardinals such as w, can be Magidor.

Proposition 1.31. Let k > wy be an uncountable cardinal satisfying k —. (k). Then k is Madigor.

w1

Proof. Note k —, (r)3! implies & is regular. Since xk > w1, []<“* = Bly, (< w1, x). Thus & is (< wy)-Jénsson
if and only & is Magidor. By Proposition k is < wi-Jénsson. Thus « is Magidor. ]

Proposition 1.32. Assume w; —, (w1)5' and j#il (w1) = wa. Then wsy is the least Magidor cardinal.
Thus AD implies ws is the least Magidor cardinal.
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Proof. By Fact w and w;y are not Magidor. Martin showed that the hypothesis implies ws is a weak
partition cardinal and in particular satisfies wy — (w2)&!. Proposition implies wy is Magidor. O

Proposition 1.33. Suppose k is an uncountable cardinal, 1 < € < Kk and K —, (k)S. Then K is (< €)-
Magidor.

Proof. Again since x is regular by the partition relation, one will identify Bl (< €,x) with [k]<¢. Let
® : [k]<¢ — k. For each § < ¢, let ®° : [k]° — Kk be defined by ®° = & | [k]°. Define Ps : [x]'t% — 2 be
defined by Ps(¢) = 0 if and only if ®5(drop(£,1)) < £(0). By & —, (k)3°, there is a unique i5 € 2 so that
there is a club homogeneous for Ps taking value i5. Let A, = {¢ € []° : Ps(¢ [ 1+ ) = i5}. Note that
As € py,. Since k —, (k)¢ implies that pg, is e-complete, A = ;.. As € pg. Let C C x be a club so that
[C]s € A. Let @ < B be the first two elements of [C]¢. Let D = {enum, grn(w-a+w):a <k} Note
that |D| = k and min(D) > 3. Also observe that [D]<¢ = [D]<¢ by Fact Pick ¢ € [D]<€. Let ¢ = |¢|.
e Suppose is = 0. Let £ = (a)"t and note that ¢ € [C]}*9. Then Ps(¢) = 0 implies that ®(:) =
O (drop(4,1)) < £(0) = a.
e Suppose is = 1. Let £ = (6)" and note that £ € [C]}1+9. Then Ps(¢) = 1 implies that @ < § = £(0) <
O (drop(4,1)) = ®(v).
Since ¢ € [D]<¢ was arbitrary, one has that & ¢ ®[[D]<¢]. So ®[[D]<¢] # k. Since ® was arbitrary, this shows
that s is (< €)-Magidor. O

Proposition 1.34. Suppose k is a weak partition cardinal (satisfies k —. (k)5 ). Then k is a super-Magidor
cardinal.

Proof. For any € < k, k — (k)57 implies k —, (k)< by Fact The result now follows from Proposition
]

Proposition 1.35. Assume w; —, (w1)5' and juil (w1) = wy. wy and wy are super-Magidor.

In particular, under AD, wy and ws are super-Magidor.

Note that wy is not Magidor (that is, not (< wj)-Magidor) but is lower-Magidor and even super-Magidor.
This akwardness is due to some incompatibility with the older definition of a Magidor cardinal and the
definition of a lower-Magidor and super-Magidor cardinal presented here.

Using the finite Ramsey theorem (for all 1 <n < w, w — (w)¥), one can show that w is also super-Magidor
using similar combinatorial arguments under just ZF.

Proposition 1.36. w is super-Magidor.

2. w, 1S MAGIDOR

This section (and Section [4)) will address the existence of Magidor cardinals of countable cofinality under
AD. This section will specifically answer Question 2.7 from [I] of Ben-Neria and Garti about the consistency
of w,, being Magidor. First, one will need a more complete survey of the Martin’s ultrapower analysis below
w,, and the combinatorial hypothesis w; —, (w1)%},, and b, (w1) = wa.

There is a more practically useful equivalence of j#il (w1) = wa.

Definition 2.1. Let [, a= {(a,8): B < a}. A function K : [[,c,, @ — w1 is a Kunen function if and
only if for all a < wy, {K(a, ) : B < a} is an ordinal which will be denoted Z*(a). If f : wy — wi, then the
Kunen function K bounds f if and only if {& € wy : f(a) < EN(a)} € pl,,. K strictly bounds f if and only
if {a <wy: fla) <ZXa)} epl,. If v <wi, thenlet K7 :w)\ (y41) = wy be defined by K7 (a) = K(e, 7).
Let % be the assumption that for all f : w; — wy, there is a Kunen function bounding f.

Under AD, Kunen defined the eponymous Kunen tree whose sections by different reals can be used to
create Kunen functions bounding any f : w; — w;. This uniformity is needed for deeper analysis of the
projective ordinals. Here, it suffices to know that every function has a Kunen function non-uniformly.

Fact 2.2. (Kunen) AD implies %. (For every function f : w; — wy, there is a Kunen function bounding f.)
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Martin and Kleinberg showed that w; —. (w1)3" and j,1 ) (w1) implies many of the basic combinatorial

properties at and below w,,. The assumption w —. (w1)5* and Jui, (w1) = we is equivalent to wy —>x (w1)5"
and . The fact that AD implies jual (w1) = wy is proved by proving .

One will show that w; —, (w1)3 and Jut, (w1) < wo is equivalent to w; — (w1)3 and . Also using Fact
1.21 (4) and the ideas from the Rowbottom lemma, one can also show w; —, (w1)3 is equivalent to
being a normal ultrafilter.

Fact 2.3. Assume w; —, (w1)3. Jui, (w1) < wq implies %.

Proof. wi —+, (w1)3 implies ), is a normal ultrafilter. Let f : wi — wi. Thus [f] < j (w1) < ws.
There is a surjection ® : wy — [f]#lwl. Define a wellordering on w; by a < 3 if and only ilf O(a) 1< ®(S). Let
W = (w1, <) and note that ot(WV) = [ﬂ%l . For each o < wy, let W, = (o, <] @) be the restriction of < to .
For any a € wy, let rk(W, «) be the rank of @ in W. For any « € w; and 8 < «, let tk(W,, 8) be the rank of 3
in W,. For 8 < o, let K(a, B8) = rtk(Wha, B). It is clear that for all & < w1, {K(e, 8) : B < a} = ot(Ws) € ON.
Thus K is a Kunen function and ZX(a) = ot(W,) for all a < w;. Let n < [f]ubl = ot(W). Let v, € wr
be the unique v such that rtk(W,v) = n. Let g, : w1 \ (7, + 1) — w1 be defined by g, () = tk(Wa,7y)-
Note that for all a < wy, g,(a) < ot(W,) = ZX(a). Suppose 79 < n1 < [f]uil' Then {a € wy : gy (a) <
I, (@)} 2 wi \ (max{yy,, vy, } + 1) and thus {a € wy : gy, (a) < gy, (@)} € pl,,. This shows that ny < n
implies [gnq ]y, < [gn]py, - The map W+ [f],n  — [EK]%l defined by W(n) = [gy], is an order embedding.

Thus [f]ulul < [En]uil' This implies {a € w; : f(a) < =X(a)} € p. Thus K is a Kunen function for f. O

Now one will see the converse of Fact Note that when one writes j,1 . (w1) < wy, this supposes that the
ultrapower j,;1 (w1) is even wellfounded. Here one will never assume any form of dependent choice or even
any form of countable choice. The most salient feature of Kunen function is that it allows the ability to select
representatives. Since Magidor functions involves countable bounded subsets, to address the main question
of this section, one will need to be able to choose representatives for all countable sets A C j i, (w1) = wnt1

for all n < w. If one works under AD, AC§ and the Moschovakis coding lemma give ACf’ (1) which will be
sufficient to choose representative for countable sets. However, the relevant subtheory of AD is already able
to choose representative for wi-size subsets of j“fil (w1) = wnt1-

Fact 2.4. Assumew; —, (w1)3. Suppose K is a Kunen function. Suppose K strictly bounds f (or equivalently
[f]#}d1 <, [E’C}%l in the ultrapower ordering). Then there is a v < wy so that [f]%1 = [ICV]%I.

Proof. wi —, (w)3 implies g}, is a normal ultrafilter. Let Ay = {a € wy : f(a) < EX(a)} € pl,.
For all o € Ay, f(a) € {K(o,8) : B < a}. Let h : Ay — wy be defined by h(«a) is the least § < «
such that f(o) = K(a,8). Thus Ay = {& € Ay : h(a) < o} € pl,. Since pl, is normal, there is
an A3 C Ap and a v < wp so that A; € ,ui,l and for all &« € Ay, h(a) = . Thus for all a € A4,
#(@) = K(a, hia)) = K(a,7) = K7(a). O

Fact 2.5. Assume wy — (w1)3. % implies juil (w1) < ws.

Proof. First, one needs to show j,1 ) (w1) under the ultrapower ordering <1 . is wellfounded. Suppose
Jud, (w1) is not wellfounded. Let X C Jug, (w1) be a set with no minimal element under <y, - Pick any

element z € X and f : wy; — w; such that = = [f]%l. By %, let K be a Kunen function strictly bounding

f. By Fact let dp < wy be least such ¢ such that [’Cé]uil = muil = 2. Suppose n € w and 6, < wq
has been defined so that [IC‘S”]#}UI € X. Since X is not wellfounded, there is a y € X and y <1 [KCon]

w1

Let g : w; — w; be such that y = [g]%l. Thus K strictly bounds g. By Fact there is a § < w; so that

[IC‘s]%1 = [y]uil <, < [IC‘S"]%I. Let 6,41 be the least 6 < wy be such that [IC‘S]M&J1 <L, [/C‘s"]%l. This
[K:é”']ul .

w1

completes the construction of (4, : n € w) with the property that for all n € w, [IC‘S"H]H}U1 =i,

For each n € w, let 4, = {a € wy : Ko+ (a) < K(a)} € pl,. Let A = ,c, An € pd, since pl, is

countably complete by wy —, (w1)3. In particular, A # (. Let @ € A. For all n € w, @ € A, implies
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KCon+1(a) < K9 (o). Thus (K% (@) : n € w) is an infinite descending sequence of ordinals under the usual
ordinal ordering which is a contradiction. This shows that j,. (w1) is a wellordering.

Thus one can identify jubl (w1) with an ordinal. Let z € j#bl (w1) and let f : wy — w; be such that
T = [f]%l. By %, let L be a Kunen function bounding f. By Fact every y <u1, T, there is a § < wy
so that [IC(;]MLI =y. Let init,; (x)={y € I, (w1) 1y =, x}. Let T': init,,. () — wy be defined by I'(y)
is the least § < wy be such that [IC‘S]%1 = y. I' is an injection of the initial segment of z into w;. Since

Jud, (w1) is a wellordering and essentially an ordinal, this implies Ju, (w1) < (w1)t = wo. O

Thus Fact and Fact imply that over w; —, (w1)3, Jui, (w1) is equivalent to .

If one further assumes the strong partition property w; —. (w1)3", one can prove that j,,1 ) (w1) = wy and
Jud, (w1) is regular by a result of Martin concerning ultrapowers of strong partition cardinals. See [6] for a
proof.

Fact 2.6. (Martin) Assume k —, (k).

o If puis a measure on k such that j, (k) is a wellordering, then j,(k) is a cardinal.
e If ju is a normal measure on k such that j,(k) is a wellordering, then j, (k) is a regular cardinal.

Fact 2.7. (Martin) Assume wi —+ (w1)5"' and %. Then Jui,, (w1) = wa and we is regular.

Proof. Fact already implies j,1 (w1) < wy. wi —>. (w1)3 implies g}, is a normal ultrafilter. Thus
wy = [id]uil <Jub, (w1) < wq. Fact 2.6 implies b, (w1) must be a cardinal above w; and less than or equal
to wy. Hence j#il (w1) = wy and wy is regular. a

Thus w; — (w1)5' and % is equivalent to wy —. (w1)5* and Jui, (w1) = wo.

Fact 2.8. Assume wy — (w1)y* and k. If A C wy with |A| < wy, then there is a function T' on A so that
forallz e A, T(z) : w1 = wy and x = [F(x)]ui,l'

Proof. Since cof(ws) = wy and |A| < wy, sup(A) < w;y. Let f : w; — w;y be such that [f]mld1 = sup(4). By
%, let I be a Kunen function strictly bounding f. Let € A and pick any g : w1 — w; so that = = [g]
Then K is a Kunen function strictly bounding g. By Fact there is a v < wy so that x = [9]%1 = [’C’Y]u&l'
It has been shown that for all x € A, there is a v € wy so that = [IC"’]Mbl. For each =z € A, let v, be the
least such 7. Define I'(z) = K7=. T" is the desired function. O

1.
Hoy

If % is a regular cardinal, X C s with ot(X) = &, and o < &, let next% : K — X be defined by next% (5)
is the (1 + )t"-element of X greater than 3. Given a club C C x, then the following subclub is very useful
for many constructions.

Fact 2.9. If C C k is a club consisting of indecomposable ordinals, then let D = {a € C' : enume(a) = a}.
Then D is a club subset of k and for all e € D and all a, 8,7,0 < €, nextgﬂ"”(é) <e.

Fact 2.10. Let k be a regular cardinal, € < r, and k —, (k)57 holds. Let ® : [k]° — k. Then there is a
club C C & so that for all v € [C]5, ®() < next&(sup(t)).

Proof. Define P : [k]“"? — 2 by P(¢) = 0 if and only if ®(¢ | €) < £(e). By x —. (k)5T", there is a club
C C k which is homogeneous for P. Pick any ¢ € [C]S. Let £ = /" (next?(®(:))) and note that £ € [C]<T.
Then ®(¢ [ €) = ®(1) < next&(P()) = £(e). Thus P(¢) = 0. Since C is homogeneous for P, one has that C'
is homogeneous for P taking value 0. For any ¢ € [C], let £, € [C]S™! be defined by ¢, = " (next¥ (sup(¢))).
Then P(ir) = 0 implies that ®(¢) = ®(¢, | €) < £,(€) = nexte (sup(v)). O

Definition 2.11. Let x be an uncountable cardinal and ® : [k]¢ — . Say that a club C is ®-bounding if
and only if C' consists only of indecomposable ordinals and for all £ € [C]STE, (£ ] €) < £(e).

Fact 2.12. Let k be a regular cardinal, € < r, and k —, (k)57 holds. Let ® : [k]° — k. Then there is a
®-bounding clubd.
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Proof. By Fact there is a club Cy so that for all ¢ € [Col§, ®(¢) < nexté (sup(r)). One may assume
Cp consists only of indecomposable ordinals. Let C; = {a € Cj : enum¢,(a) = a}. For any ¢ € [C1]STH,
(L ] €) < nextg (sup(f | €)) < £(e) since sup(£ | €) € Co, £(€) € C1, and using Fact

Fact 2.13. Let k be an uncountable cardinal, § < € < Kk, Kk — (/{)g+1+(€_6), and k —. (K)S?. Let

D : [k]® = Kk be such that {¢ € []° : ®(£) < €(§)} € pnS,. Then there is a club C C k and a function
U : [C]2 — K so that for all £ € [C]S, ®() = (L | 6).

Proof. Let Cy C & be a club so that ®(¢) < £(5) for all £ € [ColS. If g € []°F1H (=) then let § € [s]° be

defined by
v Jgla) a<é
g<a)_{g(5+1+(a5)) s<a

Define P : [5]9+1+(=) 5 2 by P(g) = 0 if and only if ®(§) < g(8). By x —, (k)57 there is a club
C1 C Cp which is homogeneous for P. Let Co = {a € Cy : enumg, (o) = a}. Let f € [Co]S. By the property
of Cy, ®(f) < f(d). By Fact one has that next?, (max{sup(f | 6),®(f)}) < f(6). Let g € [C1]F1F(c=9)
be defined by

fla) a<d
9() = { nextz, (max{sup(f [6),B(f)}) a=4.
fO+(a—=(04+1)) i<«

Since ®(g) = ®(f) < nextg, (max{sup(f [ §),®(f)}) = g(d), one has that P(g) = 0. Thus C; must be
homogeneous for P taking value 0. Let f € [Cy]¢, let g5 € [C’l]i+1+(€_6) be defined by

fla) a<d
gf(a) = ¢ nextg (sup(f [ 9)) a=4.
fo+(a—(0+1)) <«

Then P(gy) = 0 implies that ®(f) = ®(gs) < gs(d) = nextg, (sup(f [ 0)). It has been shown that for all
[ € [Cafs, ®(f) < nextg, (sup(f [ 0)). For each 7 € [C)2, let @, : [Cy \ (sup(7) + 1)]S7° — & be defined by
®.(0) = ®(7°0). By the discussion above, for all ¢ € [Cy\ (sup(7)+1)]S7°%, &, (o) = ®(7°0) < next&, (sup(7)).
By k —. (k)5,2, thereis a ¢, € k so that for u¢%-almost all o, ®,(c) = (.. Define Q : [C5] — 2 by Q(f) =

if and only if ®(f) = (5. By & —« (K)§, let C5 C Cs be a club homogeneous for Q. Pick any 7 € [C3]?.
There is a club D C Cj so that for all o € [D]<™%, &, (o) = (,. Pick any o € [D]$™? with sup(7) < ¢(0). Let
f = 770 and note that f € [C5]¢. Then ®(f) = ®fjs(drop(f,d)) = ®-(0) = ¢ = (5. So Q(f) = 0. This
shows that C3 is homogeneous for @ taking value 0. Define ¥ : [C3]° — k by W(7) = (,. It has been shown
that for all f € [Cs]e, @(f) = ¥(f | 9). O

Fact 2.14. Suppose k is an uncountable cardinal, 6 < € < K, Kk —, (m)gHHE%), and Kk —> (K)Zf. Let

25 ¢ [K]© = K be defined by p§(¢) = £(5). For ® : [k]° — K, let ® : [5]° = & be defined by ®(0) = (L ] 6).
Define I : j,5 (k) = jue (k) by T'(z) = [®],c for any @ : [k ]° = Kk such that [®], s = x. I is a well defined
order preserving bijection into init,c ([3§],.c

Proof. Tt is clear that T" is well defined and order preserving. Let @ : [x ] — k. By Fact|2.12] there is a club
C C k which is ®-bounding. For all £ € [C]¢, ®(¢) = (L | §) < £(5) = X5(£). So T([® I ) € initye ([X5] e ).
Now suppose T : [s]° — & such that [Y],. € init,c ([X§],c). This means {E € [k]¢ : T(E) < X5 ) =/ )} €
us. By Fact @ there is a ¥ : [k]? — k and a club D C & so that for all £ € [D]S, Y(¢) = ¥(¢ | §).
For all £ € [D]¢, ¥(¢) = U(£ | §) = Y(¢). Thus F([\I/]#gl) = [Y],c. This shows that I' is a bijection onto
initye ([2§],)- O

Fact 2.15. Let k be an uncountable cardinal, € < k, and k —, (k)5 If f: k — &, let f: [K]¢ — & be
defined by f(¢) = f(sup({)). Define p : ju1 (k) — juc(x5) by p([f]uijl) = [fluc. Then p is a well defined
increasing cofinal map of j,1 (k) into jue (k) (in the ultrapower orderings).
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Proof. Let @ : [k]® — k. By Fact there is a club C' C & so that for all £ € [C]¢, ®(£) < next&(sup(£)).

Let f:x — & be defined by f = nextg. Thus [®],e < [f]ue = p([f]u1)- O

Definition 2.16. Let 1 < n < w and h : [w;]® — w;. Define the partial function ™" : [w]"*! — w; by
Krh(0) = K((n), h(€ | n)) for all £ € [wy]"+! such that h(¢ [ n) < £(n).

Assume w; —. (w1)3™!, by Fact |2J_1_2 any function h : [w1]™ — wy has an h-bounding club C. Thus for
any ( € [C]7TL K™ (0) is defined. Also for n = 0, [w1]? = {0} so h : [w1]® — w; may be regarded as a
constant 7. Then K%" is K7 of the earlier notation.

For the main question, one will need Fact (4) for just countable A C w,y1. (Again, under AD, this
can be obtained by Asz 1) which follows from ACE and the Moschovakis coding lemma.) It seems that

one needs to inductive prove all four statements in Fact even if one is only interested in statement
(4). The proof of Fact only need statement (4) for countable A C Juz, (w1) = wp+1, but many other

combinatorial problems below w,, (such as the weak partition property on wy) requires this result for A with
|A‘ S wi.

Definition 2.17. For any f : [wi]""! — wy, let J : w; — wy be defined by Jy(a) = sup{f(¢) : £(n) = a}.

Fact 2.18. Assume w1 —« (w1)s' and %. For all 1 < n < w, one has the following:
(1) jup, (wi) is a wellordering.
(2) ju}},l (Wl) = Wn+1-
(8) cof(wpt1) = wa.
(4) If A C jup, (w1) = wnsr and [A] < |wi], then there is a function I' on A so that for all v € A,
I(z) : [wi]” = w1 and & = [D(2)],.p, -

Proof. This result is proved by induction on n. For n = 1, this has already been shown by Fact and Fact
Now suppose all four properties hold at n.

First, one will show that juzlﬂ(wl) is a wellordering. Suppose not. Let X C juzlﬂ (w1) be a nonempty set
with no minimal element in the ultrapower ordering =i Pick any € X and let f : [w1]"T! — w; be such
that [f]uglﬂ = z. By %, let K be any Kunen function bounding J;. Let y <t T Let §: [wi]"T! — wy
be any representative for y. Since y <y @, the set B = {€ € [wi]™™ 2 g(0) < f(O)} € pt. Define
g: [wi]"™ — wi by g(¢) = g(¢) if ¢ € E and g(¢) = 0 if otherwise. Then y = [g]uglﬂ = [g]uzlﬂ and g(£) < f(0)
for all £ € [wq]?*!. Then [‘]9]%1 < [Jf]“il' Hence K is also a Kunen function strictly bounding J;. Let
C ={acw : Jy(a) <EXa)}. For any ¢ € [C]"F, g(€) < J,(£(n)) < EX(L(n)) = {K(t(n),B) : B < €(n)}.
Let h : [wi]™™! — wy be defined by h(f) is the least 8 < £(n) so that g(¢) = K(£(n),3). For all £ € [C]"+1,
h(¢) < 4(n). By Fact there is an h : [w1]® — w; and a club D C C so that for all £ € [D]?*1,
h(¢) = h(¢ | n). Note that for all £ € [D]"*', g(£) = K((n),h(¢ | n)) = K™"(£). By the inductive
hypothesis, j%l (w1) = Wpy1 and thus [h]ug1 € wpt1. It has been shown that for all y <t T, there is a
Y < wp1 so that for all o : [wi]™ — wy with Al =7,y = []Cn’h]#zi—l. Let v, be the least such ¢ < wyp41
with the previous property for y. Let A = {7, : y € X}. Let dy be the least member of A. Suppose ) has
been defined so y, € X where y, = [K”’h}uzlﬂ for any h : [w1]" — wy with 6 = [h]%l. Since X has no
minimal element, there is some y € X with y = Yn- Thus there is some § € A so that y = [K"’h]uzlﬂ for
any h such that [h],n = 6. Let dx41 be the least § € A so that [IC”’h]leﬂ < yg for any h: [w1]" — wy with
[hluz, = 0. Note that y1 = [K”’h]ugrl € X for any h: [w1]" = wy with 041 = [h]yy  since 6p41 € A. Let
B = {0y : k € w}. Since B C wy4+1 and |B| < w < wy, by the induction hypothesis at n, there is a function I'
on B so that for all § € B, T'(6) : [w1]" — w1 and 6 = [I'(6)] .y, - Let hy =I'(6,). One has defined a sequence
(hi 1 m € w) with the property that for all n € w, E,, = { € [w;]"T! : Kmhisr () < Kmhe(0)} € p ! Then
E = Nyew Ex € px! since pt! is countably complete. Pick any ¢ € E. Then (K™"*({) : k € w) is an
infinite descending sequence of ordinals in the usual ordinal ordering. Contradiction. This shows juzlﬂ (w1)

is a wellordering.
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By Fact Ju, (w1) order embeds into a proper initial segment of juzj—l (w1). Thus w41 = Juz, (w1) <
juﬂl(wl). Let x € jﬂﬁl(wl). Let f : [w1]""' — wq be such that [f]uzlﬂ = z. By %, let £ be a Kunen
function bounding J¢. By the argument above, for each y < =z, there is a § < wyy1 so that for any
ho:lwn]™ = wy with 6 = [h],n , y = [K’L,h]uzl_ Let d, be the least such ¢. Let @ : inituzlﬂ(x) — W41 be
defined by ®(y) = d,. ® is an injection and thus, |initu2f1 ()] < wpt1- Since juzlﬂ(oq) has been shown to be
a wellordering and hence an ordinal, this implies that juzlﬂ (w1) < (Wnt1)T = wpi2. By Fact juzlﬂ(uq)
must be a cardinal strictly greater than w,; and less than or equal to w,t2. Thus juzf—l (w1) = W2

Note that cof(wy,t2) = wa follows from Fact

Let A C wpia = juzlﬂ(wl) with |A] < w;. Since it has just been shown that cof(wy2) = wa, sup(A) <
Wnio Let f:fw1]®™! — wp be such that sup(A4) = [f]ltgirl. By %, let K be a Kunen function bounding J;.
By the argument above, for each « € A, there is a § < w41 so that for any h : [wi]" — wy with § = [A],p
x = [IC"’h]Hglﬂ. Let 0, be the least such §. Let B = {d, : « € A}. Note that B C wy 41 and |B| < wy. By
the induction hypothesis at n, there is a function X on B so that for all § € B, [%(d)]u; = 6. For each
x € A, let T'(x) = K>, Then x = [F(x)]ufifl for all z € A.

The result has been shown at n 4 1. The full result follows from induction. O

Fact 2.19. Assume wq —« (w1)3* and %. If A C w, with sup(A) < w, and |A] < wy, then there is a
function T' on A with the following properties:

(1) If a € A and a < wy, then T'(a) = a.

(2) If there is an 1 < n < w so that & € wp11 \ wy, then () : [wi]™ = w1 and a = [F(O‘)]/tzl'

Proof. Since sup(A4) < wy, let 7 be least n € w such that A C wy41. Let 4g = {a € A: o < wy}. For
1<n<nlet A, ={a € A:w, <a<wyt1}. Let Ty be the identity function on Ay. For 1 < n < 7, let
T',, be a function on A,, with the property that for all a € A,, a = [T, (oz)]%1 obtained from Fact m (4)

applied to A,,. Define I on A by I'(a) = I',, () where n is unique such that o € A,,.

Jackson showed that for any ordinal o < w,,, a has a unique type. That is, for any 1 < n < w and ordinal
Q@ € Wpy1 \Wnp, there is permutation of n inducing a wellordering on [w1]™ and a particular uniform cofinality
so that a = [f]%1 where f: [w1]™ — wy is a function respecting the given wellordering on [w;]™ and has the
specified uniform cofinality. This analysis of type for ordinals is important for Jackson’s description theory
and the measures on w,, roughly corresponds to these possible types. For the purpose of this section, one
will only need some nice types which will be described below.

Definition 2.20. Suppose X = (X, <) be a linear ordering. The lexicographic ordering <i¥ on <“X is
defined by

e 1 C /(¢ is a proper substring of £).

o If k < |¢| is least so that (k) # £(k), then «(k) < £(k).

Definition 2.21. For 1 < n < w. When one writes (ag, ..., xp—1) € [w1]”, the implicit assumption is that
ap < a1 < ... < ap_1. Define C, on [w1]™ by (ag,-.os¥n—1) Tn (Boy -, Bn_1) if and only if the least i < n
such that c,—1-; # Bn—1-4, then a1 < Br—1-;. (Cp is the reverse lexicographic ordering on [w1]™ which
can be more explicitly be written as (ag, ..., n—1) Tpn (Bo, ..., Bn—1) if and only if (ap_1,n—2,...,a0) <pL
(Bn-1,Bn-2, -, Bo).) Let T, = ([w1]™, Cr). Note that ot(T,) = ws.
A function f : [w1]™ — w; has type n if and only if the following holds:
e f is order preserving between 7, into (w1, <) with the usual ordering.
e f is discontinuous everywhere: for all £ € [w1]™, sup(f | £) = sup{f(¢) : ¢ Ty £} < f(£).
e f has uniform cofinality w: there is a function F : [w1]™ X w — wy so that for all £ € [w;]™ and k € w,
F(l,k) < F(¢{,k+1) and f(£) = sup{F({, k) : k € w}.
For 1 < n < w, let B, 41 be the set of [f]%l such that f : [w1]™ — w; has type n. Note that B, C
Wnt1 \wn. If C Cwy is a club, then let B, | be the set of [fluz, such that f:[wi]™ — C has type n.

Definition 2.22. Let 1 < n < w. Suppose f : [w1]™ — w; be a function which is order preserving on 7, =
([w1]™, ). For each 1 < k < n, define I}f s wr]* = wy by ij(l,) =sup{f(7") : 7 € [k]"7* Asup(r) < 1(0)}.
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(Note that I} = f.) If a € By, 11 and 1 <k < n, then let Tk = [IJ’?]#B1 for any f : [w1]™ — w1 of type n such
that [f]%1 = a.

Definition is made only for functions f : [w1]™ — w; which are order preserving with respect to .
There is a more general invariant for any function f : [w1]™ — w; in [I7] but it will not be needed here.

Fact 2.23. Assume wy —, (w1)5' and k. Let 1 <n <w. If 6 € wpy1 \ wn, then there is an f: [w1]™ — wq
so that § = [f]%l, and for all 1p,t1 € [w1]™, if to(n — 1) < v1(n —1), then f(wo) < f(i1).

Proof. Let § € wpi1 \ wn. Let g : [wi]" — wi be such that [g],n = 0. Let P : [wi]} — wi be defined by
P(¢) = 0 if and only if g(¢) > ¢(n — 1). By wi —. (w1)%, there is a club Cy C wy which is homogeneous
for P. If Cy is homogeneous for P taking value 1, then for all £ € [Cy]?, one has that g(¢) < £(n —1). By
Fact there is an A : [w1]"™! — w; and club C; C Cp so that for all £ € [C1]7, g(¢) = h(¢ | n). Then
d = [h] < Wns This contradicts § € wp41\wyn. Thus Cy is homogeneous for P taking value 0. By Fact
there is club Cy C Cj so that for all £ € [Co]}, f(£) < nextg, (£(n—1)). Let C3 = {a € C3 : enumg, (a) = a}.
Pick ¢y, 0, € [03}7*1 with éo(n - 1) < El(n — 1) Then g(fo) < next‘*éz(ﬁo(n — 1)) < €1(7’L — 1) < g(él) by
the property of Cy and since P(¢1) = 0. Let f : [w1]” — wy be defined by f(¢) = g(enumg, o £). Let
by, 01 € [wi]™ be such that ¢o(n — 1) < ¢1(n —1). Then enumcg,(fo(n — 1)) < enume, (¢1(n — 1)). Thus
f(lo) = g(enumg, 0 £y) < g(enumg, o £1) = f(¢1). Let Cy = {a € C3 : enume, (o) = a}. For all £ € [C5]",
enumg, o £ = { and thus f({) = g(¢). So [flun = [gluz, = 6. O

Definition 2.24. Let 1 < n < w. Let U™ be the set of tuples (ay_1, ..., ag,y) where ap < ... < a,—1 and
¥ < ap—1. Let U™ = (U™, <L) where <{’! is the lexicographic ordering on <“(w;) induced from the usual
ordering on w;. Note that ot(U™) = w;. A function H : U™ — w; has the correct type if and only if the
following hold:

e H is order preserving between U™ and (w1, <).

e H is discontinuous everywhere: For all z € U™, sup(H | z) = sup{H (y) : y <pi =} < H(x).

e H has uniform cofinality w: There is a function H : U™ x w — w; so that for all z € U™ and k € w,

H(z,k) < H(z,k+ 1) and H(x) = sup{H (z,k) : k € w}.

Fact 2.25. Assume w1 —« (w1)s' and %. For alll <n <w and club C C wy, |%,€+1 = |wpt1]-

Proof. Fix H : U™ — C which has the correct type from U™ into (C,<). Suppose ¢ € wp4+1 \ wy. By Fact
there is an f : [w1]" — wy such that [f],; =6 and for all £y, {1 € [w1]", if lo(n —1) < {1(n — 1), then

f(lo) < f(t1). Let H : [wy]"*! — C be any function of type n + 1. Define f : [wy]" — w; by

flag, ..yom_1) = H(I}(w + ozn_l),]}c(w + ap—2), ...,I}(w + ag), f(ao, .y n—1))
Suppose (ag, ..., ¥n—1) Tn (Bo,-.., Bn—1). Let k < m be largest such that oy # fi. For all k < j < n,
It(w+a;) =If(w+a;) and If(w+ax) < f(0,1,....,n — 2,w+ o + 1) < Iy(w+ Bi) using the property of
f. Since H is order preserving on U™, it is clear that f(ao, ey Q1) < f(,é’o, ey Bn1)- f is discontinuous

and has uniform cofinality since H is discontinuous and has uniform cofinality w. Thus f has type n. Thus
[f]#gl € B, ,. Define ® : (wyt1\wn) — B, be defined by () = [f]%l and note that this is independent
of the choice of f representing 6. Suppose 8y < 61. Let fo, f1 : [w1]™ — w1 be two functions representing
do and d7, respectively, with the property that for all ¢ € 2 and £y, 41 € [w1]™, lo(n — 1) < £1(n — 1) implies
fillo) < fi(tr). Let A= {€ € [wi]": fo(£) < f1(£)} € u?,. Let Dy C wy be a club such that [Do]? C A.
Define f;(¢) = fi(enump, o () for i € 2. Note that [fi]., = [fi]ulﬁl =4;, fo(0) < f1(¥) for all £ € [wq]™, and
for all £y, 01 € [w1]™, if Lo(n — 1) < €1(n — 1), then f;(¢y) < fi(¢1) for all ¢ € 2. For all (ag, ..., n—1) € [w1]",
for all k < n, I}O(ak) < I}cl (ax) and fo(ag, ..., an_1) < fi(Q0, ..., an_1). Thus fo(£) < f1(£) for all £ € [w]".
This shows that ® is an order preserving map and in particular, ® is an injection. O

Definition 2.26. Let ¢ be a new symbol. Let f be the linear ordering (w; U {0}, </ ) where ¢ is </ -
less than all elements of w; and < restricted to w; is the usual order on w;. Let V be the set of all
(An—1, Qn—2,...,0,9,7) such that ap < ... < ap—1 and v < ap—1. Let V = (V] <f;x) (where <£;X is the
lexicographic ordering induced from f.). Note that ot(V) = wy. A function H : V — w; has the correct
type if and only if the following conditions holds:
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e H is order preserving from V into (ws, <).

e H is discontinuous everywhere: For all z € V', sup(H | z) = sup{H (y) : y <pi =} < H(x).

° H has uniform cofinality w: There is a function H : V X w — wy so that for all x € V and k € w,

H(z,k) < H(z,k+1) and H(x) = sup{H (z, k) : k € w}.
If X C wy, let [X]Y be the set of all increasing correct type function H : V — X.
Fix H € [w1]Y. Let H : V x w — w; witness that H has uniform cofinality w.

o Let hl : [w1]® — wy be defined by hl(ag,...,cn_1) = sup{H(p_1, ..., @0,7,0,0) : v < ap}. Let
§H = [hH]

o Let &y : (ww \ w1) = w, be defined as follows: Let 1 < n < w and n € wp1 \ wn. Let
[ [wi]® — w1 be such that n = [f]u». Let f o W™ = w be defined by f(ag, ..., ) =
H(ap,...,a0,0, f(ag, ..., @n—1)) whenever f(ag,...,an_1) < a,. Let ®y(f) = [f}%l. (It will be
check below that ® is well defined.)

e Define Uy : (w, \ w1) = w, as follow: Let n < w, \w;. Let 1 < n < w be so that 7 € wp41 \
wp. Let f @ [w1]® — wi be such that [f]uzl = 7. Define f : [w1]**' — wi by f(ag,...,an) =
sup{H (ap, ..., 9, 0,77) : ¥ < [, ey tn—1)}. Let p(n) = [f]ﬂglﬂ

e Define Yy g7 : (ww \ w1) X w — w,, be defined as follow: Let n < w, \ wi. Let 1 <n < w be so that
1N € wWnt1 \wn. Let f:[wi]" — wy be such that [f]un = n. For k < wi, let FE ]t = wy be

defined by fk(a()a "'7an) = ﬁ((ana ...,Oéo,O,f(Oéo, "'7an—1))a k) Let TH,H(nvk) - [fk}p,z*l'

Lemma 2.27. (With Jackson and Trang) Assume wi —. (w1)3* and %. Let C C wy be a club. Let H € [C]Y

be a function of the correct type which is order preserving from V into (C, <) and let H : V X w — wy witness

that H has uniform cofinality w. Then (62 : 1 <n <w), @y, ¥y, and Ty g have the following properties
(1) For alln € w, 6 € w1 1. Foralll <m <n < w, Im =6

(2) Let 1 <n <w, f:|w]" = wi, and D C w;y be an f—boundmg club. Then f is defined on [D]"+!
and for all1 <m <mn, and ¢ € [D]T", I}*({) = RE(0). Forall1 <n <w, ifn € wpy1 \wn, Pu(n) is
well defined independent of choice of representative of n and IZI;H(n) =61,

(8) For alll1 <n < w, if n € wpy1 \ wp, then @u(n) € B, ,. Py (wy \w1) = we, is an increasing
function (and hence an injection). For alln € (w, \ w1), sup(®y [ 1) = ¥u(f) < Py(f). @y has

uniform cofinality w as witnessed by Yy . (Thus ®g is a function of the correct type.)
Proof. Fix the objects from above and use the notation from Definition [2.26
(1) It is clear that 62 € w, 41 for each 1 < n < w. Now suppose 1 < m <n < w. Let (B, ..., Bm_1) €
[wr ]
I% (ﬁo, ~'~7Bm71) = Sup{hf(’ym ey Yn—m—1, 5()7 ...7ﬁm,1) Y < e < Vnem—1 < ﬁo}

= Sup{sup{H(ﬁfn—la "'aﬁOern—m—la "'7707(707 O) : C < rYO} Y < o < Ypem—1 < ,80}
= Sup{H(ﬂmfla '~~7ﬁ0;<—703 0) : C < 60} = hg(ﬁ(% '“,ﬁmfl)

To see the two supremum are the same: For all { < 79 < ... < Ypem-1 < Bo < ... < Bm_1 with
(Bos +vs B—1) € [w1], let & = yp—m—1 + 1 and note that 5 < fBo since By is a hmlt ordinal. Then
one has

(/Bm—h ---7/807771—771—17 ---7707Ca05 O) <1f;x (ﬁm—l; --'7/60a§707 O)
For ¢ < By with (8o, ..., Bm—1) € [w1]™, one can find ( < £ <79 < ... < Ym-n—1 < Bo since [y is a
limit ordinal. Then

(ﬁm—h ---7607Ca05 O) <1f;x (/Bm—la ceey 6077m—n—1; "'770a§7<>7 O)

(2) Fix 1 <n <w, f:|w]®— wi, and D C w; be an f-bounding club (which exists by Fact [2.12]). By
the definition of f, f is defined on [D]?*!. Let (g, ..., an—1) € [D]7.

*

I}f(ozo, s 1) = sup{f (7,00, oy 1) 1 7 < g} = SUP{H (1, ..., 20,7, 0, (05 ooy Q1)) 1 7 < g}

= Sup{H(Oén_l, < 0, 7Y, 0, 0) bed < O[O} = hn(aOa ceey O{n_l)
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This shows that I}‘ = h!l on [D]?. The same argument shows that for all 1 <m < n, I}” = hil.
If §p € wypy1 \ wp, it is clear that @y (n) is independent of the choice of f : [wi]™ — w; so that
[fluz, =n- The above implies that Zg ., = =61,

(3) Fix 77 € Wnt1 \wn. Let f:[w1]™ = wy with the property that [f]%1 = 1. By Fact let Dy C wyq
be an f-bounding club. Let D; = {a € Dy : enump,(a) = a}. Let g : [w1]"*! — C be defined by
g(0) = f(enump, o ) = H(enump,(£(n)),...,enump, (£(0)), o, f(enump, o £)). For all £ € [Dy]*+?,
enump, o { = ¢ by Fact E Thus [g]#ll};rl = [f]ﬂzlﬁ = ®y(n). It is clear that g : [w1]?™* — C has
type n+ 1. Thus @ (n) € B, ,.

Let w, < Mo < M < wpt1. Let fo, f1 : [w1]™ — wi be such that [fo]#g;l = 1o and [fl]“ﬁl = 7.
There is a club D C w;y which is fyp-bounding, fi-bounding, and for all ¢ € [D]?, fo(¢) < f1(¢). Then
for all (ag, ..., o) € [D]7FL,

fo(a07 "'7a7L) = H(ana ---,OZO7<>, f0(0107 ~-~7O‘n—1) < H(an; ...,040,0, fl(OéOa "'?an—l) - fl(a07 "'aan)'

This shows ® g (19) = [fA()]MZ+1 < [fl]ug-%—l = Oy (m). Py is an increasing function.
Let wy <1 <wn1, [fluz, =n,and Disa f-bounding club. Note that for all (ag, ..., ) € [D]nH1

flag, ..., an) = sup{H(ap, ..., 0,0,7) : v < f(ao, ..., an_1)}

< H(anv ey Q5 Oy f(a()? ey anfl)) = f(a07 ey anfl)
since H was assumed to be discontinuous. Thus ¥y (n) < ®x(n). It is clear that if 79 < 7, then
Drr(no) < Yp(m) < @p(n). This also shows that @ is discontinuous everywhere.

Let wy, <1 <wpqr and ¢ < @p(n). Let f: [wi]” = wi be such that [f],; and g : [w1]" T — wy
be such that [g ]MHH = (. For ptt-almost all ¢, g(¢) < f(&) = H(n),....£(0),0,f(£ | n)).
Since H witness that H has uniform cofinality w, let p(¢) be the least k € w so that g(¢) <
H((¢(n),....,£(0),0, f(€ | n)), k). By the countably completeness of pt!, there is a k so that p(¢) = k

for - ahnost all £. Then ¢ = [g] gl < Y. (0 k). Ty g witnesses that @ has uniform cofinal-
ity w.
This completes the proof O
Fact 2.28. Suppose 1 < n < w and w; — (wl);“a"{"’Q}. Suppose g : w1 — wy is a function of type 1.

Suppose [ : [w1]™® = wy is a function of type n. Assume [g]ubl < [I}]Nil‘ Then there is a club C' C wy with
the following properties.
e Foralla € [C]L and £ € [C]7, if a < l(n — 1), then g(a) < f(£).
e Foralla€[C]L and £ € [C]7, if {(n — 1) < a, then f({) < a < g(a).
(a

Proof. Let Cy be a club so that for all a € [Cp]l, g(a) < I(@). Define P : [Co]™ — 2 by P(¢) = 0 if
and only if g(¢(n — 1)) < f(¢). By w1 —« (w1)%, there is a club C; C Cy which is homogeneous for P.
Let Cy = {a € Oy : enumg, (@) = a}. Pick any @ € Cy. Since g(@) < I(@), there is some ¢ € [wi]™ with
t(n—1) = aand f(t) > g(@). Let £ € [C1]" be defined by £(k) = nextglﬂ'“’( (k))ifk <n—1landl(n—1) =a
Note that ¢ is an increasing function using Fact and ¢ € [C1]7. Since f has type n, g(@) < f(¢) < f(¥).
Then P(¢) = 0. Thus C’l is homogeneous for P taking value 0. C; is the desired club satisfying the first
property. Using Fact [2.12[and w; —. (w1)3, let C3 € C5 be a club which is T 1—boumding. Suppose ¢ € [C3]7
and « € [Cs]} with E(n —1) < a. Since Cj is I}-bounding, one has that f(¢) < I}({(n—1)) < a < g(a). C3
is a club which also has the second property. O

For the main result of this section, one will need w;-many partitions of (essentially) [w1]¥*. Each partition
will be defined from one of w;-many instructions for how to create partitions.

Definition 2.29. An instruction i is a tuple (€', ¢') satisfying the following properties.
[ Ei < wq.
o o' : ¢ — w) {0} is a nondecreasing function strictly bounded below w.

Let J be the set of all instructions. Note that |J| = ws.
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Definition 2.30. Let &g, &1, and & be three new formal symbols. Let wf’ = {&p, d1, %2} Uw;. Define
< on wf‘ by &g < 1 < oy < a< fforal a<f<w. Let Q= (wf’, < ). Note that Q is simply three
new elements put before a copy of the ordinary ordering on w;. Thus ot(Q2) = 3 + w1 = ws.

Each instruction has a corresponding linear ordering which is order isomorphic to the usual ordering on
w1.

Definition 2.31. Suppose i € J is an instruction of the form i = (¢!, ¢'). Let T' consists of the following

objects:

(1) (o, &) for each o < wy.

(2) (Oésai(n),&l,oz@i(n)_l,...,Oéo,*g,’r]) for all n < €' and all ap < a1 < .. < Quig)—1 < Qui(y) < Wi.
(Note that o' take nonzero value by the definition of i being an instruction.)

Let 7' = (Ti,<féx) which is the linear ordering on T with the lexicographic ordering induced from

(restricted to T'). Note that ot(7") = w;.

Now one can intuitively explain the purpose of the three new formal symbol &g, &1, and . &y and
&; ensure that tuple of type (1) starting with o < w; will be <{2 -smaller than any tuple of type (2) also
starting with the same a. Suppose 179 < 71 with m = ¢'(n9) < ¢'(n1) = n. The purpose of &, is to
serve as a barrier point to distinguish tuple of type (2) of different length starting with the same ordinals.
More precisely, suppose ap < a1 < ... < @ < wy and By < B < ... < B < w; with the property
that for all k¥ < m, amy—g = Bn_k. The &y of the first tuple ensures that (au,, 1, @m_1, ..., o, da,10) =
(/Bny &1, 81,0, Br—m, do2, 770) <¥>x (Bna &1, 801, Po, de2, 771)-

Definition 2.32. Let i be an instruction. A function F' : T' — w; has type i if and only if the following
holds:
e F is order preserving between 7" into (wy, <).
e I is discontinuous everywhere: For all z € T, sup(F | z) = sup{F(y) : y <{}, =} < F(z).
e [ has uniform cofinality w: There is a function G : T X w — w; so that for all k € w and = € T,
G(z, k) < G(x,k+ 1) and F(x) = sup{G(z,k) : k € w}.
If X C wy, then let [X]7 be the collection of all functions of type i.

Definition 2.33. Let i be an instruction and F' € [wi]T". Let F'“2 : w; — wy be defined by F"4(a) =
F(a, ). For each n < €', let F¥7 : [w]? M+l 5 o) be defined as follows: for any (@0, .oy Qi) €
[wl]“"(")+17 Fi7’7(a0, ...7Oz¢a(n)) = F(awa(n),&h a@a(n)_l, ceey 010,&2777). Define Ai’F € Wwo by Ai’F = [Fi’A]#l .

w1

Define pt¥'(n) € wyim+2 by ptF(n) = [Fi’”]ufi(n)ﬂ. Note that p" : € = (Weup(pi)+2 \ w2).

Lemma 2.34. Assume w; — (w1)3" and . Suppose C C wy is a club, H € [C]Y, and H : V x w — w;
witness that H has uniform cofinality w. Let Z = ®p[(w, \w1)]. Let p € Bl,, (< w1, 2), and x € BY so that
x < 6. Let e = dom(p) and ¢ : € — w be defined by ©(n) be the least 1 < n < w so that wy11 < p(N) < Wnia-
Let i = (¢,¢). Then there is an F € [C]]" so that AV = x and p"¥ = p.

*

Proof. Note that i as defined above is an instruction since p € Bl,, (< w1, Z). Let g : w1 — C be a function
of type 1 so that x = [g]%l. Let G : wy X w — w; witness that g has uniform cofinality w. By Lemma

(2), Prlw, \ wi] € wy \wa. Let n, = p(n). Let ¢, = &5 (p(n)) and note that by Lemma
Gy € Wy(n)+1- Apply Fact for each 1 < ¢, there is an f, : [wi1]™ — w; so that [fn]u?f] = (. Then
p(n) = ®u(¢,) = [fn]umﬂ. For each 1) < ¢, let AY = {7 € [w1]“ : f(7 | n,) < 7(ny)}. By Fact [2.11
there is a club D C w; which is f,-bounding. Then A) € ug since [D]Y C A,. For ny < m < ¢, let
Al ={T € [wi1]® t fiuo (T I M) < fi (T | My, )} Since @ is increasing by Fact and p is an increasing

n0,M
function, [fy,] mi0 < [fy,],mon - This implies that Ay, € pg,. For each n <, let
w1 wq )

Ay = {r € [wi]” 1 g(r(ny)) < fo(r Ty + 1) A fo(r Ty + 1) < 7(ny + 1) < g(7(ny + 1))}
By Fact 2.28} Al € pg, since [g]%1 =x < &6 = [I}n]%l. Note that p is countably complete by
w1 =4 (w1)57% and Fact Let A = N{A), A} > Az =m0 < m < €}. Note that A € p&, since it is

707~ "M0,M17
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a countable union of sets from p¢ . Let D C w; be a club so that [D]$* C AD To summarize, D has the
following properties:
(1) For all n <€, D is fy-bounding. Thus fn is defined on [D]fﬁ_1 and for all 1 <m < ny, I{! = h on
[D]7 by Lemma [2.27]
(2) For all g < my < e and £ € [DIX™, fro (€ [ 1) < fiu (€).
(3) For all n < ¢, a € [D]}, and £ € [D]}"
(i) If @ < £(n,), then g(a) < f,(£).
(i) If £(ny) < a, then f,(£) < a < g().
Let ¢ = enump. Define F : T' — w; be defined by as follows:
(a) For all @ < wy, let F(a, &g) = g(e()).
(b) Foralln <e ag < ... < ap, <wi, let

F(O‘nn;&hann—la ceey O‘07&2377) = fn(e(a())a ceey Q(Oznn))-

Note that F is defined everywhere on T" since it is defined in all instance of (b) using property (1) of the
club D. Since g maps into C' and f,, maps into C (since H maps into C), one has that F': T* — C. Define
F:T'x w— w; as follows:

Bl = [ GE@.H) 7 = (@, %) |
’ H((e(arn,), - e(@0), 0, F(e(0), s e(n, —1))) k) @ = (v, , 1, Q1 ey A0, o0, 1)
F witnesses that F has uniform cofinality w. Next, one will show that F is order preserving from 7" into
(C,<). Suppose z,y € T* with z <{!_y.

(A) 2 = (o, ) and y = (5, 0) with o < 8: Then F(z) = g(e(a)) < g(e(8)) = F(y) since g is an
increasing function (since g has type 1).
(B) = (o, %) and y = (B, , #1, Bn, 1, -, Bo, 2, 1) with a < 3, and n < e: Then

F(x) = g(e(@)) < fo(e(Bo). - e(Bn,)) = F(y)
by property (3i) of the club D.
(C) == (an,,Md1,0n, 1,...,00,d2,7n) and y = (3, &o) with ay,, < B and n < e: Then
F(z) = fy(e(ao), . e(an,)) < g(e(B)) = F(y)

by property (3ii) of the club D.

(D) z = (an,, 1,05, —1,-..; 00, %2,1m0) and y = (B, ,%1,Bn, —1,-.-, B0, d2,m1) and there is some
J < min{n,,,n,, } so that A,y —j < Bn,, —j and for all i < j, apn, —; = Bn, —i. Then

F(‘T) = fflo (2(0&0), sy Q(Otnno)) = H(Q(Oénm )7 ) 2(0&0), <, f(e(Oéo), 0y e(anno)))

< H(e(Bny, )s s ¢(Bo), 0, F(€(B0); s €(Bny, ) = fuy ((B), v (B, ) = F(y)
with the inequality coming from comparing to the j* position consisting of e(an, —j) and (B, —j).
(E) T = (annoa&laannoflv"'70503&2»770) and Yy = (ﬂnnla&hﬁnmfla"'3607*23771) with Mgy < Ny s and
for all j < ny,, an, —j = Bn, —;- Then
F(x) = fno(e(ao), ey e(an, ) = H(e(an,, ), e(ao), o, f(e(ao), ..., e(an, —1)))
= H(e(Bn,, )s s e(Bryy —nyy ) 05 fe(@0), o e, —1)))

< H(e(ﬁnm )> [ e(ﬂo), f(e(ﬁo)a () e(ﬁnm—l))) = fm (2(60), [ e(ﬁnnl )) = F(y)

where the inequality comes from comparing ¢ </ e(ﬁnm_nm_l) and using the fact that H is order
preserving on <fex.

LCountable choice of club subsets of w; generally may not be possible from these hypotheses. The purpose of using ug, is
to find this club D using the countably completeness of g, .
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(F) T = (ann07$17a’nﬂ0717"‘7a07&27n0) and y = (ﬂ’ﬂnlu*1>ﬁnnlflu'-'7607*27771) Wlth 770 < 7717 nno =
Ny, o = B4 for all j < n,, =n,, . Then

F(x) = fnu (e(0), s e(am,, ) = H(e(an,, ), - e(a0), o, f(e(ap), ..., e(an, —1)))

< H(e(Bn,, ) (B0), 0, F(e(B0)s s €(Bny, 1)) = fi, (¢(B0)s s €(B,, ) = F(y)
since fy, (e(a0), -y e(an, — 1)) < fy, (¢(Bo), -+ Bn,, — 1) by property (2) of the club D.
It has been shown that F is order preserving from 7" into (C, <). Next, one will show that F is discontinuous
everywhere. Let z € T".
(I) Suppose z = (a, &y).
sup(F [ x) = sup{F(y) : y <f 2} = sup{fn(e ol):n< el € w]" T Al(n,) < a}
< e(a) < g(e(a)) = F(z)
using property (3ii) of the club D.
(IT) Suppose z = (an,, 1,10 — 1,19 — 2, ...,0,0,0). The immediate <1ix predecessor of x is (o, , o).

SUp(F | 2) = F(atny, &0) = 9(e(@tng)) < F((0), -y e(n0 — 1), elerny)) = F(2)
by property (3i) of the club D.
(III) Suppose x is not as in Case (I) or Case (II). Say = = (a1, an,1,.., 0, d0,7). Let E be
the set of y € T' so that y <f2x x and y takes the form (3, , %1, 8n,-1,..., 50, %2,7). Note that
sup(F' [ z) =sup{F(y):y € E}. If y € E and y = (Bn,,, %1, Bn,—1, -, o, #2,7), then

(e(Bny)s s €(B0), 05 f(e(B0)s oes €(Bry—1))) <log (e(@n,,);s wes (@), 0, fy(e(@0), vy e, -1)))
using property (2) of the club D (when n; = n,). Thus

Sup(F rl‘) = Sup{H(e(ﬁnr,)a ceey 2(60)70a fﬁ(e(ﬁo)a ceey e(ﬁnﬁ—l))) : (ﬁnﬁ7*1a6nﬁ—17 "'760a*2)ﬁ) € E}

< H(e(an,), -, e(an), 0, fn(e(), ..., e(an, 1)) = F(x)
using the discontinuity of H.
It has been shown that F' is discontinuous everywhere. This shows that F' has the correct type and thus
F ¢ [C]T". For all a € wy,
Fi2 () = Fla, &) = g(e(a)).
For all n < € and £ € [wq]™n T,
FY(E) = F(e(t(ny)), b, e(E(ny — 1)), .., e(¢(0)), o, f(e 0 £) = f(eol).

Let D = {a € D : enump(a) = a}. For all a € [D]}, ¢(a) = enump(a) = a so F42(a) = g(e(a)) = g(a).
For all n < e and ¢ € [[)]f"“, ¢ol =enump ol = { and so F¥({) = fy(eol) = f,(£). Thus AMF =
[Fi’A]uil = [g]%1 = x and for all n < ¢, p"F'(n) = [Fi’"]HZTH = [ﬁ,]ﬂg;ﬁrl = p(n). This completes the
proof. O

Observe that the set of instruction J has cardinality w;. Each element i € J will induces a certain
partition on P : [w1]** — 2 in the main theorem below. One will need to be able to choose homogeneous
club for wi-many partitions in order to construct the relevant objects. In many combinatorial constructions
involving partition relations, one often needs to choose clubs for a large family of partitions possibly indexed
by uncountable and even nonwellorderable sets. [3] has an extensive study of club uniformization principles.
Here, one will need a form of wellordered club uniformization. AD implies AC§ and thus by the Moschovakis
coding lemma, one can choose clubs from a countable family of club subsets of w;. However, here one will
formulate all result in a setting that does not assume any form of countable choice. The very strong partition
property of wy will allow the ability to choose wi-many clubs.

For an uncountable cardinal x, club, will denote the set of all club subsets of k. If X is a set and
R C X X cluby, then R is said to be C-downward closed in the club,-coordinate if and only if for all x € X
and clubs C' C D, if R(x, D) holds, then R(x,C) holds.

Fact 2.35. Assume k is an uncountable cardinal satisfying the very strong partition relation k —, (K)%,.
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e If R C k X cluby is C-downward closed in the club-coordinate, then there is a club C C k so that
for all & € dom(R), R(a,C \ (a4 1)).

e IfRC [KZ]Z x club,, is C-downward closed in the club,-coordinate, then there is a club C C k so that
for all (a, B) € dom(R), R((«r, 8),C\ (B+1)).

Proof. The second statement will be shown. If f € [k]*, then let C; be the closure of f[x] which is a club
subset of k. Let < be a wellordering in [k]? defined by («a, 3) < (v, 9) if and only if (3 <)V (B=0Aa < 7).
Let g : [k]> — & be the Gédel pairing function defined by g(a,ﬁ) is the rank of (o, ) under <. Fix
R C [k]? x club, which is C-downward closed in the club,-coordinate. Define P : [k]® — 2 by P(f) = 0 if
and only if for all (a, 8) € [f(0)]%, (a, 8) € dom(R) = R((cv, B),Cy). By k —. (k)5, there is a club Cp C &
which is homogeneous for P. One may assume Cj is closed under the Godel pairing function g in the sense
that for all v € Cy, for all @ < 8 < 7, g(a, 8) < 7. Suppose Cy was homogeneous for P taking value 1. For
any f € [Col?, there is a (a, ) < [f(0)]* with (a, 8) € dom(R) and R((«,3),Cy). Let U : [Co]f — K be
defined by ¥(f) is g(«, 8) for the <-least such («, 8) with the previous property. By the property that f(0)
is closed under g, one has that for all f € [Co]F, ¥(f) < f(0). By k =« (k)%,,, Fact implies there is
a club C; C Cy and a ¢ < & so that for all f € [C1]%, ¥(f) = (. Let (a,5) = g~!(¢). By definition of ¥,
(&, B) € dom(R). Let D C C be a club so that R((a, 8), D). Let f € [D]% with 3 < f(0). Since C; C D and
R is C-downward closed, one has that R((a, B3), f). This contradicts, U(f) = ¢ = g(@, 8). So Cy must have
been homogenous for P taking value 0. Pick any h € [Cy]?. Let E = C;, which is a club subset of x. Suppose
(o, B) € dom(R). Let 14,3 be the least n < x so that 8 < h(n). Note that 5 < h(nq,z) = drop(h,na,3)(0).
Since P(drop(h,na,5)) = 0, (a,8) € dom(R), and 8 < drop(h,na4,5)(0), one has that R((c, ), Carop(h,n..5))-
Since E'\ (8 + 1) = Carop(h,n. ), one has that R((a, 8), £\ 8+ 1). E is the desired club. O

So in the main argument, one will have a club C' which is simultaneous homogeneous for P, for each i € J
in the sense that for each i, there is an ordinal & so that C'\ (& + 1) is homogeneous for P;. The shift by
& + 1 will cause no harm for the main argument because each wi-sequence through the homogeneous set is
meant to represent ordinals in ultrapowers by various p;, . Thus shifting the representative up above & + 1
does not change the represented ordinal. The details follow next which answer [I] Question 2.7 of Ben-Neria
and Garti.

Theorem 2.36. Assume w1 — (w1)2,, and jui,l (w1) = wa. w,, is a Magidor cardinal.

<wi

Proof. Let U : Bl,_ (< w1,wy) = wy,. Since |J| = |wi|, let b : w; — T be a fixed bijection. For each i € 7, let
& =1b7'(i). Foreachi € J, let P : [w1]” — 2 be defined by Pi(F) = 0 if and only if Zy, . ») < AV, By
w1 = (w1)5?, there is a club homogeneous for P; taking value j; € 2. Define a relation R C wy x club,, by
R(a, C) if and only if C' is homogeneous for Py (,) (necessarily taking value jy(q)). Clearly R is C-downward
closed in the club,, -coordinate and dom(R) = w; by the discussion above. Since w; —, (w1)<i,, holds,
Fact [2.35] implies there is a club C' C wy so that for all & € w1, R(e,C' \ (o + 1)). In other words, for all
instructions i € J, C'\ (& + 1) is homogeneous for P, taking value j;.

Pick ng € BY. Plck a function J € [w;]Y so that 79 < §{ (where & is defined for J as in deﬁnition.
Since |BY| = |w2| pick any 7, € B with §{ < 1. Pick any H € [C’] so that n; < 67 (where again ¥ is
defined in Definition for H). Let Z = ®ylw, \ wi] and note that |Z| = |w,| since g is an injection.
For any i € J, let H' € [C'\ (& + 1)]Y be defined by H'(z) = enumc (& + enum;' (H (z))). Note that H and
H' only disagree on countably many = € V. Thus §f1 = 611" and Z = ® i [w,, \ wi].

Suppose p € Bl (< w1, Z). Let € = dom(p) and ¢ : € — w be defined by ¢(n) is the least 1 < n < w so
that w1 < p(n) < wpto. Let i = (e,¢) and note that i € J is an instruction.

(1) (ji = 0) Since 9 € BY = ’BQC\(&H), no < 0 = 6" and p € Bl,, (< wi,Z), Lemma m
applied to C'\ (& + 1) and H' gives an F € [C\ (& + 1)]T so that A = 5y and ptF = p.
Since C'\ (& + 1) is homogeneous for P; taking value j;, one has P(F) = j; = 0 implies that
I&,( )= I\;( Ly < AV =g < 6.

(2) (ji = 1) Since m; € B = %g\(&ﬂ), m < 6 = 8" and p € Bl,, (< wi,Z), Lemma m
applied to C'\ (& + 1) and H' gives an F € [C\ (& + 1)]T so that A = 5, and pbF = p.
Since C'\ (& + 1) is homogeneous for P; taking value j;, one has P(F) = j; = 1 implies that
8 <m =AY STy =Ty,
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In either case, I&,(p) #0{. Let K = {y € w, : I}/ = 6{}. By Fact applied to J, ®; is an injection of
(ww \w1) into K. Thus |K| = |w,|. Since p € Bl,_ (< w1, Z) was arbitrary, K N ¥[Bl,,_ (< w1, Z)] = 0. Thus
U[Bly, (< w1, Z)] # w, (and moreover, ¥[Bl,,, (< w1, Z)] misses a subset of w,, of cardinality w,,). ¥ is not
a Magidor function. Since ¥ was arbitary, w,, is Magidor. O

Similar arguments which more directly involves Kunen functions should be able to show that for all € < wa,
w,, is e-Magidor and (< €)-Magidor. It is not known if w,, is (< wy)-Magidor, wy-Magidor, lower-Magidor,
or super-Magidor.

3. REMARKS ON MAGIDOR FILTERS

Definition 3.1. Let x be a cardinal and € < x. A uniform filter F on « (which means for all A € F, |A| = |x|)
is an e-Magidor filter if and only if for all ® : Bl, (e, k) — &, there is an A € F so that ®[Bl(e, A)] # k.

Let k be a cardinal and € < k. A uniform filter F on & is a (< €)-Magidor filter if and only if for all
® : Bl (< €,k) = K, there is an A € F so that ®[Bl.(< €, A)] # k.

A Magidor filter is a (< wy)-Magidor filter.

Let k be a cardinal. A uniform filter F on & is a super-Magidor filter if and only if for all € < k and
® : Bl.(< €,k) — K, there is an A € F so that ®[Bl,.(< €, A)] # k.

[11] showed that under ZFC, there may exists Magidor cardinals assuming very powerful large cardinal
axioms, but there cannot exist any Magidor filters. This section will have some remarks about the existence
of Magidor filter (of various partial extent) in the choiceless framework.

Next, one will show that for partition cardinals &, the w-club filter u is a (< w-w)-Magidor filter but is not
a w-w-Madidor filter. Recall that the correct type partition relation is formulated to have club homogeneous
sets for functions of the correct type and being of the correct type means the function is discontinuous
everywhere and has uniform cofinality w. However, [k]¢ (the set of all increasing e-sequences) may contain
functions which are not discontinuous everywhere. To handle non-discontinuous increasing functions while
using the correct type partition relation, one will need to represent a non-discontinuous increasing function
by the correct type function which induces it. If € < w - w, then there are only finitely many limit ordinals
below €. Thus there are only finitely many “types” for functions on € when € < w-w. This is the key property
that makes Proposition [3:2| possible. When € > w - w, there will be infinitely many limit ordinals below e and
one will have an R-index family of possible “types”. Proposition will show that this leads to a coding of
R using these infinitely many limit ordinals and hence u’ cannot be a w - w-Magidor filter.

Ben-Neria and Sharon [I] showed that that w-club filter u! is a w-Magidor filter at suitable partition
cardinals k. The following generalization is the optimal extent that ul can “serve as a Magidor filter”.

Proposition 3.2. Let k be an uncountable cardinal and assume /—\sz(“). Let 1 < e < w-w and assume
Kk — (k)37 holds. Then pl, is an e-Magidor ultrafilter on k.

Proof. r —, (k)3 implies that  is regular and . is normal. Fix € < w-w. Thus Bl (e, k) is equal to [x]°.
Let @ : [k]° — k. Let L be the set of limit ordinals below e. Since € < w - w, L is a finite set. If F C L,
let (r = ot(e\ F) and let ep : (¢ — €\ F be the increasing enumeration of e \ F. If f : {(r — &k, then let
fF : € = k be defined by

Py =170 a¢ LAB=ep(a)
sup{f(B) sep(B) <a}  acl

Note that f is continuous precisely at the points oo € L. For each F' C L, let Pp : [k]'*T¢* — 2 be defined
by Pr(g) = 0 if and only if ®(drop(g,1)¥) < g(0). By x —. ()37, for each F C L, there is a club
which is homogeneous for P¥ taking value if" € 2. Since there are only finitely many F' C L because L is
finite, there is a single club C which is homogeneous for all Pr for F C L. Let D = [C]! or in other words,
D ={a € C : cof(a) = w}. Let & < 3 be the first two elements of D. Let E = D\ (3+1). Note that E € pl, .
The claim is that & ¢ ®[[E]¢] = ®[Bl. (e, E)]. To see this, let h € [E]°. Let F = {a € € : sup(h [ o) = h(a)}
and note that F' C L. Define f : (g — D by f(a) = h(er(a)). Note that f is an everywhere discontinuous
function and f¥ = h.
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e Suppose ir = 0. Let g = (@)"f. Note that g : 1 + (y — D is everywhere discontinuous. Since
14+ (r <e-e<w and D = [C]L, ACZ"™ implies g has uniform cofinality w Thus g € [C]1T°".
Pr(g) = ir = 0 implies that ®(h) = ®(f) = ®(drop(g,1)¥") < ¢(0) = a.
e Suppose ip = 0. Let g = (3)"f. As in the previous case, g € [C]1+<f. Thus Pr(g) = ir = 1 implies
that & < 3 = g(0) < ®(drop(g,1)") = &(fF) = @(h).
So in either case ®(h) # @. Since h € [E]° was arbitary, a ¢ ®[[E]¢]. Thus ®[[E]] = ®[Bl.(¢, E)] # k and
E € pl. Since ® was arbitrary, this shows that u! is an e-Magidor filter. O

Proposition 3.3. Let k be an uncountable cardinal and assume /—\sz(”). Letl < e < w-w and assume
k= (K)5““ holds. Then pl is a (< w-w)-Magidor ultrafilter on k.

Proof. Fix a function ® : Bly(< w-w,k) — k. Since s is regular, Bl,(< w - w,x) = [k]<¥“. Thus
®: [k]<¥Y — k. For each € < w-w, let B¢ : [k]° — &k be defined by ®¢(f) = ®(f). For ¢ < w-w, let L, be
the set of limit ordinals below ¢ which is a finite set. For F C¢, let (., p = ot(e \ F) and ¢c p : (g — €\ F
be the increasing enumeration of € \ F. If f : (. p — &, then let f¥ : ¢ — x and P. r be as defined in the
proof of Proposition using e. (In the proof of Proposition € was fixed but now one must consider all
€ <w-w.) Let i¥ be the unique homogeneous value for P, p for each ¢ < w-w and F' C L.. Since w - w is
countable and ACL‘?(”) holds, there is a sequence (O : ¢ < w-wAF C L) with the property that C¥ C &
is a club and is homogeneous for P, r taking value i%*¢. Let C = N{C%F : e <w-w A F C L.} which is still
a club subset of x as it is a countable intersection of club subsets of x. Let D = [C]}. Let & < 3 be the first
two elements of D. Let E = D\ (3 + 1). Much as in the proof of Proposition by considering all P&F
for e <w-w and F C L, one can show that & ¢ ®[Bl, (< w - w, E)]. This shows pu. is a (< w - w)-Magidor
filter. O

Proposition 3.4. Assume AD. If k is an uncountable cardinal satisfying k —. (kK)5*%, then pl is a
(< w - w)-Magidor filter.

In particular, uil and uuldz are (< w - w)-Magidor filters for wi and way, respectively.

Proof. AD implies /—\CE. If kK < ©, then ACE implies /—\Cf” () by the Moschovakis coding lemma. The result
now follows from Proposition [3.3 |

Proposition 3.5. If k is a cardinal with w; < k < O, then the w-club filter - on k is not an w - w-Magidor
filter.

Proof. Since k < ©, let 7 : “2 — k be a surjection. Define @ : Bl (w-w, k) = “2 by

0 sup(f lw-n+w) < flw-n+w)
1 sup(f lw-n+w)=fw-n+w)

(f)(n) = {

Define ¥ : Bl (w - w, k) — k by mo ®.

Suppose A € pl. Thus there is a club C' C & so that [C]L C A. Let h: w-w — C be the enumeration of
the first w - w element of [C]l. Since C is club, note that for all n € w, h(w-n +w) = sup(h | w-n + w).
Pick any r € 2. Define f, € [A]““ as follows:

h(n) m =0
frlw-m+n)= ¢ h(w-m+n) m>0Ar(m—1)=1
h(w-m+1+n) m>0Ar(m—1)=0
0, then sup(fy | w-m+w) = h(lw -m+w) < hlw-m+w+1) = fr(w-m+ w) and thus
0 =r(m). If r(m) = 1, then sup(f, | w-m+w) = h(w-m+w) = fr(w-m+ w) and thus
®(f,)(m) =1 = r(m). This shows that ®(f,) = r. It has been shown that ®[Bl,(w - w, )] = “2. Thus
U[Bl,(w-w,A)] = (70 ®)[Bl,(w-w, A)] = k. Since A € pul was arbitrary, ul is not w - w-Magidor. O

2The use of ACfp (%) i important here to ensure any countable sequence through D has uniform cofinality w.
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Let ¢ < k be a regular cardinal and let v$ be the (-club filter on x. With the appropriate modification
and a strengthened partition property, one may prove an analogs of the Propositionthat vSisa (< w-w)-
Magidor filter. One can also prove an analog of Proposition that /¢ is not an (w - w)-Magidor filter.

The author does not know if it is ever possible to have an w - w-Magidor filter at a cardinal below © even
at strong partition cardinals (like w). Next, one will show under AD and DCg that no countably complete
filter on wy can ever be an (w - w)-Magidor filter.

Definition 3.6. Let 1 <n < w and 7 : n — n be a permutation. Define <™7 on [w1]™ by ¢ < ¢ if and only
ifrom <l Lom. Let L™ = ([w1]",<™7). Note that ot(L™™) = w;.

Every injective function @ : [w]™ — w; is almost everywhere order preserving on £™7 for some permu-
tation 7 such that m(0) = n — 1. Note that if w,, = (n — 1,n — 2,...,0), then a function of type n is order
preserving on L™, The proof is a fairly straightforward partition argument.

Fact 3.7. ([I7] Lemma 4.23) Let 1 < n < w and wy —, (w1)51". Let C C wy be a club and ® : [O]7 — w;
be an injective function, then there is a club D C D and a permutation w : n — n with 7(0) =n — 1 so that
® : [D]? — wyq is order preserving from L™™ | [D]? = ([D]}, <™™) into (w1, <).

Recall that under AD, there are no nonprincipal ultrafilters on w and hence any ultrafilter on any set is
countably complete. If F is a filter on a set X, Y is a set, and ® : X — Y is a function, then define the
Rudin-Keisler pushforward of p by ®, ®,u, which is a filter on Y by A € @,y if and only if ®~1[A] € p. If
F is a filter on a set X and A€ F, then F | A={B e F:BC A}.

Fact 3.8. (Kunen) Assume AD. If k < © and F is a countably complete filter on k, then there exists an
ultrafilter p on k such that F C p.

Proof. If z,y € “2, let £ <Turing ¥ indicate that x is Turing reducible to y. Note that for any =z € “2,
{lye“2.:y ZTuring x} is countable. Let =Turing denote the Turing equivalence relation on “2 defined by
T =Turing ¥ if and only if © <turing ¥ and ¥ <turing . Let Dryring = “2/ =Turing be the collection of Turing
degrees. If X,Y € Dryring, then define X < Y if and only if there exists x € X and y € Y so that
T <Turing Y. If X € Dryring, then the Turing cone Cx is {Y € Dryring : X < Y}. The Martin measure
HUTuring O11 Dyring is defined by A € pituring if and only there is an X € Dryring so that Cx € A. Under
AD, Martin showed that fituring is an ultrafilter on Dryring. Since © < O, there is a surjection of R onto
Z(k) by the Moschovakis coding lemma. Since F C Z(k), there is a surjection @ : R — F. Define
IT: Druring — # by II(X) = min({w(2) : [¢]=1,.,, < X}. Since the intersection of countably many elements
of the countably complete filter F is in F and hence nonempty, II is well defined. One can check that
IL, f1uring (the Rudin-Keisler pushforward of pityring by II) is an ultrafilter which extends F. O

Fact 3.9. (Kunen; [T1] Theorem 4.8) Assume AD and DCg. Assume p is a countably complete nonprincipal
ultrafilter on wy. Then there is a 1 < n < w so that p is Rudin-Keisler equivalent to pg, : There is a set
A€yl , aset B€p, and a bijection ® : A — B so that | B=®,.(ul | A) and p | A= (271).(u | B).

Theorem 3.10. Assume AD and DCg. If F is a countably complete nonprincipal ultrafilter on wy, then F
is not w - w-Magidor filter for wy.

Proof. Since w; is regular, Bl,, (w - w, X) = [X]¥% for any X C w;y so one will prefer to use the notation
[X]““. By Fact let 4 be an ultrafilter on w; which extends F. By Fact thereis a 1 < n < w,
A€ pl, B € p, and bijection II : A — B so that pu | B = IL(u? [ A) and p2 | A= (1), (n | B).
Using Fact let 7 : n — n be a bijection and C' C wy be a club with [C]? C A so Il : [C]? — B is an
order embedding of £™™ | [C]™ into (B, <). Observe that ot(£L™" | [C]?) = wy. If E C [C]? is countable,
then let sup*(E) denote the least element of [C]? which is <™7™ greater than every element of E. Suppose
h € [w1]¥“. Say that h is suitable if and only if for all @ < w - w, h(a) € I[[C]?]. If h is suitable, let
h:w-w— [C]? be defined by h(a) = II"*(h(a)). Let m € w. Say that m is an h-limit if and only if
h(w-m+w) = (sup*{h(w-m+k) : k < w}). Now define W : [w,]*¥ — “2 by

0 h is not suitable

T(h)(m)=10 h is suitable and m is not an h-limit .
1 h is suitable and m is an h-limit
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Let X € F. Since F C p, X € pu. Note that II[[C]}] € p since pu [ B = T (p, [ A). Thus X NII[[C]2] € pu |
B. I HXNII[C]7]] € pl, . Let D C C be aclub so that [D]? C II™ X NII[[C]?]]. Let u : w-w — [D]7 be any
order preserving discontinuous map from (w - w, <) into ([D]™, <™™) where discontinuous means that for all
m < w, sup*{u(w-m+1+k) : k < w} < u(w-m+w). For each m € w, let v(m) = sup*{u(w-m+1+k) : k < w}.
Let r € ¥2. Let h, € [w1]¥'“ be defined by

Mo+ 1) o =0V ais a successor cardinal
hy(a) = < T(u(w - m + w)) a=w-m+wAr(m)=0
II(v(m)) a=w-m+wAr(im)=1

Since II[[D]?] C X, one has that h, € [X]¥“. Since for all @ < w-w, u(a) € [D]? C [C)7, II(u(a)) € T[[C]7]

*  — * )

for all @ < w-w. Also v(m) € [D]? C [C]?. Hence II(v(m)) € II[[C]} for all m € w. Thus for all r € “2, h, is
suitable. Note that for any 7 € R and m € w, sup*{h,(w-m+k) : k < w} = sup{u(w-m+14+k) : k <w} =
v(m). Suppose r(m) = 0. Since u is discontinuous, u(w - m + w) > v(m) and thus h,(w - m + w) = H(u(w -
m+w)) > H(v(m)) = M(sup*{hy(w-m~+1+k) : k < w}). m is not an h,-limit. Thus ©(h,)(m) = 0 = r(m).
Now suppose 7(m) = 1. Then h,(w-m 4 w) = H(v(m)) = M(sup*{h,(w-m + 1+ k) : k < w}). Thus m is
a h,-limit. Thus ¥(h,)(m) = 1 = r(m). It has been shown that ¥(h,) = r. This shows that r € U[[X]"].
Since r was arbitrary, ¥[[X]"] = R. Since X € F was an arbitrary, it has been shown that for all X € F,
U[[X]“«] =R. Since k < O, let w : R — £ be surjection. Define @ : [w1]*“ — & by ® = wo V. It has been
shown that for all X € F, ®[[X]¥“] = k. F is not an (w-w)-Magidor filter. Since F was arbitrary countably
complete filter on wy, it has been shown that no countably complete ultrafilter on wy is an (w - w)-Magidor
filter. ]

Jackson [I7] has completely classified all the countably complete measures on any cardinal below the
projective ordinal (and a bit beyond) and they are closely related to the partition properties on the odd
projective ordinals. Similar argument to the above should show that for any cardinal below the supremum
of the projective ordinals, no countably complete filter on that cardinal can be an (w - w)-Magidor filter.

The natural question is whether w; has an (w - w)-Magidor filter under AD. If it exists, it must not be
countably complete. Are there are any cardinals below © which possesses an (w - w)-Magidor filter under
AD?

4. SINGULAR SUPER-MAGIDOR CARDINALS

Ben-Neria and Garti [I] asked whether there is a singular lower-Magidor cardinal below ©. This section
will show there are unboundedly many super-Magidor cardinals below ©. Let 5&, be the supremum of the
projective ordinals. 6&, is the smallest such cardinal for which the results of this section applies. Ben-Neria
and Garti [I] also showed that assuming there is a strong partition cardinal above O, there is a Prikry-
extension satisfying AD in which there is a singular cardinal possessing an w-Magidor filter. It is not known
if the existence of a strong partition cardinal above © is consistent. In fact, the existence of a cardinal k > ©
with kK —, (k)4 would already suffice for their argument. To the author’s knowledge, it is not known if even
this is consistent with AD. However, the techniques here show that 53J will be a singular cardinal with an
(< w - w)-Magidor filter answering a question of Ben-Neria and Garti.

This section will use descriptive set theory under determinacy assumptions. [3] exposits some of the
preliminary material of this section in more details.

One will need some notation associated to winning strategies.

Definition 4.1. A strategy on X is a function p : <“X — X. If 0 and 7 are strategies on X, then let
ox T € “X be defined by recursion by (0 x7) =o(ox7 [ n) if nis even and (o x7)(n) =7(c*7 | n) if n is
odd.

If fe“X, then let feven, fodda € “X be defined by feven(n) = f(2n) and foqa(n) = f(2n+1). If f € “ X
then let py : <“X — X be defined by p(s) = f(|s]). If p is a strategy, then let Z} : “X — “X be defined
by ZL(f) = (p* pfleven- If p is a strategy, then let Z2 : “X — “X be defined by Z2(f) = (ps * p)odd-
Note that E; and E?, are Lipschitz continuous function and one can show that for every Lipschitz function
Z:“X — “X, there is a strategy p on X so that = = E%.

The axiom of determinacy, AD, is the assertion that for all A C “w, exactly one of the following holds:
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e There is a strategy o so that for all strategy 7, o x 7 € A (and one will say that o is a Player 1
winning strategy in the game G4).

e There is a strategy 7 so that for all strategy o, o x 7 ¢ A (and one will say that 7 is a Player 2
winning strategy in the game G%).

Definition 4.2. A pointclass I' is a collection of subsets of spaces of the form Xy x ... x X,,_1 where for
each i < n, X; is either w or “w closed under continuous preimages (or Wadge reductions) (which means for
continuous functions ® : X — Y and B CY with B € I', ®71[B] € T'). (More generally, " could be a set of
subsets of various Polish spaces.) If T is a pointclass, then I refers to its dual pointclass. Let Ap = 'NT.
I' is nonselfdual if and only if I' £ I". A set P € T' is I-complete if and only if for for all Q € T', Q is the
preimage of P under some Lipschitz continuous function. By the Wadge lemma under AD, every nonselfdual
pointclass T' has a I'-complete set. A set U € " with U C R x X is ['-universal for X if and only if for all
P eT with P C X, there is an e € R so that P =U, = {z € X : U(e,z)}. Every nonselfdual pointclass has
a ['-universal set for all Polish spaces X.

For simplicity, one will make the following definition for subsets of R (or “w). The reader can adapt these
definition to the more general Polish spaces.

Definition 4.3. A prewellordering on a set P C R is a wellfounded, reflexive, transitive, and total relation <
on P. A norm on P is a function ¢ : P — & for some ordinal . Prewellorderings can be uniquely identified
with a surjective norm onto an ordinal.

If T' is a pointclass, then d(T') is the supremum of the rank of the prewellordering <€ Arp. §(T) is called
the prewellordering ordinal of T'. The projective ordinals 8, are defined to be §(IT}). Familiar examples
include 8] = wy, 03 = wa, 05 = Weui1, 05 = Wit

If T is a pointclass, then a prewellordering ¢ : P — k is a I'-prewellordering if and only if there are
relations <€ I" and §If€ I' so that

(v) (Py) = (%) [(P@) A (o) < ¢(y) & 2 <Py & 0 <2y)).

A pointclass I has the prewellordering property if and only if for all P € I', there is a I'-norm of P. For all
new, I, 41 and DI 42 have the prewellordering property by the first periodicity theorem of Moschovakis

(1240).

Fact 4.4. (Boundedness property) Let T be a pointclass closed under V® and A. Suppose there is a P € T
which is T-complete and has a surjective T-norm ¢ : P — k (onto some ordinal k). If A C P is I", then
there is a § < k so that p[A] C 4.

Fact 4.5. (Moschovakis; [I7] Lemma 2.13 and Lemma 2.16) Let T' be a pointclass closed under A, V, and
VR, Suppose there is a T-complete set P € T' and a surjective T-norm ¢ : P — k. Then the length of ¢
(namely k) is (') and 6(T') is a regular cardinal.

The following is Solovay’s method of coding a “dense” collection of clubs subsets of w; by strategies.

Definition 4.6. Let I" be a nonselfdual pointclass closed under A, V, and V®. Suppose there is a I'-complete
set P € I' and a surjective I'-norm ¢ : P — &, where k = §(I') by Fact Let clubcode? be the collection
of strategies on w with the property that

(VYw)(w € P = (Ei(w) € PAp(w) < @(Ei(w))))
If p € clubcode?, then define
ot = {n€r: (Vw)((w e PApw) <n) = e(Ej(w)) <n)}
The next several results follow from the boundedness property (Fact [4.4). See [3] for the details.
Fact 4.7. Assume the setting of Definition . For each p € clubcode?, 2" is a club subset of k.

Fact 4.8. (Solovay) Assume the setting of Deﬁnition and AD. If C C k is a club subset of k, then there
is a p € clubcode? so that con C .
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Proof. Only the game will be presented but see [3] or [5] Fact 4.6 for the full details. Fix a club C' C &.
Consider the game S where Player 1 produce v € “w and Player 2 produces w € “w, separately.

I v(0) v(1) v(2) v
Sc
II w(0) w(1) w(2) w

Player 2 wins S¢ if and only if v € P = (w € P A p(v) < o(w) A p(w) € C). By the boundedness property
(Fact and AD, one can show that Player 2 has a winning strategy p and €7* C C. ]

The following is the most important tool for club selection in this section. See [3] or [5] Fact 4.7 for the
proof.

Fact 4.9. Assume the setting of Definition . Suppose A C clubcode? and A € I, then uniformly from A,
there is a club C C k so that for all p € A, C' C @f”‘ﬂ

The only known method to establish strong partition cardinals in any set theoretic framework is through
a descriptive set theoretic coding of functions by reals developed by Martin under determinacy called a good
coding system. One will follow the notational convention developed in [3].

Definition 4.10. (Martin) Let x be a cardinal and ¢ < k. A good coding system G for ¢k is G =
(T, decode, GC 5 : B < €,7 < k) with the following properties:

e k is a regular cardinal.

e T'is a nonselfdual pointclass closed under V.
decode is a function of the form decode : R — Z?(e x k) with the property that for all f : ¢ — &,
there is an = € R, decode(z) = f. (One will often identify functions with their graph.)
For all 8 < e and v < 9, GCg 4 € Ar and for all z € R, x € GCp_, if and only if

decode(z)(8,7) A (V€ < k)(decode(x)(5,&) = v = &).

For each 8 < ¢, let GCg = U7<K GCg,y. For all 3 < € and for all A € IRAIfAC GCg, then there is
ad <k sothat ACJ _;GCgy.

Let GC =\ s<c GCg. Say that k is e-reasonable if and only if there is a good coding system for ‘.

If one needs to emphasize the good coding system G, one might write, 'Y, decode?, GCgﬁ, GCY, or GCY.

The idea is that @ € GCg , implies that decode(x)(8,7) code the graph of a potential partial function
which at least maps S to v. & € GCg intuitively means that decode(z) codes the graph of a potential partial
function which is defined at f taking some value below . € GC means decode(z) is the graph of a function
from € into k.

The pointclass that appears in a good coding system can be shown to have many additional properties:

Fact 4.11. ([I7] Remark 2.35) Assume AD. Let G = (I',decode,GCs, : § < €,7 < k) be a good coding
system for k. Then T is a nonselfdual pointclass closed under countable union, countable intersection, and
VR has the prewellordering property, and k = 8(T). Ar is closed under less than k-length unions and
intersections.

The primary application of good coding systems is to prove partition properties:
Fact 4.12. (Martin) If k is w - e-reasonable, then k —, (K)%,.

Good coding system supply an almost everywhere uniformization relative to the good codes. This will
also be used later to select clubs.

Definition 4.13. Let ¢ € ON and f : w- ¢ — ON. Then let block(f) : ¢ = ON be defined by block(f)(«a) =
sup{f(w-a+mn):n € w}.

3Uniformly means there is a function T : I' = (k) so that for all A € I' with A C clubcodef, T(A) is a club subset of «
and for all p € 4, T(A) C €°".
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Fact 4.14. ([3], Almost everywhere good code uniformization) Let € < k and G = (I',decode, GCg  : f <
w- €,y < k) be a good coding system for “ k. Let R C [k]S x R. There exists a club C C & and a Lipschitz
function E: R — R so that for all x € GC with decode(x) € [C]“"¢, R(block(decode(z)),E(x)).

Definition 4.15. Let € < x and G be a good coding system for k. If X C &, then let Inc(X) be the set of
all z € GC so that decode(z) € [X]¢. If the good coding system G needs to be made explicit, one will write
Inc? (X).

One will need explicit applications of the Moschovakis coding lemma (rather than merely its consequence
that if k < ©, then R surjects into &?(x) which has been used previously).

Fact 4.16. ([I7] Theorem 2.12) Assume AD. Let ' be a pointclass closed under 3% and A. Let P € T and
@ : P — K be a surjective norm so that the associated prewellordering < belongs to I'. For any R C P X R,
there is an S € I' with the following properties:

e SCR.

e For all o < K, if there exists v € dom(R) with p(v) = «, then there exists w € dom(S) with

o(w) = a.

Fact 4.17. Suppose I' is a nonselfdual pointclass closed under I® and A. T is closed under less than
(T)-length um’onsﬁ Thus T is closed under less than 8(T)-length intersections.

Proof. Let 6 < 6(T'). Let ¢ : P — § be a norm whose associated prewellordering belongs to Ap. Let
(Aq : @ < 0) be a sequence of subsets of R in I'. Let U C R x R be I'-universal for subsets of R. Let R(w, €)
if and only if w € P and U, = A,(y). By the Moschovakis coding lemma (Fact applied to the pointclass
I'), there is an S € I' with the property specified in the coding lemma. Then x € |J, 5 Aa if and only if
(Fw)(Fe)(S(w,e) AU(e,z)). Thus U, 5 Aa €T O

Fact 4.18. Assume AD. Let ¢ < r and G = (T',decode,GCs, : B < e Ay < k). For all B <€, GCg € FET.
GC € VRIET. For all X C &, Inc(X) € VRIRT.

Proof. Since x = §(T), there is a prewellordering of length x in I' C Agep. Thus x < §(3%T"). For each
B <€ GCs = U,.,GCs, which is a x-length union of set from Agzp C FET. Thus GCs € F°T by
Fact m GC = ﬂﬁ« GCp and is thus an elength intersection of sets from F*I' C VEIRI. Note that
€ < k < 6(3RT) < §(VRAT). Applying Fact one has that Y®3I®T is closed under e-length intersections.
So GC € VRIET. Note that Inc(X) = GC N {UJ{GCpyno NGCp~, : Bo < P1 < €AY < M1 AYo,71 € X}
GC was already shown to be V®*3®I" and the latter part of the intersection is a x-length union of sets in Ar
which was already observed to belong to I*I". The total complexity is VXIT. |

a<d

As an example: in one instance of the intended application of this section, one will have two good coding
systems G; for kg and G; for ¢’ k1. One would like to have GCY% ¢ Arg, . However Fact is already too
coarse for two successive projective ordinals. w; has a good coding system Gy where 'Y = IT} and w41
has a good coding system G; where 'Yt = TI}. Fact would imply GC? € II} = I'9'. This is already
too high. In this case and many others, the complexity can be shown to be lower. By Fact GCgU is at
most X3 for each 8 < e. Al can be shown to be closed under < w,,+1-length unions and intersections. Thus
GCY% = N B GCg0 is Al which is good enough for the purpose here. Harrington-Kechris ([12] Corollary
2.2) shows that E}lﬂ, H}Hl, and A}Hl are closed under (-length unions and intersection for all { < 571I
under AD. Thus E% is closed under countable intersections. So when ¢y < wy, GCY% is E%. When ¢y = wyq, it
can be shown that GC9 ¢ X1 (see [3]]). However, by careful inspection of an explicit good coding systems
on 6én 41, one can get even better complexity estimates. See [3] for the details for the good coding systems
on wy and [I5] and [I6] for the general odd projective ordinals.

Fact 4.19. Assume AD. Let € < wy. There is a good coding system G = (I}, decode, GCs., : B < €,7 < w1)
for “wy with the following properties:

e Forall B < e, GCs € II1.

o Ife<wi, then GC € II}. If e = wy, then GC € II3.

41 I" has the prewellordering property, then I is furthermore closed under wellordered unions. See [I7] Lemma 2.21.
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e Fore<wiy and club C C wy, Inc(C) € II}. For e = w; and club C C wq, Inc(C) € I13.
Letn € w and € < 5;,1_,_1. There is a good coding system G = (I3, |, decode,GCp -, : B < €,7 < J%H_H)
with the following properties:
o Forall f <€, GCg € H2n+1.
e Ife <wi, then GC € H%_s_1 If e = wy, then GC € II3,, .
e Fore <w;y and club C C 627H_1, Inc(C) € I3, ;. For e =wy and club C C J;H_H, Inc(C) € I3, 5.

Definition 4.20. Let 1 < n < w, (kg, ..., kn—1) be an increasing sequence of cardinals and (e, ..., €,—1) be

a sequence of ordinals such that for all i < n, €y < k;. Define (Ko, ..., fn—1) =« (s ey in—1)o """ if and
only if for all functions P : [],_, [:]“ — 2, there is an 7 € 2 and sequence (Co,...,Cpn—1) so that for each
j <n,C; Ck;jis a club subset of ; and for all (fo, ..., frn— 1)€Hj<n[ 9 P(foy ey fuo1) = i

Definition 4.21. Let 1 <n < w, (Ko, ..., kn—1) be an increasing sequence of cardinals, and let (e, ..., €5—1)
be a sequence of ordinals. Say that (ko,...,kn—1) is an (eq, ...€,—1)-reasonable sequence if and only if there
is a sequence (Gy, ..., G,—1) with the following properties:

e §; is a good coding system for “k;.

e For any i < j < n and club C; C k;, Incgi(Ci) € Apg; .

Example 4.22. Assume AD. Let 1 <n < w and ¢ : n — w be a strictly increasing sequence. Let (¢; : ¢ < n)
be a sequence of ordinals so that €; < ééz(i)ﬂ for all ¢ < n. Then <6%f(i)+1 11 < m)is (€ : 1 < n)-reasonable

using Fact

Example 4.23. Assume AD. Let A € Z(R). Let ElL(A’R) be the subsets of R which are ¥;-definable over
L(A,R) in the language with a symbol R for R using parameters from R. Let d4 the least A-stable ordinal
which is the least ordinal ¢ so that L;(A4,R) is a ¥j-elementary substructure of L(A,R). Kechris-Kleinberg-
Moschovakis-Woodin ([I9]) showed there is a good coding system G for 448 4 so that T9 = ElL(A’R). (Also
see [3] for a construction of this good coding system.) Note that {d4 : A € Z(R)} is a collection of strong
partition cardinals which is unbounded in ©.

Let 1 <n <wand ¢:n — Z(R) with the property that for all i < j < n, dp;) < dgj). Let (e; 17 < n)
be such that for all i < n, €; < (). Then (dy;) : ¢ < n) is an (¢ : i < n)-reasonable sequence using Fact
since the pointclasses ZL(Z( D) and Ef(é(j ) are sufficiently far apart from each other.

The following is an independently interesting multi-cardinal partition relation.

Theorem 4.24. Assume AD. Let 1 < n < w, (k; : i < n), and {¢; : i < n) be such that (k; : i < n) is
(w- € i < n)-reasonable. Then (Ko, ..., in—1) —x (Koy -y in)o 77" holds.

Proof. This result is proved by induction the length 1 < n < w.

For n = 1, the hypothesis simply states that kg is w - eg-reasonable. Thus kg —« (ko)5® holds (by Fact
which is equivalent to (ko) —« (K0)5-

Suppose the result has been shown for 1 <n < w. Let (Ko, ..., kn) and (€, ..., €,) be such that (ko, ..., )
is (w - €g, ..., w - €,)-reasonble. Let (Gy, ..., G,) be a sequence of good coding systems witnessing this. By Fact
for each i < n, let W; be a I'Y%-complete set and ; : W; — k; be a surjective I'%-norm. Fix a map P :
Hi<n+1[’%i}€i — 2. For each fy € [ko]®, define Py, : [, [Kit1]** — 2 by Pry(g1, .-, 9n) = P(fo, 9155 9n)-
By the induction hypothesis at n, (K1, ..., kn) —x (K1, ..oy n)g 7" holds. Thus for each fy € []|, there
is a unique jy, € 2 for which there exists (Ds, ..., D,,) with the property that for all 1 <i <n, D; C k; is
a club subset of k; and for all (g1, ...,gn) With g; € [D;]¥* for all 1 < i < n, Py, (g1,--,9n) = jfo Define
Q : [ro]® — 2 by Q(fo) = jy,- Since the hypothesis implies o is w - €p-reasonable, Fact [4.12| implies
ko =« (k0)5”. Thus there is a club Cy C k and a j € 2 so that for all fo € [Col|°, Q(fo) = jf, = J-
Define R C [s]® x "R by R(fo,(p1,...,pn)) if and only if for all 1 <4 < n, 2; € clubcode’ and for all
(915 gn) € [€L1F]0 5 x [€8mrn ] Py (go, -y gn) = - The first claim is that dom(R) = [Co]$°. To see
this, by the observation above, for each fy € [Cy]5°, there is a sequence (Dy, ..., D,,) with each D; C &; club
in k; for all 1 < i < n which is homogeneous for Py, taking value js, = j. By Fact for each 1 <i < n,
there is a p; € clubcodef’ so that €9i-%¢ C D;. Then R(fo, (p1, .-, p)) holds and hence fo € dom(R). By the
almost everywhere good code unlformlzatlon (Fact 4.14 - there is a club C; C Cj and a Lipschitz continuous
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function Z : R — "R so that for all e € Inc(C)), R(block(decode? (e)),Z(e)). Let n? : "R — R be the
projection onto the i*'-coordinate for each 1 < i < n. Let Z,...,=, : "R — R be defined by Z! = 7' 0 =
for each 1 < i < n. Note Z; are also Lipschitz functions (if the coding of tuples were chosen reasonably).
By the hypothesis, Inc9°(C}) € Arpg, for all 1 < i < n. Thus Z;[Inc9(C})] € F®Apg, C I'%. By the
property of Z, one has that Z;[Inc% (C})] C clubcodef’. By Fact for each 1 < i < n, there is a club
E; C k; so that for all p € Z,[Inc% (C1)], B; € €£+%. Let Eg C Cy be the club of limit points of Ct.
The claim is that (Ep, ..., Ey,) is homogeneous for P taking value j. Pick any (fo, f1,., fn) € [Ticpny1[EilS
Since fo € [Eo]® C [C4]° C dom(R), one has that fy € dom(R). Also since Ey consists of limit points
of Cy, pick any hg € [C1]“¢ so that block(hg) = fo. By the property of the good coding system Gy,
there is some ey € GC9 so that decode?’(eq) = hg. Thus ey € Inc?(Cy). Let (p1,....,pn) = Z(eo).
R(fo, (p1, ..., pn)) holds since R(block(decode? (e)),Z(eg)) holds. By definition of R, this means that for all

(g1, -9n) € ngign[ef;’m}ilv Pfo(gla-'~agn)7: j. Since (fi,..., fn) € ngifn E; C ngign[cﬁ;’m]il; one
has that P(fo, f1,..., fn) = P, (f1,s fn) = J- Since (fos s fn) € [ljcnp1[Bi]$ was arbitrary, this shows
that (Ep, ..., By ) is homogeneous for P taking value j. Since P was arbitrary, this establishes (kq, ..., ki) —>«
(KQy « vy i )5 7™, The result has been shown for n + 1.

By induction, this completes the proof. O

Definition 4.25. A sequence of cardinals (k, : n € w) is a reasonable sequence if and only if there are
sequence ((, : n € w) and (I',, : n € w) with the following properties:

(1) For all n € w, ¢, < kp + 1. ((y : n € w) is an increasing sequence.

(2) sup{¢n : n € w} =sup{ky : n € w}.

(3) For all n € w, T',, is a pointclass.

(4) For all n € w and ¢ < (,, there is a good coding system G for ¢x,, with 'Y =T, and GCY ¢ Ar,
for all m > n. El

(5) There is a set Z € Z(R) which Lipschitz reduces all sets in (J,,c,, I'n-

Example 4.26. The sequence of odd projective ordinals (83, 41171 € w) is a resonable sequence. This is

witnessed by (¢, : n € w) and (IT3, ,; : n € w) where ¢, = 83,1 + 1 for each n € w. This follows from Fact
419

Example 4.27. Let (4, : n € w) is a sequence in Z(R) so that the corresponding sequence of stable
ordinals (84, : n € w) is a strictly increasing sequence. Then (d4, + 1 : n € w) and (ZJlL(A"’]R) 'n € w)
witness that (04, : n € w) is a reasonable sequence. This follows from the discussion in Example

The following definition is used in the proof of Theorem

Definition 4.28. Let ¢ € ON. (< €)-instruction i is a triple (n', p', £') such that 1 < n' < w, p':n! - wis
a strictly increasing sequence, and £' : n' — € is sequence such that £(0) + ...+ £(n —1) < e. If m < w, then
a (< e)-instruction above m is a (< €)-instruction i with p'(0) > m.

Note that for any € € ON, the collection of (< €)-instructions has cardinality max{|w|, |¢|}.

Theorem 4.29. Assume AD. If k is the supremum of a reasonable sequence, then k is a super-Magidor
cardinal.

Proof. Let (k, : n € w) be a reasonable sequence with k = sup{k, : n € w}. Let (I';, : n € w) be a sequence
of pointclass and let ((, : n € w) be a sequence of ordinals witnessing that (k, : n € w) is a reasonable
sequence as in Definition m Pick € < k. Let @ : Blo,(< €¢,k) — k. Let m be the least m so that
w-€ < (. Let J be the collection of all (< €)-instruction above m + 1. For each instruction i € 7, let
Pt [Emg]' X Tlicns [ 0)] ) — 2 be defined by P(a, fo, ..., fpi—1) = 0 if and only if ®(fo"..." fri_1) < a.
Then (K41, Kpi(0)s -+ Kpi(ni—1)) 18 (W - Lw - £4(0),...,w - £}(n' — 1))-reasonable since w - £'(i) < w-€ <
Cm < Gpi(sy for all i < n by the choice of m and since i € J is a (< ¢)-instruction above m + 1. Thus

(K15 Kpi(0)s -+ Fpi(ni—1)) —% (Kma1s Kpi)s s /{p‘(na_l))é’gi(o)"”’ei(ni_l) by Fact So there is a unique

50bserve that this merely asserts the existence of good coding system but does not provide any ability to uniformly pick
good coding system in n € w and & < (p.
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u; € 2 which is the homogeneous value for P,. Note that |J| = |e| so let b : ¢ — T be a bijection. For
each 1 <m < n, let ¥ : "R — R be a fixed bijection. Let II}, : R — R be recursive bijection so that for
all (zg,...,tn—1) € "R, I (X" (20, ..., Tn—1)) = Tm. By the hypothesis of (k, : n € w) being a reasonable
sequence, there is a Z € Z(R) which Lipschitz reduces all sets in | J,,c,, I'n. Define R C w x R by R(n, p) if
and only (22)7![Z] is a ',-norm on a I'-complete set. By ACE (which holds under AD), let (p, : n € w) be
such that for all n € w, R(n,p,). Let ¢, : W,, — k,, be the surjective I';,-norm on a complete I';,-set coded
by (Ei")_l[Z]. Let ¢ : W — Kma1 be a Tyqq-norm on a complete T'yiq-set. Since € < kg, fix ¢ 1 Q — €
be a surjective norm in Ar_. Define S C Q x R by S(¢, ) if and only if the following holds:

Let b(1(q)) be the instruction i = (n,p, £).

I (x) € clubcode?

Rm41"
e For all i < n, H?_:rll (z) € cIubcodeﬁE((:)). |
Ko DILTIORIAC
e For all (Oz7 an . fnfl) S [Q:;SJAJ(F;)H X Hi<7l[€§?}zl(;)( )]*(z , Pi(av fO; . fnfl) = Uj.

By the discussion above, dom(S) = Q. By the Moschovakis coding lemma (Fact |4.16) applied to ' and 1,
there is a T C S with T € T, and for all a < ¢, there exists some ¢ € dom(T) with ¥(¢) = a. Fix a < €
and suppose b(a) =i= (n,p,l). Let K¢ be defined by

K*={zcR: (Gw)3z)(w € QAp(w) = a AT (w,z) ANTIgT (z) = 2)}.
Note that K* C clubcode? and belongs to IRT,,, = ', For each i < n, let K{* be defined by

Ky ={z € R: (3uw)(3Fz)(w € QAv(w) = a AT(w, ) Az =TI (2))}.

Note that for all ¢ < n, K C clubcodei‘f;f; and belongs to I's,. Note that Ty, C fm+1 and T, C f,ﬁpm for
all i < n since i is an (< €)-instruction above m + 1. Thus by Fact one obtains clubs D% C ky and
clubs D§* C ky(;) with the property that for all z € K¢, D% C €2*™ and for all z € K{*, D C [SAIRREIR
Pick any ¢ € dom(T) with 9(q) = a. Pick any y with T(q,y). Note that TI7™!(y) € K* and for all

i < n, I (y) € K. Thus D C €% and for all i < n, D¢ C 220" By definition of
i+ ¢ 5™ (v) ¢ Hi+1 (v)

T(q,y), (Q:flfﬁ )’ Q:;’;(ﬂ’(';‘;m) ) Qﬁ"zﬁ‘f(;))ﬁ“"’l)) is homogeneous for P; taking value u;. Thus (D®, D§, ..., DY)
is homogeneoous for 1131 taking value w;i. Since everything was done uniformly from o and b : ¢ — J is a
bijection, one can restate what has been shown as follows: There exists a sequence (D!, D{, ..., D;i_l) e )
with the property that for all i € J, D' is a club subset of k1 and D! is a club subset of Kpi(iy for all
i <n', and (D', D}, ...,D;i_l) is homogeneous for P taking value u;. Let D = (\{D':i € Z}. Note that
D is a club subset of k41 since € < Kz41 and D is an e-size intersection of club subsets of k;741. For
each m+1 < n < w, let D, = {D} : p'(i) = n}. Once again, D,, C k, is a club subset of r,, since
€ < Km41 < kn and D is an e-length intersection of club subsets of k,,. One has define a club D C k41
and a sequence (D, : m + 1 < n < w) such that for all m 4+ 1 < n < w, D,, C K, is a club subset of k,
and for all i € 3, (D, Dyi(gy, s Dyi(ni—1)) is homogeneous for P taking value u;. One may also assume that
forallm+1<n<w, D, C Ky \ kpn—1. Forallm+1<n < w,let E, ={enump_ (w-a+w): a < k,}.
Let F =, 1<ncw En- Note that |[F| = & and for all £ < ¢, [F|¢ = [F]$ by Fact [1.22] Let & < 8 be the
first two elements of [D]l. The claim is that & ¢ Bl (< ¢, F). Let f € Bly(< ¢, F). Let £ = dom(f). Let
A={kew: (I <&(f(n) € Di)}. Since f is bounded below «, A is finite. Let n = |A|. Let p: n — A be
the increasing enumeration of A. For each i < n, let A; = {n < {: f(n) € Dyy}. Let £(i) = ot(A;). Let
i = (n,p,¢) which is an instruction. Note that for all i < n, m+1 < p(i) <w and £(0)+...+l(n—1) =& < e.
Thus i is a (< €)-instruction above m + 1. Thus i € J. For each i < n, let f; : £(i) — F be defined by

fin) = f(32;2ip(j) +n). Note that f = fo"f1"..." fa—1 and for all i <n, f; € [Dp(i)]i(i).
(1) Suppose u; = 0. (&, fo, s fa1) € [D]E X [Dp()]“® x .. X [Dygn_1)[<" . Thus P.(@, fo, s fno1) =
u; = 0 implies that & > ®(fo"..." fr—1) = 2(f).
(2) Suppose u; = 1. (B, fo, -y fa—1) € DX Dp(g) X ... X Dp(n_1). Thus Pi(@, fo, ..., fu—1) = u; = 1 implies
that & < 8 < ®(fo"." fa—1) = (/).

6Going from E to F obtains the property that [F]¢ = [F]i which is important since all partitions above used functions of
the correct type but Bl (< ¢, F) refer to all increasing function.
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Since f € Bl (< ¢, F') was arbitrary, one has shown that & ¢ ®[Bl,.(< ¢, F')]. Thus ®[Bl.(< ¢, F)] # k. Since
€ < k was arbitrary, this implies that k is super-Magidor. O

The next result answer Question 2.8 of Ben-Neria and Garti from [I].

Theorem 4.30. Assume AD. The supremum of the projective ordinals 8"

» s super-Magidor.

Proof. Use Example and Theorem O
Theorem 4.31. Assume AD. There are unboundedly many singular super-Magidor cardinals below ©.
Proof. Use Example and Theorem O

Next, one will show that the supremum « of a reasonable sequence (k,, : n € w) has a (< w - w)-Magidor
filter. One will define the potential filters next.

Definition 4.32. Let # = (k, : n € w) be a reasonable sequence and let x = sup&. Let 6 = (5, : n € w)
and T = (I',, : n € w) witness that 7 is a very reasonable sequence. Assume that dy > w - (w - w). (One can
always drop the first few terms from & to obtain such a reasonable sequence.) Define ;* to be a filter on &
by X € pF if and only if there is a sequence (D,, : n € w) so that for all n < w, D, is a club subset of &,
and for all 1 <n < w Dy, C ki \ fin—1, and U, ¢, Dn € X[

new

The following is the appropriate notion of instruction for partitions on ordinals below ¢ while accounting
for limit behaviors.

Definition 4.33. Let € < w - w. Let L. denote the finite set of limit ordinals below €. If F' C L. is a finite
set. Let x& = ot(e \ F'). Let ¢% : x& — €\ F be the increasing enumeration of € \ F'. An (e, *)-instruction
isi= (e, Fyn,p,f) such that F C L., 1 <n < w, p:n — (w)\1) is increasing, and ¢ : n — x5 so that
Y ien (i) = X% For € <w-w, let J¢ denote the set of (e, x)-instruction. Let 7* = J, ., J°. Note let J* is
countable.

Theorem 4.34. Assume AD. If k is the supremum of a reasonable sequence, then k has a (< w-w)-Magidor

filter.

Proof. Let & = (K, : n € w) be a reasonable sequence such that k = sup{ky, : n € w}. Let (I'y, : n € w)
and (C, : n € w) witness that K is very reasonable and one may assume that (y > w - (w-w). Let & : Bl (<
w-w,k) = K. Suppose i € T*. Say i takes the form i = (¢, F,n,p,€). If (fo,..., fu_1) € HKR[HP@]ZU)’
then let hifo _____ ., © € = k be defined as follows: For any o ¢ F', let i < n and n < /(i) be such that
a= e (D, () + 77)‘. Let hifo,...,fn,l(a) = fi(n). This defines hifo,...,fnfl [ (¢\ F). For any a € F, let
Ry s (@) =sup{hy , (B):B <aAnpBe€ce\F)} Notethat b}y .  is continuous precisely at
a € F. Define P; : [ko] X [T, [kp()]@ — 2 by Pi(a, fo, ..., f») = 0 if and only if (I)(h}o,...,fn ) < a. By

-1
Theoremm7 (KOs Kp(0)s s Fp(n—1)) = (Ko, Kp(0), ...,np(n_l))é’e(o)"”’g("_l). Thus there is a unique u; € 2

which is the homogeneous value for P,. By the pointclass arguments in the proof of Theorem there
is a sequence (D, : n < w) so that for all n < w, D, is a club subset of k, and for all i € J* of the
form i = (e,n, F,p,£), (Do, Dy, s Dp(n—1)) is homogeneous for Piﬁ Again, one can assume that for all
1<n<w, D, Cky\kno. Leta< b be the first two elements of Dy. Let F = Ui<necw Dn- The claim
is that @ ¢ ®[Bl.(< w x w, E)]. Pick any f € Bl(< w-w,E). Let € = |f|. Let F C L, be those a such
that sup(f | @) = f(a). Let A={k € w: (I < x%)(f(ex(n)) € Dy)}. Let n = |A|. Let p: n — A be
the increasing enumeration of A. For i < n, let B; = {n < x% : f(er(n)) € Dpg)}. Let £(i) = ot(B;). Let
i=(e,n,p,£). Note that i € J*. For each i < n, let f; : £(i) — Dy(;) be defined by fi(n) = f(e(enump, (a)).

7[1] demands that Magidor filter contain all tails. x* does not contain all tails but one can make a simple modification to the
definition to make the filter contain all tails. One can then make an appropriate change in all the arguments below. However,
this seems to be not particularly significant.

8Note that in the proof of Theorem Kkim and Km41 were reserved and one considered instructions so that p maps above
m + 1. Here coordinate 0 plays the role of ks 41. In Theorem@ coordinate m was reserved to do the long e-length selection
of clubs. Here J* is countable so one can use use ACE and the coarse Moschovakis coding lemma to make the corresponding
selection.
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Note that f; € [Dp(,-)]i(i) (with the uniform cofinality w given by the fact that £(i) is countable and AC:-

holds). Thus (fo,.., fn) € H0<i<n[Dp(i)]£(z) and f = }07_“7%71. By an argument similar to the proof of
Theorem [4.29] considering the two possible value of u;, one can show that ®(f) # a. Since f € Bl (< w-w, E)
was arbitrary, this shows that ®[Bl.(< w-w, E)] # k. Let & = (k; : 1 <n < w). Note that E € p*. Since
® : Bl(< w-w, k) — K was arbitrary, it has been shown that p is a (< w - w)-Magidor filter for . O

The following answers [1] Question 3.4 (which is interpreted to mean w-Magidor filter in light of the results
of [I] Section 3 and the stronger Question 3.5).

Theorem 4.35. Assume AD. The supremum of the projective ordinals Ji has a (< w - w)-Magidor filter.
Proof. Use Example [£.26] and Theorem [4.34] O

Theorem 4.36. Assume AD. There are unboundedly many singular super-Magidor cardinals below © which
possess an (< w - w)-Magidor filter.

Proof. Use Example and Theorem |4.34] ]
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