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Abstract. This paper will consider combinatorial properties related to coding a cardinal by its bounded

subsets. These properties have traditionally been studied in the context of very large cardinals and variations

of these properties either reach the level of Kunen inconsistency or are very close to it. Within the descriptive
set theoretic framework with determinacy or partition properties, these combinatorial properties are quite

robust and have numerous natural examples.
Let κ be a cardinal, ϵ ≤ κ, and X ⊆ κ. BIκ(ϵ,X) is the set of all subsets of κ of ordertype ϵ which are

bounded below κ. BIκ(< ϵ,X) is the set of all subsets of X of ordertype less than ϵ bounded below X. The

following will be shown which answer or address several questions of Ben-Neria and Garti.
• Let µ1

ω1
be the club filter on ω1. Assume ω1 →∗ (ω1)

ω1
<ω1

and jµ1
ω1

(ω1) = ω2. For any function

Φ : BI(< ω1, ωω) → ωω , there is an X ⊆ ωω with |X| = |ωω | so that Φ[BIωω (< ω1, X)] ̸= ωω .
• Let µ1

κ be the ω-club filter on κ. If κ →∗ (κ)<ω·ω
2 , then for any ϵ < ω · ω and any function Φ : BIκ(<

ϵ, κ) → κ, there is an X ∈ µ1
κ so that Φ[BIκ(< ϵ,X)] ̸= κ.

• Let Θ be the supremum of the ordinal onto which R surjects. For any cardinal κ with ω1 ≤ κ < Θ,

there is a function Φ : BIκ(ω · ω, κ) → κ so that for all X ∈ µ1
κ, Φ[BIκ(ω · ω,X)] = κ.

• Assume AD and DCR. For any uniform countably complete filter F on ω1, there is a function Φ :

BIω1 (ω · ω, ω1) → ω1 so that for all X ∈ F , Φ[BIω1 (ω · ω,X)] = ω1.

• Assume AD. Let δ1ω = sup{δ1n : n ∈ ω} be the supremum of the projective ordinals. For any ϵ < δ1ω
and Φ : BIδ1

ω
(< ϵ, δ1ω) → δ1ω , there is an X ⊆ δ1ω with |X| = |δ1ω | so that Φ[BIδ1

ω
(< ϵ,X)] ̸= δ1ω . There

is also a uniform filter F on δ1ω so that for all ϵ < ω · ω and function Φ : BIδ1
ω
(< ϵ, δ1ω) → δ1ω , there is

an X ∈ F so that Φ[BIδ1
ω
(< ϵ,X)] ̸= δ1ω .

1. Jónsson and Magidor Properties

One will work over ZF and all other assumptions will be made explicit. If X and Y are two sets, then
XY is the set of all function f : X → Y . Let ON be the class of ordinals. If X ⊆ ON and ϵ ∈ ON, then [X]ϵ

is the set of all order preserving function f : ϵ→ X. Let [X]<ϵ =
⋃

δ<ϵ[X]δ.

Definition 1.1. Let κ be a cardinal and ϵ ≤ κ. A ϵ-Jónsson function for κ is a function Φ : [κ]ϵ → κ with
the property that for all A ⊆ κ with |A| = κ, Φ[[A]ϵ] = κ. κ is said to be ϵ-Jónsson if and only if there are
no ϵ-Jónsson functions for κ.

A Jónsson function for κ is a function Φ : [κ]<ω → κ so that for all A ⊆ κ with |A| = κ, Φ[[A]<ω] = κ. κ
is Jónsson if and only if there are no Jónsson functions for κ.

A function Φ : [κ]<ϵ → κ is a (< ϵ)-Jónsson function for κ if and only if for all A ⊆ κ with |A| = κ,
Φ[[A]<ϵ] = κ. (Note that a Jónsson function for κ is a (< ω)-Jónsson function.) κ is (< ϵ)-Jónsson if and
only if there are no (< ϵ)-Jónsson functions.

Under ZFC, the existence of a Jónsson cardinal implies 0♯ exists. Erdős and Hajnal ([10], [9]) showed
that under ZFC and CH, 2ω (the cardinal in bijection with R) is not Jónsson. Solovay showed that assuming
the consistency of a measurable cardinal, 2ω can be real-valued measurable and hence Jónsson. Erdős and
Hajnal ([10]) showed under ZFC that every infinite set has an ω-Jónsson function and thus there are no
ω-Jónsson cardinals. The ω-Jónsson functions appear in Kunen original proof of the Kunen’s inconsistency
and is an important aspect of the proof which requires the axiom of choice.

Fact 1.2. For any infinite cardinal κ, κ is not (< κ)-Jónsson. In particular, ω is not Jónsson.

May 13, 2025. This research was funded in whole or in part by the Austrian Science Fund (FWF) 10.55776/Y1498.

1



Proof. Define Φ : [κ]<κ → κ be defined by Φ(f) = dom(f). (That is, if f ∈ [κ]<κ and ϵ < κ with f : ϵ→ κ,
then Φ(f) = ϵ.) For any A ⊆ κ with |A| = κ, Φ[[A]<κ] = κ. Thus Φ is a (< κ)-Jónsson function. □

Definition 1.3. (Ordinary partition relation) Let κ be a cardinal, ϵ ≤ κ, and γ < κ. κ → (κ)ϵγ is the
assertion that for all P : [κ]ϵ → γ, there is an A ⊆ κ with |A| = κ and a β < γ so that for all f ∈ [A]ϵ,
P (f) = β. (In this situation, one says that A is a homogeneous set for P taking value β.)

For a cardinal κ, ϵ ≤ κ, and γ < κ, κ→ (κ)<ϵ
γ is the assertion that for all ϵ′ < ϵ, κ→ (κ)ϵ

′

γ .
For an uncountable cardinal κ, ϵ ≤ κ, and γ ≤ κ, κ→ (κ)ϵ<γ is the assertion that for all γ′ < γ, κ→ (κ)ϵγ′ .

For an uncountable cardinal κ, ϵ ≤ κ, and γ ≤ κ, κ→ (κ)<ϵ
<γ is the assertion that for all ϵ′ < ϵ and γ′ < γ,

κ→ (κ)ϵ
′

γ′ .

κ is a weak partition cardinal if and only if κ → (κ)<κ
2 . κ is a strong partition cardinal if and only if

κ→ (κ)κ2 . κ is a very strong partition cardinal if and only if κ→ (κ)κ<κ.
Note that κ→ (κ)22 implies that κ must be regular.

The Ramsey theorem states that for all 1 ≤ n < ω and 1 ≤ m < ω, ω → (ω)nm. Under ZFC, if κ is an
uncountable cardinal satisfying κ→ (κ)22, then κ is called weakly compact cardinal. For any infinite cardinal
κ, one can show that κ → (κ)ω2 implies [κ]ω is not wellorderable and thus the axiom of choice must fail.
ω → (ω)ω2 is often called the Ramsey property. Mathias ([22]) showed that assuming the consistency of an
inaccessible cardinal, ω → (ω)ω2 holds in the Solovay model obtained from Lévy collapsing the inaccessible
cardinal to ω1. Mathias’s argument used highly absolute codes for partitions P : [ω]ω → 2 which exists in the
Solovay model to produce homogeneous sets using generics for Mathias forcing over an inner model of choice
containing the code set. AD is the axiom of determinacy which states all infinite games of a suitable form
has a winning strategy for one of the two players. AD+ is Woodin’s extension of the axiom of determinacy.
Among the postulates of AD+ is the assertion that all subsets of R have ∞-Borel code. Woodin observed
that these ∞-Borel code can be used in the same manner as Mathias’s argument in the Solovay model to
show that AD+ proves ω → (ω)ω2 . It is open if AD proves ω → (ω)ω2 .

Mitchell ([23]) used Radin forcing to show the consistency of ZF, DC, and the club filter on ω1 is countably
complete ultrafilter from the consistency of a measure sequence with suitable repeat point properties. Woodin
then used Radin forcing to show the consistency of ZF, DC, and the weak partition property ω1 → (ω1)

<ω1
2

from the consistency of a measure sequence with suitable repeat point properties. The axiom of determinacy
using Martin’s good coding system for functions by reals which satisfies strong definability conditions relative
to a pointclass is the only known setting with any strong partition cardinals. (Good coding system will be
briefly reviewed in Section 4. See [18], [17], [5], and [3] for more about the good coding systems.) Martin’s
method of good coding always establishes the very strong partition property. It is open if the strong partition
property at κ (κ → (κ)κ2 ) always implies the very strong partition property (κ → (κ)κ<κ). Martin showed
AD proves that ω1 is a very strong partition cardinal, ω1 → (ω1)

ω1
<ω1

. Martin also showed that AD implies

that ω2 is a weak partition cardinal satisfying ω2 → (ω2)
<ω2
2 . Martin and Paris showed ω2 is not a strong

partition cardinal. (See [18], [17], [5], and [3].) This result and many other properties of cardinals below
ωω were established by Martin by analyzing the ultrapower of ω1 by partition filters on ω1 using the strong
partition property (which will be discussed further below). Let µ1

ω1
be the club filter on ω1. Suitable partition

properties imply µ1
ω1

is a normal ultrafilter. Kleinberg ([21]) derived many of the results of Martin and many
other combinatorial results (discussed below) under the combinatorial assumption that ω1 → (ω1)

ω1
2 and

the ultrapower jµ1
ω1
(ω1) = ω2 (which does hold under AD). (AD also seems to be the only known theory in

which µ1
ω1

is a countably complete ultrafilter and jµ1
ω1
(ω1) = ω2.) Let Θ be the supremum of the ordinals

onto which R surjects. Under ZFC and CH, Θ = ω2. Under AD, Θ is very large. Sets which are images
of R are under the influences of determinacy and hence Θ can be regarded as the ordinal height of the
determinacy world. Using Martin’s good coding methods, Kechris-Kleinberg-Moschovakis-Woodin ([19])
showed that there are unboundedly many strong partition cardinals below Θ. Kechris and Woodin ([20],
[21]) showed that if V = L(R) then AD holds if and only if there are unboundedly many strong partition
cardinals below Θ. Jackson ([16], [17], [15]) showed that all the odd projective ordinals δ12n+1 are very strong

partition cardinals and the even projective ordinals δ12n+2 = (δ12n+1)
+ are weak partition cardinal which are

not strong partition cardinals.
Suitable ordinary partition properties imply appropriate degrees of Jónssonness.
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If f : ϵ → ON and δ < ϵ, then let drop(f, δ) : ϵ− δ → ON be defined by drop(f, δ)(α) = f(δ + α) (where
ϵ− δ is the unique ordinal γ so that ϵ = δ + γ).

Proposition 1.4. Let κ be a cardinal and ϵ ≤ κ. If κ→ (κ)1+ϵ
2 , then κ is ϵ-Jónsson.

Proof. Let Φ : [κ]ϵ → κ. Define P : [κ]1+ϵ → 2 by P (g) = 0 if and only if Φ(drop(g, 1)) < g(0). By κ→ (κ)ϵ2,
there is an A ⊆ κ with |A| = κ which is homogeneous for P . Since ᾱ < β̄ be the first two elements of A. Let
B = A \ (β̄ + 1). Suppose f ∈ [B]ϵ.

• A is homogeneous for P taking value 0: Let gf ∈ [A]1+ϵ be defined so that gf (0) = ᾱ and
drop(gf , 1) = f . P (gf ) = 0 implies that Φ(f) = Φ(drop(gf , 1)) < gf (0) = ᾱ. So ᾱ /∈ Φ[[B]ϵ].

• A is homogeneous for P taking value 1: Let gf ∈ [A]1+ϵ be defined so that gf (0) = β̄ and
drop(gf , 1) = f . P (gf ) = 1 implies that Φ(f) = Φ(drop(gf , 1)) ≥ gf (0) = β̄ > ᾱ. So ᾱ /∈ Φ[[B]ϵ].

Thus Φ[[A]ϵ] ̸= κ. Since Φ was arbitrary, this shows that κ is ϵ-Jónsson. □

Without the axiom of choice, there can exists ω-Jónsson functions.

Fact 1.5. If ω → (ω)ω2 , then ω is an ω-Jónsson cardinal.

Proof. By Proposition 1.4. □

Fact 1.6. Assume ω1 → (ω1)
ω1
2 and jµ1

ω1
(ω1) = ω2. ω1 and ω2 are ω-Jónsson.

Proof. Martin and Kleinberg showed this hypothesis implies ω2 is a weak partition cardinals. The result
follow from Proposition 1.4. □

If κ is a cardinal and µ is an ultrafilter on κ, then µ is uniform if and only if every A ∈ µ, |A| = κ. If κ is
an uncountable cardinal and µ is an ultrafilter on κ, then κ is normal if and only if for all f : κ→ κ such that

{α ∈ κ : f(α) < α} ∈ µ, then there is a δ < κ such that {α ∈ κ : f(α) = δ} ∈ µ. Let A⃗ = ⟨Aα : α < κ⟩ ⊆ µ.

Define △A⃗ = {α ∈ κ : (∀β < α)(α ∈ Aβ)}. The normality of µ is equivalent to the fact that for all

A⃗ = ⟨Aα : α < κ⟩ ⊆ µ, △A⃗ ∈ µ. Note that a uniform normal ultrafilter on κ is κ-complete.

Definition 1.7. Let κ be an uncountable cardinal, µ be a normal uniform ultrafilter on κ, 1 ≤ n ∈ ω, and
γ < κ. Let κ →µ (κ)ϵγ be the assertion that for all P : [κ]n → γ, there is a (unique) β < γ and an A ∈ µ so
that for all ℓ ∈ [A]n, Φ(ℓ) = β.

Fact 1.8. (Rowbottom lemma) Assume κ is an uncountable cardinal, µ is a uniform normal ultrafilter on
κ, 1 ≤ n < ω, and γ < κ. Then κ→µ (κ)nγ .

Definition 1.9. Let κ be an uncountable cardinal, µ be a uniform normal ultrafilter on κ, and let 1 ≤ n < ω.
Define µn to be the filter on [κ]n, defined by X ∈ µn if and only if there is an A ∈ µ so that [A]n ⊆ X.

The Rowbottom lemma (Fact 1.8) implies that µn is an κ-complete ultrafilter on [κ]n for all 1 ≤ n < ω.
Let µ⊗n denote the n-fold product of µ which is an ultrafilter on nκ. The Rowbottom lemma can be used
to show that µn is equal to µ⊗n restricted to [κ]n.

With ACP(κ)
ω , the Rowbottom lemma (Fact 1.8), and Proposition 1.4, it is easy to see any κ which

possess a uniform normal ultrafilter on κ is Jónsson. Under AD, ACR
ω holds by a simple game argument.

The Moschovakis coding lemma implies that if κ < Θ, then there is a surjection of R onto P(κ). Thus AD

proves ACP(κ)
ω for all κ < Θ. However, no form of countable choice is necessary to show that a cardinal κ

which possesses a normal uniform ultrafilter is Jónsson if one carefully observe the uniformity in the proof
of Rowbottom’s lemma. This will be stated explicitly as follows:

Fact 1.10. Let κ be an uncountable cardinal and let µ be a uniform normal ultrafilter on κ. There is a
sequence ⟨Cn

µ : 1 ≤ n < ω⟩ such that for all 1 ≤ n < ω, Cn
µ : µn → µ has the property that for all B ∈ µn,

Cn
µ(B) ∈ µ and [Cn

µ(B)]n ⊆ B. (In other words, Cn
µ picks for each B ∈ µn, a homogeneous set in µ for B.)

Proof. The function ⟨Cn
µ : 1 ≤ n < ω⟩ will be defined by recursion on n. Let C1

µ : µ → µ be the identity
function. Suppose 1 ≤ n < ω and Cn

µ : µn → µ has been defined with the property that for all B ∈ µn,

Cn
µ(B) ∈ µ and [Cn

µ(B)]n ⊆ B. Let B ∈ µn+1. This implies there is some A ∈ µ so that [A]n+1 ⊆ B. For
each α < κ, let Bα = {ι ∈ [κ]n : α < ι(0) ∧ ⟨α⟩̂ ι ∈ B}. For each α ∈ A, Bα ∈ µn since [A \ (α+ 1)]n ⊆ Bα.
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Thus DB = {α ∈ κ : Bα ∈ µ} ∈ µ since A ⊆ DB . For all α ∈ DB , [C
n
µ(Bα)]

n ⊆ Bα by the inductive

assumption. For each α < κ, let EB
α = Cn

µ(Bα) if α ∈ DB and EB
α = κ otherwise. Let E⃗B = ⟨EB

α : α < κ⟩.
Define Cn+1

µ (B) = DB ∩△E⃗B . Note that Cn+1
µ (B) ∈ µ since µ is normal. Suppose ℓ ∈ [Cn+1

µ (B)]n+1. Then

ℓ(0) ∈ DB . By definition of ℓ(k) ∈ △E⃗B for all 1 ≤ k < n + 1, one has that ℓ(k) ∈ Eℓ(0) = Cn
µ(Bℓ(0)) since

ℓ(0) ∈ DB . Thus drop(ℓ, 1) ∈ [Cn
µ(Bℓ(0)]

n ⊆ Bℓ(0). Thus ℓ = ⟨ℓ(0)⟩̂ drop(ℓ, 1) ∈ B. Since ℓ ∈ [Cn+1
µ (B)]n+1

was arbitrary, one has shown that [Cn+1
µ (B)]n+1 ⊆ B. This completes the construction. □

Fact 1.11. Let κ be an uncountable cardinal such that there is a uniform normal ultrafilter on κ. Then κ is
Jónsson.

Proof. Fix a uniform normal ultrafilter µ on κ. Let ⟨Cn
µ : 1 ≤ n < ω⟩ be obtained by Fact 1.10 with the

properties stated there. Let Φ : [κ]<ω → κ. For each 1 ≤ n < ω, define Pn : [κ]n+1 → 2 by Pn(ℓ) = 0
if and only if Φ(drop(ℓ, 1)) < ℓ(0). By κ →µ (κ)n+1

2 , there is a unique in ∈ 2 so that P−1
n [{in}] ∈ µn+1.

Let A =
⋂

1≤n<ω Cn+1
µ (P−1

n [{in}]). Note that A ∈ µ since µ is κ-complete. Note that [κ]0 = {∅}. Let

ᾱ be the least element of A greater than Φ(∅). Let β̄ be the least element of A greater than ᾱ. Let
B = A \ (β̄ + 1). Let n < ω. If n = 0, note that ᾱ ̸= Φ(∅). Suppose 1 ≤ n < ω. Suppose in = 0. For any
ι ∈ [A]n, let ℓnι ∈ [B]n+1 be defined so that ℓnι (0) = ᾱ and drop(ℓnι , 1) = ι. Then Pn(ℓ

n
ι ) = in = 0 implies that

Φ(ι) = Φ(drop(ℓnι , 1)) < ℓnι (0) = ᾱ. Now suppose in = 1. For any ι ∈ [B]n, let τnι ∈ [A]n+1 be defined so that
τnι (0) = β̄ and drop(τnι , 1) = ι. Then P (τnι ) = in = 1 implies that ᾱ < β̄ = τnι (0) ≤ Φ(drop(τnι , 1)) = Φ(ι).
In any case, ᾱ /∈ Φ[[B]n]. Since n ∈ ω was arbitrary, ᾱ /∈ Φ[[B]<ω]. This shows that Φ is not a Jónsson
function. Since Φ was arbitrary, there are no Jónsson function for κ. κ is a Jónsson cardinal. □

ω is never Jónsson as shown in Fact 1.2. ω1 → (ω1)
ω1
2 and jµ(ω1) = ω2 implies that ω2 is a weak partition

cardinal. This hypothesis implies that club filter is a uniform normal measure on ω1 and the ω-club filter
on ω2 is a uniform normal ultrafilter on ω2. Fact 1.11 implies ω1 and ω2 are Jónsson cardinals under these
hypothesis (and in particular under AD). Kleinberg then showed that these same hypothesis implies for all
n < ω, ωn are Jónsson cardinals. Jackson-Ketchersid-Schlutzenberg-Woodin ([14]) showed under AD+, every
uncountable cardinal κ < Θ is Jónsson.

Jackson, Holshouser, Meehan, Trang, and the author have investigated Jónssonness property of non-
wellorderable sets. Greater care needs to be made in the definition of Jónssonness when X is not wellorder-
able by using injective tuples. (See [8] and [4] for the relevant definitions.) Holshouser and Jackson showed
that R is Jónsson (also see [8]) assuming AD. Let E0 be the equivalence relation on ω2 defined by x E0 y
if and only if there exists an m ∈ ω so that for all m ≤ n < ω, x(n) = y(n). Meehan and the author ([8])
showed that R/E0 is 2-Jónsson but is not 3-Jónsson under AD. R/E0 and minor variation are essentially
the only known example of a set which is not Jónsson in the determinacy context. Jackson, Trang, and the
author ([7]) showed that AD implies ωω1 is Jónsson. This argument essentially shows that for any cardinal
κ satisfying κ →∗ (κ)ω·ω

2 (see below for the definition of the correct type partition relation), ωκ is Jónsson.
Jackson, Trang, and the author can show that for all cardinals κ ≤ ωω,

ωκ is Jónsson. Using a higher dimen-
sional analog of generalized Namba forcing (or diagonal Prikry forcing) over HOD-type models as developed
by the author in [2], the author can show under AD+ that ωκ for κ < Θ with cof(κ) = ω is Jónsson. The
Hjorth E0-dichotomy ([13]) states that under AD+, if X is a surjective image of R, then exactly one of the
following holds:

• X injects into the power set of an ordinal (and hence X is linearly orderable).
• R/E0 injects into X (and hence X is not linearly orderble).

In light of the known Jónssonness results and the Hjorth’s dichotomy, an appealing conjecture is that under
AD+, a set X is Jónsson if and only if X is linearly orderable.

Next, one will show that singular cardinals cannot be ω-Jónsson.

Definition 1.12. Let κ be a cardinal ϵ ≤ κ, and X be a set. A (κ, ϵ,X)-coding function is a function
Φ : [κ]ϵ → X so that for all A ⊆ κ with |A| = κ, Φ[[A]ϵ] = X. Note that an ϵ-Jónsson function is a
(κ, ϵ, κ)-coding function.

Fact 1.13. Let κ be a cardinal.
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(1) Let X be a set and ϵ0 ≤ ϵ1 ≤ κ. If there is a (κ, ϵ0, X)-coding function, then there is a (κ, ϵ1, X)-
coding function.

(2) Let X be a set, Y be a set that X surjections onto, and ϵ ≤ κ. If there is a (κ, ϵ,X)-coding function,
then there is a (κ, ϵ, Y )-coding function.

(3) Let X be a set which surjects into κ. If there is a (κ, ϵ,X)-coding function, then κ is not ϵ-Jónsson.

Proof. (1) If Φ is a (κ, ϵ0, X)-coding function, then Ψ : [κ]ϵ1 → X defined by Ψ(f) = Φ(f ↾ ϵ0) is a
(κ, ϵ1, X)-coding function.

(2) Let π : X → Y be a surjection and Φ : [κ]ϵ → X be a (κ, ϵ,X)-coding function. Then Ψ : [κ]ϵ → Y
defined by Ψ(f) = π(Φ(f)) is a (κ, ϵ, Y )-coding function.

(3) If X surjects into κ, then (2) implies there is a (κ, ϵ, κ)-coding function or equivalently an ϵ-Jónsson
function. □

Theorem 1.14. If κ is a singular cardinal with δ = cof(κ), then for all limit ordinals ϵ ≤ δ, there is a
(κ, ϵ,P(ϵ))-coding function.

Proof. Fix κ a singular cardinal, δ = cof(κ), and ϵ ≤ δ be a limit ordinal. Let ρ : δ → κ be an increasing
cofinal function. Let φ : κ → δ be defined by φ(α) is the unique γ < δ so that sup(ρ ↾ γ) ≤ α < ρ(γ).
Let f ∈ [κ]ϵ. Note that φ ◦ f : ϵ → δ is a non-decreasing sequence. Let ξf = ot((φ ◦ f)[ϵ]). Note that
ξf ≤ ϵ. Let ϖ(f) : ξf → δ be the increasing enumeration of φ ◦ f . Let Φ(f) : [κ]ϵ → P(ϵ) be defined by
Φ(f) = {η < ξf : |(φ ◦ f)−1[{ϖ(f)(η)}]| ≥ 2}. The following intuitively describes Φ(f). For each η < ξf ,
ϖ(f)(η) appears in the non-decreasing sequence φ ◦ f . If ϖ(f)(η) only appears once in φ ◦ f , then η /∈ Φ(f).
If ϖ(f)(η) appears more than once in φ ◦ f , then n ∈ Φ(f).

Suppose A ⊆ κ with |A| = κ. For each γ < δ, let Aγ = {α ∈ A : sup(ρ ↾ γ) ≤ α < ρ(γ)}. Note
that ot(Aγ) ≤ ρ(γ) and A =

⋃
γ<δ Aγ . Let B = {γ < δ : |Aγ | ≥ 2}. B must be unbounded in δ. To

see this, suppose B is bounded and let χ = sup{2, ρ(γ) : γ ∈ B}. Note that χ < κ and for all γ < δ,
ot(Aγ) ≤ χ. For all γ < δ, let mγ : Aγ → ot(Aγ) be the Mostowski collapse map. Since ot(Aγ) < χ, one
may regard mγ : Aγ → χ. Define Ψ : A → δ × χ by Ψ(α) = (γ,mγ(α)) where γ is unique so that α ∈ Aγ .
Ψ is an injection and so |κ| = |A| ≤ |δ × χ| ≤ max{|δ|, |χ|} < |κ| which is a contradiction. This shows
that B is unbounded in δ. Since δ is regular, ot(B) = δ. Since ϵ ≤ δ, let ⟨γη : η < ϵ⟩ be the increasing
enumeration of the first ϵ-many elements of B. For each η ∈ ϵ, let α0

η < α1
η be the first two elements of

Aγn
. Note that for all i, j ∈ ω and η0 < η1, α

i
η0
< ρ(γη0

) ≤ sup(ρ ↾ γη1
) ≤ αj

η1
. Fix E ∈ P(ϵ). Let

FE = {α0
η : η /∈ E} ∪ {α0

η, α
1
η : η ∈ E}. Note that ot(FE) = ϵ using the assumption that ϵ is a limit

ordinal. Let fE ∈ [κ]ϵ be the increasing enumeration of FE . Note that ϖ(fE) = ⟨γη : η ∈ ϵ⟩. For all

η /∈ E, |(φ ◦ fE)−1[{ϖ(fE)(η)}]| = |(φ ◦ fE)−1[{γη}]| = |f−1
E [{α0

η}]| = 1 and thus η /∈ Φ(E). For all η ∈ E,

|(φ ◦ fE)−1[{ϖ(fE)(η)}]| = |(φ ◦ fE)−1[{γη}]| = |f−1
E [α0

η, α
1
η]| = 2 and thus η ∈ Φ(E). This shows that

Φ(fE) = E. Since E ∈ P(ϵ) was arbitrary. Φ[[A]κ] = P(ϵ). Since A ⊆ κ with |A| = κ was arbitrary, this
shows that Φ is a (κ, ω,P(ϵ))-coding function. □

Theorem 1.15. If κ < Θ and κ is a singular cardinal, then κ is not ϵ-Jónsson for all ω ≤ ϵ ≤ κ.

Proof. By Theorem 1.14, κ has a (κ, ω,P(ω))-coding function. Since κ < Θ means κ is a image of R, Fact
1.13 (2) implies there is a (κ, ω, κ)-coding function. Then by Fact 1.13 (1), for all ω ≤ ϵ ≤ κ, there is a
(κ, ϵ, κ)-coding function. Since a (κ, ϵ, κ)-coding function is an ϵ-Jónsson function, this shows that κ is not
ϵ-Jónsson for all ω ≤ ϵ ≤ κ. □

Fact 1.16. Assume ω1 → (ω1)
ω1
2 and jµ1

ω1
(ω1) = ω2 (which holds under AD). For all 3 ≤ n < ω, ωn is not

ϵ-Jónsson for any ω ≤ ϵ ≤ κ.

Proof. Under these hypothesis, Martin showed that cof(ωn) = ω2 for all 2 ≤ n < ω. Thus ωn is singular for
all 3 ≤ n < ω. The result now follows from Theorem 1.15. □

Under AD, if κ is below the supremum of the projective ordinals, sup{δ1n : n < ω}, Jackson has verified
that κ → (κ)ϵ2 for all ϵ < ω1. Thus every regular cardinal below the supremum of the projective ordinals is
ω-Jónsson by Proposition 1.4. Steel ([25] Theorem 8.27) and Woodin ([26] Theorem 2.18) showed that AD+

implies that the ω-club filter on any regular cardinal below Θ has a normal uniform ultrafilter on κ. Thus
5



the Rowbottom lemma implies that under AD+, for every regular cardinal κ < Θ and n < ω, κ → (κ)n2 . It
seem at least plausible that under AD+ every regular cardinal κ < Θ satisfies κ → (κ)ω2 . If this conjecture
is true, then Proposition 1.4 and Theorem 1.15 together would imply under AD+ that the set of ω-Jónsson
cardinals below Θ is exactly the set of regular cardinals below Θ.

The correct type partition relation is often more practically useful when handling infinite exponent as it
directly influence the behavior of the (correct type) partition filter. These partition filters are essential for
the analysis of ωω and the cardinals below ωω.

Definition 1.17. Let ϵ ∈ ON and f : ϵ→ ON.

• f is discontinuous everywhere if and only if for all α < ϵ, sup(f ↾ α) < f(α) (and thus f is an
increasing function).

• f has uniform cofinality ω if and only if there is a function F : ϵ×ω → ON so that for all k ∈ ω and
α < ϵ, F (α, k) < F (α, k + 1) and f(α) = sup{F (α, k) : k ∈ ω}.

• f has the correct type if and only if f is both discontinuous everywhere and has uniform cofinality
ω.

If X ⊆ ON, then let [X]ϵ∗ be the set of all functions f : ϵ→ X of the correct type. Note that [κ]1∗ is just the
set of α < κ with cof(α) = ω.

Note that if a function f : ϵ→ ON has uniform cofinality ω, then in particular, for all α < ϵ, f(α) ≥ ω and
cof(f(α)) = ω. These notions are nontrivial only for uncountable cardinals. Thus the partition relation on
ω cannot be formulated using the correct type notion and must be formulated using the ordinary partition
relation.

Definition 1.18. (Correct type partition relation) Let κ be an uncountable cardinal, ϵ ≤ κ, and γ < κ.
κ →∗ (κ)ϵγ is the assertion that for all P : [κ]ϵ → γ, there is a (unique) β < κ and a club C ⊆ κ so that for
all f ∈ [C]ϵ∗, P (f) = β.

One can similarly define κ →∗ (κ)<ϵ
γ for all ϵ ≤ κ and γ < κ, κ →∗ (κ)ϵ<γ for all ϵ ≤ κ and γ ≤ κ, and

κ→∗ (κ)<ϵ
<γ for all ϵ ≤ κ and γ ≤ κ.

The following indicates the relation between the ordinary and the correct type partition relation.

Fact 1.19. Let κ be an uncountable cardinal, ϵ ≤ κ, γ < κ.

• κ→∗ (κ)ϵγ implies κ→ (κ)ϵγ .
• κ→ (κ)ω·ϵ

γ implies κ→∗ (κ)ϵ2.

In particular, κ→∗ (κ)<κ
2 is equivalent to κ→ (κ)<κ

2 , κ→∗ (κ)κ2 is equivalent κ→ (κ)κ2 , and κ→∗ (κ)κ<κ

is equivalent to κ→ (κ)κ<κ. That is, the weak partition property, the strong partition property, and the very
strong partition property can be equivalently formulated using the ordinary partition relation or the correct
type partition relation.

For the correct type partition relation, the homogeneous sets are now clubs rather than simply sets of
large cardinalities. One nice benefit is that the homogeneous value for a partition is unique independent of
the choice of homogeneous set. Correct type partition relation are more directly related to the (correct type)
partition filter. The price to pay is that one cannot use simply increasing functions but must use functions
of the correct type. Sometimes one will need to put in effort to make and show functions are discontinuous
everywhere and have uniform cofinality ω. (The type of the functions becomes especially important in
Section 3 when considering Magidor filters.)

Definition 1.20. If κ is an uncountable cardinal and 1 ≤ ϵ ≤ κ, then let µϵ
κ be the (correct type) partition

filter on [κ]ϵ defined by X ∈ µϵ
κ if and only if there is a club C ⊆ κ, [C]ϵ∗ ⊆ X. (Note that µ1

κ is just the
ω-club filter.)

Fact 1.21. Let κ be an uncountable cardinal.

(1) For all ϵ ≤ κ, κ→∗ (κ)ϵ2 implies µϵ
κ is an ultrafilter.

(2) For all ϵ < κ, κ→∗ (κ)ϵ+ϵ
2 implies κ→∗ (κ)ϵ<κ. (Thus κ→∗ (κ)<κ

2 implies κ→∗ (κ)<κ
<κ.)

(3) For all ϵ ≤ κ and γ < κ, κ→∗ (κ)ϵγ implies that µϵ
κ is γ+-complete.

(4) κ→∗ (κ)22 implies the ω-club filter µ1
κ is a normal ultrafilter.
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The ordinary partition relation κ → (κ)22 at an uncountable cardinal κ is consistent with ZF (assuming
the consistency of a weakly compact cardinal). However, using the normality of µ1

ω1
, one can show that

κ →∗ (κ)22 implies ωκ is not wellorderable. The finite correct type partition relations already exhibit many
of the properties of the infinite exponent ordinary partition relation. Also the normality of µ1

ω1
can be used

to show that the identity function id : κ→ κ does not have uniform cofinality ω.
If X ⊆ ON, then let enumX : ot(X) → X be the increasing enumeration of X.

Fact 1.22. Let κ be a cardinal and C ⊆ κ be a club. Let E = {enumC(ω · α + ω) : α < κ}. For any ϵ < κ,
[E]ϵ = [E]ϵ∗.

Proof. It is clear that [E]ϵ∗ ⊆ [E]ϵ. Let f ∈ [E]ϵ. Let g ∈ [κ]ϵ be so that for all α < ϵ, f(α) = enumC(ω ·g(α)+
ω). Pick an α < ϵ, sup(f ↾ α) = sup{f(β) : β < α} = sup{enumC(ω ·g(β)+ω) : β < α} ≤ enumC(ω ·g(α)) <
enumC(ω · g(α) + ω) = f(α). This shows that f is discontinuous everywhere. Let F : ϵ× ω → κ be defined
by F (α, n) = enumC(ω · g(α) + n). F witnesses that f has uniform cofinality ω. Thus f ∈ [E]ϵ∗. This shows
[E]ϵ ⊆ [E]ϵ∗. □

Proposition 1.23. Suppose κ is an uncountable cardinal, ϵ ≤ κ, and κ→∗ (κ)ϵϵ. Then κ is (< ϵ)-Jónsson.

Proof. Let Φ : [κ]<ϵ → κ. For each γ < ϵ, let Pγ : [κ]ϵ → 2 be defined by Pγ(f) = 0 if and only
if Φ(drop(f, 1) ↾ γ) < f(0). By κ →∗ (κ)ϵ2, there is a unique iγ ∈ 2 so that there is a club which is
homogeneous for Pγ taking value iγ . Define Q : [κ]ϵ → 2 by Q(f) = 0 if and only if for all γ < ϵ, Pγ(f) = iγ .
By κ →∗ (κ)ϵ2, there is club C0 ⊆ κ which is homogeneous for Q. Suppose C0 is homogeneous for Q taking
value 1. Define Ψ : [C0]

ϵ → ϵ by defined by Ψ(f) is the least γ < ϵ so that Pγ(f) ̸= iγ . By κ→∗ (κ)ϵϵ, there
is a club C1 ⊆ C0 and a γ̄ < ϵ so that for all f ∈ [C1]

ϵ
∗, Ψ(f) = γ̄. Thus C1 is homogeneous for Pγ̄ taking

value 1 − iγ̄ . This is impossible since by definition, iγ̄ is the unique homogeneous value for Pγ̄ . Thus C0

must be homogeneous for Q taking value 0. Let ᾱ < β̄ be the first two elements of [C0]
1
∗ (i.e. ᾱ and β̄ are

the first two elements of C0 having cofinality ω). Let D = C0 \ (β̄ + 1). Let γ < ϵ. First, suppose iγ = 0.
For each g ∈ [C0]

γ
∗ , let fg ∈ [D]ϵ∗ be defined by

fg(ξ) =


ᾱ ξ = 0

g(ζ) 1 ≤ ξ ≤ 1 + γ ∧ ξ = 1 + ζ

nextω·ξ+ω
C (sup(g)) 1 + γ < ξ < ϵ

.

Note that fg(0) = ᾱ and drop(fg, 1) ↾ γ = g. (Note that ᾱ was chosen to have cofinality ω in order to ensure
fg has the correct type.) Since Q(fg) = 0, one has that Pγ(fg) = iγ = 0 which implies Φ(g) = Φ(drop(fg, 1) ↾
γ) < fg(0) = ᾱ. Next, suppose iγ = 1. If g ∈ [D]γ∗ , then let hg ∈ [C0]

ϵ
∗ be defined by

hg(ξ) =


β̄ ξ = 0

g(ζ) 1 ≤ ξ ≤ 1 + γ ∧ ξ = 1 + ζ

nextω·ξ+ω
C (sup(g)) 1 + γ < ξ < ϵ

.

Note that hg(0) = β̄ and drop(hg, 1) ↾ γ = g. Since Q(hg) = 0, Pγ(hg) = iγ = 1 implies ᾱ < β̄ =
hg(0) ≤ Φ(drop(hg, 1) ↾ γ) = Φ(g). So ᾱ /∈ Φ[[D]γ∗ ]. Since γ < ϵ was arbitrary, ᾱ /∈ Φ[[D]<ϵ

∗ ]. Let E =
{enumD(ω ·α+ω) : α < κ}. Note that E ⊆ D and [E]<ϵ = [E]<ϵ

∗ by Fact 1.22. Since [E]<ϵ = [E]<ϵ
∗ ⊆ [D]<ϵ

∗ ,
one has that ᾱ /∈ Φ[[E]<ϵ]. It has been shown that Φ is not a (< ϵ)-Jónsson function. Since Φ was arbitrary,
κ is (< ϵ)-Jónsson. □

The primary subject of this paper are Magidor cardinals which were introduced and studied under ZFC in
[11] by Garti, Hayut, and Shelah. Ben-Neria and Garti in [1] further investigated Magidor cardinals under
AD in [1].

Definition 1.24. Let κ be a cardinal, X ⊆ κ, and ϵ < κ. Define BIκ(ϵ,X) to be the set of bounded
increasing functions f : ϵ→ X such that sup(f) < κ. (Note that BIκ(ϵ,X) can be regarded as the bounded
subsets of X of ordertype ϵ.) Let BIκ(< ϵ,X) =

⋃
γ<ϵ BIκ(γ,X).

Let κ be a cardinal and ϵ < κ. A function Φ : BIκ(ϵ, κ) → κ is an ϵ-Magidor function for κ if and only if
for all A ⊆ κ with |A| = κ, Φ[BIκ(ϵ, A)] = κ. κ is ϵ-Magidor if and only if there are no ϵ-Magidor function
for κ.
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Let κ be a cardinal. κ is lower-Magidor if and only if for all ϵ < κ, κ is ϵ-Magidor.
Let κ be a cardinal and ϵ ≤ κ. A function Φ : BIκ(< ϵ, κ) → κ is an (< ϵ)-Magidor function for κ if and

only if for all A ⊆ κ with |A| = κ, Φ[BIκ(< ϵ,A)] = κ. A cardinal κ is (< ϵ)-Magidor if and only if there are
no (< ϵ)-Magidor function for κ. A cardinal κ is Magidor if and only if κ is (< ω1)-Magidor.

A cardinal κ is super-Magidor if and only if for all ϵ < κ, κ is (< ϵ)-Magidor.

Fact 1.25. For any cardinal κ, κ is not (< κ)-Magidor. In particular, ω1 is not Magidor.

Proof. Let Φ : BIκ(< κ, ω) → κ be defined by Φ(f) = dom(f). Φ is a Magidor function for κ. □

Fact 1.26. A singular cardinal κ < Θ of uncountable cofinality is not ω-Magidor and hence not Magidor.

Proof. A singular cardinal κ < Θ is not ω-Jónsson by Propostion 1.15. Since cof(κ) > ω, [κ]ω = BIκ(ω, κ).
Thus any ω-Jónsson function for κ is an ω-Magidor function for κ. . □

By Fact 1.26, under ZF, the only cardinals below Θ which could potentially be Magidor cardinals are
regular cardinal above ω1 and singular cardinals of countable cofinality. With the axiom of choice, only
singular cardinals of countably cofinality can be Magidor.

Fact 1.27. Assume the axiom of choice, AC. A cardinal of uncountable cofinality is not ω-Magidor and
hence not Magidor.

Proof. Erdős and Hajnal [10] showed that every infinite set has an ω-Jónsson function. If cof(κ) > ω, then
[κ]ω = BIκ(ω, κ). Thus any ω-Jónsson function for κ is an ω-Magidor function for κ. □

Magidor observed that if λ witnessed the axiom I1 in the sense that there is a nontrivial elementary
embedding from Vλ+1 into Vλ+1, then λ is a Magidor cardinal (and necessarily has countable cofinality).
Thus assuming very strong large cardinals strength, there can be Magidor cardinals in ZFC.

Proposition 1.28. Let κ be a cardinal, 1 ≤ ϵ < κ, and κ→ (κ)1+ϵ
2 . Then κ is ϵ-magidor.

Proof. By Proposition 1.4, κ is ϵ-Jónsson. Since the partition relation implies κ is regular, Bκ(ϵ, κ) = [κ]ϵ.
Thus being ϵ-Jónsson is equivalent to being ϵ-Magidor. □

Proposition 1.29. If κ is a cardinal and κ→ (κ)<κ
2 . Then κ is lower-Magidor.

Proof. This follow from Proposition 1.28 □

Proposition 1.30. ω is lower-Magidor.
Assume ω1 → (ω1)

ω1
2 and jµ1

ω1
(ω1) = ω2 (so in particular, under AD). ω1 and ω2 are lower Magidor.

Proof. The Ramsey theorem implies for each n < ω, ω → (ω)n2 . ω1 is lower-Magidor by Proposition 1.29.
Under AD, ω1 and ω2 are weak partition cardinals. Thus ω1 and ω2 are lower-Magidor by Proposition

1.29. □

Thus ω1 is never Magidor, but ω1 is lower-Magidor assuming the weak partition property on ω1. Note
that the notation of lower-Magidor and Magidor (and super-Magidor) have a key different. To establish that
κ is lower-Magidor, one needs to show κ is ϵ-Magidor individually for each ϵ < κ. To establish a cardinal
κ is Magidor, one needs to simulteneously verify ϵ-Magidorness for all ϵ < ω1 by showing no function
Φ : BIκ(< ω1, κ) → κ is a Magidor function. It seems potentially possible that a cardinal κ > ω1 could be
lower-Magidor and yet not Magidor. However, no example is known to the author.

Without the axiom of choice, there are settings with regular Magidor cardinals. For example, AD has an
abundance of regular Magidor cardinals and even very small regular cardinals such as ω2 can be Magidor.

Proposition 1.31. Let κ > ω1 be an uncountable cardinal satisfying κ→∗ (κ)ω1
ω1
. Then κ is Madigor.

Proof. Note κ→∗ (κ)ω1
ω1

implies κ is regular. Since κ > ω1, [κ]
<ω1 = BIω1

(< ω1, κ). Thus κ is (< ω1)-Jónsson
if and only κ is Magidor. By Proposition 1.23, κ is < ω1-Jónsson. Thus κ is Magidor. □

Proposition 1.32. Assume ω1 →∗ (ω1)
ω1
2 and jµ1

ω1
(ω1) = ω2. Then ω2 is the least Magidor cardinal.

Thus AD implies ω2 is the least Magidor cardinal.
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Proof. By Fact 1.25, ω and ω1 are not Magidor. Martin showed that the hypothesis implies ω2 is a weak
partition cardinal and in particular satisfies ω2 →∗ (ω2)

ω1
ω1
. Proposition 1.31 implies ω2 is Magidor. □

Proposition 1.33. Suppose κ is an uncountable cardinal, 1 ≤ ϵ < κ and κ →∗ (κ)ϵϵ. Then κ is (< ϵ)-
Magidor.

Proof. Again since κ is regular by the partition relation, one will identify BIκ(< ϵ, κ) with [κ]<ϵ. Let
Φ : [κ]<ϵ → κ. For each δ < ϵ, let Φδ : [κ]δ → κ be defined by Φδ = Φ ↾ [κ]δ. Define Pδ : [κ]1+δ → 2 be

defined by Pδ(ℓ) = 0 if and only if Φδ(drop(ℓ, 1)) < ℓ(0). By κ →∗ (κ)1+δ
2 , there is a unique iδ ∈ 2 so that

there is a club homogeneous for Pδ taking value iδ. Let Aα = {ℓ ∈ [κ]ϵ : Pδ(ℓ ↾ 1 + δ) = iδ}. Note that
Aδ ∈ µϵ

κ. Since κ →∗ (κ)ϵϵ implies that µϵ
κ is ϵ-complete, A =

⋂
δ<ϵAδ ∈ µϵ

κ. Let C ⊆ κ be a club so that

[C]ϵ∗ ⊆ A. Let ᾱ < β̄ be the first two elements of [C]ϵ∗. Let D = {enumC\(β̄+1)(ω · α + ω) : α < κ}. Note

that |D| = κ and min(D) > β̄. Also observe that [D]<ϵ = [D]<ϵ
∗ by Fact 1.22. Pick ι ∈ [D]<ϵ. Let δ = |ι|.

• Suppose iδ = 0. Let ℓ = ⟨ᾱ⟩̂ ι and note that ℓ ∈ [C]1+δ
∗ . Then Pδ(ℓ) = 0 implies that Φ(ι) =

Φ(drop(ℓ, 1)) < ℓ(0) = ᾱ.
• Suppose iδ = 1. Let ℓ = ⟨β̄⟩̂ ι and note that ℓ ∈ [C]1+δ

∗ . Then Pδ(ℓ) = 1 implies that ᾱ < β̄ = ℓ(0) ≤
Φ(drop(ℓ, 1)) = Φ(ι).

Since ι ∈ [D]<ϵ was arbitrary, one has that ᾱ /∈ Φ[[D]<ϵ]. So Φ[[D]<ϵ] ̸= κ. Since Φ was arbitrary, this shows
that κ is (< ϵ)-Magidor. □

Proposition 1.34. Suppose κ is a weak partition cardinal (satisfies κ→∗ (κ)<κ
2 ). Then κ is a super-Magidor

cardinal.

Proof. For any ϵ < κ, κ→ (κ)ϵ+ϵ
2 implies κ→∗ (κ)ϵ<κ by Fact 1.21. The result now follows from Proposition

1.33. □

Proposition 1.35. Assume ω1 →∗ (ω1)
ω1
2 and jµ1

ω1
(ω1) = ω2. ω1 and ω2 are super-Magidor.

In particular, under AD, ω1 and ω2 are super-Magidor.

Note that ω1 is not Magidor (that is, not (< ω1)-Magidor) but is lower-Magidor and even super-Magidor.
This akwardness is due to some incompatibility with the older definition of a Magidor cardinal and the
definition of a lower-Magidor and super-Magidor cardinal presented here.

Using the finite Ramsey theorem (for all 1 ≤ n < ω, ω → (ω)n2 ), one can show that ω is also super-Magidor
using similar combinatorial arguments under just ZF.

Proposition 1.36. ω is super-Magidor.

2. ωω is Magidor

This section (and Section 4) will address the existence of Magidor cardinals of countable cofinality under
AD. This section will specifically answer Question 2.7 from [1] of Ben-Neria and Garti about the consistency
of ωω being Magidor. First, one will need a more complete survey of the Martin’s ultrapower analysis below
ωω and the combinatorial hypothesis ω1 →∗ (ω1)

ω1
<ω1

and jµ1
ω1
(ω1) = ω2.

There is a more practically useful equivalence of jµ1
ω1
(ω1) = ω2.

Definition 2.1. Let
∏

α∈ω1
α = {(α, β) : β < α}. A function K :

∏
α∈ω1

α→ ω1 is a Kunen function if and

only if for all α < ω1, {K(α, β) : β < α} is an ordinal which will be denoted ΞK(α). If f : ω1 → ω1, then the
Kunen function K bounds f if and only if {α ∈ ω1 : f(α) ≤ ΞK(α)} ∈ µ1

ω1
. K strictly bounds f if and only

if {α < ω1 : f(α) < ΞK(α)} ∈ µ1
ω1
. If γ < ω1, then let Kγ : ω \ (γ + 1) → ω1 be defined by Kγ(α) = K(α, γ).

Let ⋆ be the assumption that for all f : ω1 → ω1, there is a Kunen function bounding f .

Under AD, Kunen defined the eponymous Kunen tree whose sections by different reals can be used to
create Kunen functions bounding any f : ω1 → ω1. This uniformity is needed for deeper analysis of the
projective ordinals. Here, it suffices to know that every function has a Kunen function non-uniformly.

Fact 2.2. (Kunen) AD implies ⋆. (For every function f : ω1 → ω1, there is a Kunen function bounding f .)
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Martin and Kleinberg showed that ω1 →∗ (ω1)
ω1
2 and jµ1

ω1
(ω1) implies many of the basic combinatorial

properties at and below ωω. The assumption ω →∗ (ω1)
ω1
2 and jµ1

ω1
(ω1) = ω2 is equivalent to ω1 →∗ (ω1)

ω1
2

and ⋆. The fact that AD implies jµ1
ω1
(ω1) = ω2 is proved by proving ⋆.

One will show that ω1 →∗ (ω1)
2
2 and jµ1

ω1
(ω1) ≤ ω2 is equivalent to ω1 →∗ (ω1)

2
2 and ⋆. Also using Fact

1.21 (4) and the ideas from the Rowbottom lemma, one can also show ω1 →∗ (ω1)
2
2 is equivalent to µ1

ω1

being a normal ultrafilter.

Fact 2.3. Assume ω1 →∗ (ω1)
2
2. jµ1

ω1
(ω1) ≤ ω2 implies ⋆.

Proof. ω1 →∗ (ω1)
2
2 implies µ1

ω1
is a normal ultrafilter. Let f : ω1 → ω1. Thus [f ]µ1

ω1
< jµ1

ω1
(ω1) ≤ ω2.

There is a surjection Φ : ω1 → [f ]µ1
ω1
. Define a wellordering on ω1 by α ≺ β if and only if Φ(α) < Φ(β). Let

W = (ω1,≺) and note that ot(W) = [f ]µ1
ω1
. For each α < ω1, let Wα = (α,≺↾ α) be the restriction of ≺ to α.

For any α ∈ ω1, let rk(W, α) be the rank of α in W. For any α ∈ ω1 and β < α, let rk(Wα, β) be the rank of β
inWα. For β < α, let K(α, β) = rk(Wα, β). It is clear that for all α < ω1, {K(α, β) : β < α} = ot(Wβ) ∈ ON.
Thus K is a Kunen function and ΞK(α) = ot(Wα) for all α < ω1. Let η < [f ]µ1

ω1
= ot(W). Let γη ∈ ω1

be the unique γ such that rk(W, γ) = η. Let gη : ω1 \ (γη + 1) → ω1 be defined by gη(α) = rk(Wα, γη).
Note that for all α < ω1, gη(α) < ot(Wα) = ΞK(α). Suppose η0 < η1 < [f ]µ1

ω1
. Then {α ∈ ω1 : gη0

(α) <

gη1
(α)} ⊇ ω1 \ (max{γη0

, γη1
} + 1) and thus {α ∈ ω1 : gη0

(α) < gη1
(α)} ∈ µ1

ω1
. This shows that η0 < η1

implies [gη0
]µ1

ω1
< [gη1

]µ1
ω1
. The map Ψ : [f ]µ1

ω1
→ [ΞK]µ1

ω1
defined by Ψ(η) = [gη]µ1

ω1
is an order embedding.

Thus [f ]µ1
ω1

≤ [ΞK]µ1
ω1
. This implies {α ∈ ω1 : f(α) ≤ ΞK(α)} ∈ µ. Thus K is a Kunen function for f . □

Now one will see the converse of Fact 2.3. Note that when one writes jµ1
ω1
(ω1) ≤ ω2, this supposes that the

ultrapower jµ1
ω1
(ω1) is even wellfounded. Here one will never assume any form of dependent choice or even

any form of countable choice. The most salient feature of Kunen function is that it allows the ability to select
representatives. Since Magidor functions involves countable bounded subsets, to address the main question
of this section, one will need to be able to choose representatives for all countable sets A ⊆ jµn

ω1
(ω1) = ωn+1

for all n < ω. If one works under AD, ACR
ω and the Moschovakis coding lemma give ACP(ω1)

ω which will be
sufficient to choose representative for countable sets. However, the relevant subtheory of AD is already able
to choose representative for ω1-size subsets of jµn

ω1
(ω1) = ωn+1.

Fact 2.4. Assume ω1 →∗ (ω1)
2
2. Suppose K is a Kunen function. Suppose K strictly bounds f (or equivalently

[f ]µ1
ω1

≺µ1
ω1

[ΞK]µ1
ω1

in the ultrapower ordering). Then there is a γ < ω1 so that [f ]µ1
ω1

= [Kγ ]µ1
ω1
.

Proof. ω1 →∗ (ω1)
2
2 implies µ1

ω1
is a normal ultrafilter. Let A0 = {α ∈ ω1 : f(α) < ΞK(α)} ∈ µ1

ω1
.

For all α ∈ A0, f(α) ∈ {K(α, β) : β < α}. Let h : A0 → ω1 be defined by h(α) is the least β < α
such that f(α) = K(α, β). Thus A0 = {α ∈ A0 : h(α) < α} ∈ µ1

ω1
. Since µ1

ω1
is normal, there is

an A1 ⊆ A0 and a γ < ω1 so that A1 ∈ µ1
ω1

and for all α ∈ A1, h(α) = γ. Thus for all α ∈ A1,
f(α) = K(α, h(α)) = K(α, γ) = Kγ(α). □

Fact 2.5. Assume ω1 →∗ (ω1)
2
2. ⋆ implies jµ1

ω1
(ω1) ≤ ω2.

Proof. First, one needs to show jµ1
ω1
(ω1) under the ultrapower ordering ≺µ1

ω1
is wellfounded. Suppose

jµ1
ω1
(ω1) is not wellfounded. Let X ⊆ jµ1

ω1
(ω1) be a set with no minimal element under ≺µ1

ω1
. Pick any

element x ∈ X and f : ω1 → ω1 such that x = [f ]µ1
ω1
. By ⋆, let K be a Kunen function strictly bounding

f . By Fact 2.4, let δ0 < ω1 be least such δ such that [Kδ]µ1
ω1

= [f ]µ1
ω1

= x. Suppose n ∈ ω and δn < ω1

has been defined so that [Kδn ]µ1
ω1

∈ X. Since X is not wellfounded, there is a y ∈ X and y ≺µ1
ω1

[Kδn ]µ1
ω1
.

Let g : ω1 → ω1 be such that y = [g]µ1
ω1
. Thus K strictly bounds g. By Fact 2.4, there is a δ < ω1 so that

[Kδ]µ1
ω1

= [y]µ1
ω1

≺µ1
ω1
< [Kδn ]µ1

ω1
. Let δn+1 be the least δ < ω1 be such that [Kδ]µ1

ω1
≺µ1

ω1
[Kδn ]µ1

ω1
. This

completes the construction of ⟨δn : n ∈ ω⟩ with the property that for all n ∈ ω, [Kδn+1 ]µ1
ω1

≺µ1
ω1

[Kδn ]µ1
ω1
.

For each n ∈ ω, let An = {α ∈ ω1 : Kδn+1(α) < Kδn(α)} ∈ µ1
ω1
. Let A =

⋂
n∈ω An ∈ µ1

ω1
since µ1

ω1
is

countably complete by ω1 →∗ (ω1)
2
2. In particular, A ̸= ∅. Let ᾱ ∈ A. For all n ∈ ω, ᾱ ∈ An implies

10



Kδn+1(ᾱ) < Kδn(α). Thus ⟨Kδn(ᾱ) : n ∈ ω⟩ is an infinite descending sequence of ordinals under the usual
ordinal ordering which is a contradiction. This shows that jµ1

ω1
(ω1) is a wellordering.

Thus one can identify jµ1
ω1
(ω1) with an ordinal. Let x ∈ jµ1

ω1
(ω1) and let f : ω1 → ω1 be such that

x = [f ]µ1
ω1
. By ⋆, let K be a Kunen function bounding f . By Fact 2.4, every y ≺µ1

ω1
x, there is a δ < ω1

so that [Kδ]µ1
ω1

= y. Let initµ1
ω1
(x) = {y ∈ jµ1

ω1
(ω1) : y ≺µ1

ω1
x}. Let Γ : initµ1

ω1
(x) → ω1 be defined by Γ(y)

is the least δ < ω1 be such that [Kδ]µ1
ω1

= y. Γ is an injection of the initial segment of x into ω1. Since

jµ1
ω1
(ω1) is a wellordering and essentially an ordinal, this implies jµ1

ω1
(ω1) ≤ (ω1)

+ = ω2. □

Thus Fact 2.3 and Fact 2.5 imply that over ω1 →∗ (ω1)
2
2, jµ1

ω1
(ω1) is equivalent to ⋆.

If one further assumes the strong partition property ω1 →∗ (ω1)
ω1
2 , one can prove that jµ1

ω1
(ω1) = ω2 and

jµ1
ω1
(ω1) is regular by a result of Martin concerning ultrapowers of strong partition cardinals. See [6] for a

proof.

Fact 2.6. (Martin) Assume κ→∗ (κ)κ∗ .

• If µ is a measure on κ such that jµ(κ) is a wellordering, then jµ(κ) is a cardinal.
• If µ is a normal measure on κ such that jµ(κ) is a wellordering, then jµ(κ) is a regular cardinal.

Fact 2.7. (Martin) Assume ω1 →∗ (ω1)
ω1
2 and ⋆. Then jµ1

ω1
(ω1) = ω2 and ω2 is regular.

Proof. Fact 2.5 already implies jµ1
ω1
(ω1) ≤ ω2. ω1 →∗ (ω1)

2
2 implies µ1

ω1
is a normal ultrafilter. Thus

ω1 = [id]µ1
ω1
< jµ1

ω1
(ω1) ≤ ω2. Fact 2.6 implies jµ1

ω1
(ω1) must be a cardinal above ω1 and less than or equal

to ω2. Hence jµ1
ω1
(ω1) = ω2 and ω2 is regular. □

Thus ω1 →∗ (ω1)
ω1
2 and ⋆ is equivalent to ω1 →∗ (ω1)

ω1
2 and jµ1

ω1
(ω1) = ω2.

Fact 2.8. Assume ω1 →∗ (ω1)
ω1
2 and ⋆. If A ⊆ ω2 with |A| ≤ ω1, then there is a function Γ on A so that

for all x ∈ A, Γ(x) : ω1 → ω1 and x = [Γ(x)]µ1
ω1
.

Proof. Since cof(ω2) = ω1 and |A| ≤ ω1, sup(A) < ω1. Let f : ω1 → ω1 be such that [f ]µ1
ω1

= sup(A). By

⋆, let K be a Kunen function strictly bounding f . Let x ∈ A and pick any g : ω1 → ω1 so that x = [g]µ1
ω1
.

Then K is a Kunen function strictly bounding g. By Fact 2.4, there is a γ < ω1 so that x = [g]µ1
ω1

= [Kγ ]µ1
ω1
.

It has been shown that for all x ∈ A, there is a γ ∈ ω1 so that x = [Kγ ]µ1
ω1
. For each x ∈ A, let γx be the

least such γ. Define Γ(x) = Kγx . Γ is the desired function. □

If κ is a regular cardinal, X ⊆ κ with ot(X) = κ, and α < κ, let nextαX : κ → X be defined by nextαX(β)
is the (1 + α)th-element of X greater than β. Given a club C ⊆ κ, then the following subclub is very useful
for many constructions.

Fact 2.9. If C ⊆ κ is a club consisting of indecomposable ordinals, then let D = {α ∈ C : enumC(α) = α}.
Then D is a club subset of κ and for all ϵ ∈ D and all α, β, γ, δ < ϵ, nextα·β+γ

C (δ) < ϵ.

Fact 2.10. Let κ be a regular cardinal, ϵ < κ, and κ →∗ (κ)ϵ+1
2 holds. Let Φ : [κ]ϵ → κ. Then there is a

club C ⊆ κ so that for all ι ∈ [C]ϵ∗, Φ(ι) < nextωC(sup(ι)).

Proof. Define P : [κ]ϵ+1 → 2 by P (ℓ) = 0 if and only if Φ(ℓ ↾ ϵ) < ℓ(ϵ). By κ →∗ (κ)ϵ+1
2 , there is a club

C ⊆ κ which is homogeneous for P . Pick any ι ∈ [C]ϵ∗. Let ℓ = ι̂ ⟨nextωC(Φ(ι))⟩ and note that ℓ ∈ [C]ϵ+1
∗ .

Then Φ(ℓ ↾ ϵ) = Φ(ι) < nextωC(Φ(ι)) = ℓ(ϵ). Thus P (ℓ) = 0. Since C is homogeneous for P , one has that C
is homogeneous for P taking value 0. For any ι ∈ [C]ϵ, let ℓι ∈ [C]ϵ+1

∗ be defined by ℓι = ι̂ ⟨nextωC(sup(ι))⟩.
Then P (ιℓ) = 0 implies that Φ(ι) = Φ(ℓι ↾ ϵ) < ℓι(ϵ) = nextωC(sup(ι)). □

Definition 2.11. Let κ be an uncountable cardinal and Φ : [κ]ϵ → κ. Say that a club C is Φ-bounding if
and only if C consists only of indecomposable ordinals and for all ℓ ∈ [C]ϵ+1

∗ , Φ(ℓ ↾ ϵ) < ℓ(ϵ).

Fact 2.12. Let κ be a regular cardinal, ϵ < κ, and κ →∗ (κ)ϵ+1
2 holds. Let Φ : [κ]ϵ → κ. Then there is a

Φ-bounding club.
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Proof. By Fact 2.10, there is a club C0 so that for all ι ∈ [C0]
ϵ
∗, Φ(ι) < nextωC0

(sup(ι)). One may assume

C0 consists only of indecomposable ordinals. Let C1 = {α ∈ C0 : enumC0
(α) = α}. For any ℓ ∈ [C1]

ϵ+1
∗ ,

Φ(ℓ ↾ ϵ) < nextωC0
(sup(ℓ ↾ ϵ)) < ℓ(ϵ) since sup(ℓ ↾ ϵ) ∈ C0, ℓ(ϵ) ∈ C1, and using Fact 2.9. □

Fact 2.13. Let κ be an uncountable cardinal, δ < ϵ ≤ κ, κ → (κ)
δ+1+(ϵ−δ)
2 , and κ →∗ (κ)ϵ−δ

<κ . Let
Φ : [κ]ϵ → κ be such that {ℓ ∈ [κ]ϵ : Φ(ℓ) < ℓ(δ)} ∈ µϵ

κ. Then there is a club C ⊆ κ and a function
Ψ : [C]δ∗ → κ so that for all ℓ ∈ [C]ϵ∗, Φ(ℓ) = Ψ(ℓ ↾ δ).

Proof. Let C0 ⊆ κ be a club so that Φ(ℓ) < ℓ(δ) for all ℓ ∈ [C0]
ϵ
∗. If g ∈ [κ]δ+1+(ϵ−δ), then let ĝ ∈ [κ]ϵ be

defined by

ĝ(α) =

{
g(α) α < δ

g(δ + 1 + (α− δ)) δ ≤ α
.

Define P : [κ]δ+1+(ϵ−δ) → 2 by P (g) = 0 if and only if Φ(ĝ) < g(δ). By κ →∗ (κ)
δ+1+(ϵ−δ)
2 , there is a club

C1 ⊆ C0 which is homogeneous for P . Let C2 = {α ∈ C1 : enumC1
(α) = α}. Let f ∈ [C2]

ϵ
∗. By the property

of C0, Φ(f) < f(δ). By Fact 2.9, one has that nextωC1
(max{sup(f ↾ δ),Φ(f)}) < f(δ). Let g ∈ [C1]

δ+1+(ϵ−δ)

be defined by

g(α) =


f(α) α < δ

nextωC1
(max{sup(f ↾ δ),Φ(f)}) α = δ

f(δ + (α− (δ + 1))) δ < α

.

Since Φ(ĝ) = Φ(f) < nextωC1
(max{sup(f ↾ δ),Φ(f)}) = g(δ), one has that P (g) = 0. Thus C1 must be

homogeneous for P taking value 0. Let f ∈ [C2]
ϵ
∗, let gf ∈ [C1]

δ+1+(ϵ−δ)
∗ be defined by

gf (α) =


f(α) α < δ

nextωC1
(sup(f ↾ δ)) α = δ

f(δ + (α− (δ + 1)) δ < α

.

Then P (gf ) = 0 implies that Φ(f) = Φ(ĝf ) < gf (δ) = nextωC1
(sup(f ↾ δ)). It has been shown that for all

f ∈ [C2]
ϵ
∗, Φ(f) < nextωC1

(sup(f ↾ δ)). For each τ ∈ [C2]
δ
∗, let Φτ : [C2 \ (sup(τ) + 1)]ϵ−δ

∗ → κ be defined by

Φτ (σ) = Φ(τˆσ). By the discussion above, for all σ ∈ [C2\(sup(τ)+1)]ϵ−δ
∗ , Φτ (σ) = Φ(τˆσ) < nextωC1

(sup(τ)).

By κ→∗ (κ)ϵ−δ
<κ , there is a ζτ ∈ κ so that for µϵ−δ

κ -almost all σ, Φτ (σ) = ζτ . Define Q : [C2]
ϵ
∗ → 2 by Q(f) = 0

if and only if Φ(f) = ζf↾δ. By κ →∗ (κ)ϵ2, let C3 ⊆ C2 be a club homogeneous for Q. Pick any τ ∈ [C3]
δ
∗.

There is a club D ⊆ C3 so that for all σ ∈ [D]ϵ−δ
∗ , Φτ (σ) = ζτ . Pick any σ ∈ [D]ϵ−δ

∗ with sup(τ) < σ(0). Let
f = τˆσ and note that f ∈ [C3]

ϵ
∗. Then Φ(f) = Φf↾δ(drop(f, δ)) = Φτ (σ) = ζτ = ζf↾δ. So Q(f) = 0. This

shows that C3 is homogeneous for Q taking value 0. Define Ψ : [C3]
δ
∗ → κ by Ψ(τ) = ζτ . It has been shown

that for all f ∈ [C3]
ϵ
∗, Φ(f) = Ψ(f ↾ δ). □

Fact 2.14. Suppose κ is an uncountable cardinal, δ < ϵ ≤ κ, κ →∗ (κ)
δ+1+(ϵ−δ)
2 , and κ →∗ (κ)ϵ−δ

<κ . Let

Σϵ
δ : [κ]ϵ → κ be defined by pϵδ(ℓ) = ℓ(δ). For Φ : [κ]δ → κ, let Φ̂ : [κ]ϵ → κ be defined by Φ̂(ℓ) = Φ(ℓ ↾ δ).

Define Γ : jµδ
κ
(κ) → jµϵ

κ
(κ) by Γ(x) = [Φ̂]µϵ

κ
for any Φ : [κ]δ → κ such that [Φ]µδ

κ
= x. Γ is a well defined

order preserving bijection into initµϵ
κ
([Σϵ

δ]µϵ
κ
).

Proof. It is clear that Γ is well defined and order preserving. Let Φ : [κ]δ → κ. By Fact 2.12, there is a club

C ⊆ κ which is Φ-bounding. For all ℓ ∈ [C]ϵ∗, Φ̂(ℓ) = Φ(ℓ ↾ δ) < ℓ(δ) = Σϵ
δ(ℓ). So Γ([Φ]µδ

κ
) ∈ initµϵ

κ
([Σϵ

δ]µϵ
κ
).

Now suppose Υ : [κ]ϵ → κ such that [Υ]µϵ
κ
∈ initµϵ

κ
([Σϵ

δ]µϵ
κ
). This means {ℓ ∈ [κ]ϵ∗ : Υ(ℓ) < Σϵ

δ(ℓ) = ℓ(δ)} ∈
µϵ
κ. By Fact 2.13, there is a Ψ : [κ]δ∗ → κ and a club D ⊆ κ so that for all ℓ ∈ [D]ϵ∗, Υ(ℓ) = Ψ(ℓ ↾ δ).

For all ℓ ∈ [D]ϵ∗, Ψ̂(ℓ) = Ψ(ℓ ↾ δ) = Υ(ℓ). Thus Γ([Ψ]µδ
ω1
) = [Υ]µϵ

κ
. This shows that Γ is a bijection onto

initµϵ
κ
([Σϵ

δ]µϵ
κ
). □

Fact 2.15. Let κ be an uncountable cardinal, ϵ < κ, and κ →∗ (κ)ϵ+1
2 . If f : κ → κ, let f̂ : [κ]ϵ → κ be

defined by f̂(ℓ) = f(sup(ℓ)). Define ρ : jµ1
κ
(κ) → jµϵ

κ
(κ) by ρ([f ]µ1

ω1
) = [f̂ ]µϵ

κ
. Then ρ̂ is a well defined

increasing cofinal map of jµ1
κ
(κ) into jµϵ

κ
(κ) (in the ultrapower orderings).
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Proof. Let Φ : [κ]ϵ → κ. By Fact 2.10, there is a club C ⊆ κ so that for all ℓ ∈ [C]ϵ∗, Φ(ℓ) < nextωC(sup(ℓ)).

Let f : κ→ κ be defined by f = nextωC . Thus [Φ]µϵ
κ
< [f̂ ]µϵ

κ
= ρ([f ]µ1

κ
). □

Definition 2.16. Let 1 ≤ n < ω and h : [ω1]
n → ω1. Define the partial function Kn,h : [ω1]

n+1 → ω1 by
Kn,h(ℓ) = K(ℓ(n), h(ℓ ↾ n)) for all ℓ ∈ [ω1]

n+1 such that h(ℓ ↾ n) < ℓ(n).
Assume ω1 →∗ (ω1)

n+1
2 , by Fact 2.12, any function h : [ω1]

n → ω1 has an h-bounding club C. Thus for
any ℓ ∈ [C]n+1

∗ , Kn,n(ℓ) is defined. Also for n = 0, [ω1]
0 = {∅} so h : [ω1]

0 → ω1 may be regarded as a
constant γ. Then K0,h is Kγ of the earlier notation.

For the main question, one will need Fact 2.18 (4) for just countable A ⊆ ωn+1. (Again, under AD, this

can be obtained by ACP(ω1)
ω which follows from ACR

ω and the Moschovakis coding lemma.) It seems that
one needs to inductive prove all four statements in Fact 2.18 even if one is only interested in statement
(4). The proof of Fact 2.18 only need statement (4) for countable A ⊆ jµn

ω1
(ω1) = ωn+1, but many other

combinatorial problems below ωω (such as the weak partition property on ω2) requires this result for A with
|A| ≤ ω1.

Definition 2.17. For any f : [ω1]
n+1 → ω1, let Jf : ω1 → ω1 be defined by Jf (α) = sup{f(ℓ) : ℓ(n) = α}.

Fact 2.18. Assume ω1 →∗ (ω1)
ω1
2 and ⋆. For all 1 ≤ n < ω, one has the following:

(1) jµn
ω1
(ω1) is a wellordering.

(2) jµn
ω1
(ω1) = ωn+1.

(3) cof(ωn+1) = ω2.
(4) If A ⊆ jµn

ω1
(ω1) = ωn+1 and |A| ≤ |ω1|, then there is a function Γ on A so that for all x ∈ A,

Γ(x) : [ω1]
n → ω1 and x = [Γ(x)]µn

ω1
.

Proof. This result is proved by induction on n. For n = 1, this has already been shown by Fact 2.7 and Fact
2.8. Now suppose all four properties hold at n.

First, one will show that jµn+1
ω1

(ω1) is a wellordering. Suppose not. Let X ⊆ jµn+1
ω1

(ω1) be a nonempty set

with no minimal element in the ultrapower ordering ≺µn+1
ω1

. Pick any x ∈ X and let f : [ω1]
n+1 → ω1 be such

that [f ]µn+1
ω1

= x. By ⋆, let K be any Kunen function bounding Jf . Let y ≺µn+1
ω1

x. Let g̃ : [ω1]
n+1 → ω1

be any representative for y. Since y ≺µn+1
ω1

x, the set E = {ℓ ∈ [ω1]
n+1 : g̃(ℓ) < f(ℓ)} ∈ µn+1

ω1
. Define

g : [ω1]
n+1 → ω1 by g(ℓ) = g̃(ℓ) if ℓ ∈ E and g(ℓ) = 0 if otherwise. Then y = [g̃]µn+1

ω1
= [g]µn+1

ω1
and g(ℓ) ≤ f(ℓ)

for all ℓ ∈ [ω1]
n+1
∗ . Then [Jg]µ1

ω1
≤ [Jf ]µ1

ω1
. Hence K is also a Kunen function strictly bounding Jg. Let

C = {α ∈ ω1 : Jg(α) < ΞK(α)}. For any ℓ ∈ [C]n+1, g(ℓ) < Jg(ℓ(n)) < ΞK(ℓ(n)) = {K(ℓ(n), β) : β < ℓ(n)}.
Let ĥ : [ω1]

n+1 → ω1 be defined by ĥ(ℓ) is the least β < ℓ(n) so that g(ℓ) = K(ℓ(n), β). For all ℓ ∈ [C]n+1,

ĥ(ℓ) < ℓ(n). By Fact 2.13, there is an h : [ω1]
n → ω1 and a club D ⊆ C so that for all ℓ ∈ [D]n+1

∗ ,

ĥ(ℓ) = h(ℓ ↾ n). Note that for all ℓ ∈ [D]n+1, g(ℓ) = K(ℓ(n), h(ℓ ↾ n)) = Kn,h(ℓ). By the inductive
hypothesis, jµn

ω1
(ω1) = ωn+1 and thus [h]µn

ω1
∈ ωn+1. It has been shown that for all y ≺µn+1

ω1
x, there is a

γ < ωn+1 so that for all h : [ω1]
n → ω1 with [h]µn

ω1
= γ, y = [Kn,h]µn+1

ω1
. Let γy be the least such δ < ωn+1

with the previous property for y. Let A = {γy : y ∈ X}. Let δ0 be the least member of A. Suppose δk has
been defined so yk ∈ X where yk = [Kn,h]µn+1

ω1
for any h : [ω1]

n → ω1 with δk = [h]µn
ω1
. Since X has no

minimal element, there is some y ∈ X with y ≺µn+1
ω1

yn. Thus there is some δ ∈ A so that y = [Kn,h]µn+1
ω1

for

any h such that [h]µn
ω1

= δ. Let δk+1 be the least δ ∈ A so that [Kn,h]µn+1
ω1

< yk for any h : [ω1]
n → ω1 with

[h]µn
ω1

= δ. Note that yk+1 = [Kn,h]µn+1
ω1

∈ X for any h : [ω1]
n → ω1 with δk+1 = [h]µn

ω1
since δk+1 ∈ A. Let

B = {δk : k ∈ ω}. Since B ⊆ ωn+1 and |B| ≤ ω < ω1, by the induction hypothesis at n, there is a function Γ
on B so that for all δ ∈ B, Γ(δ) : [ω1]

n → ω1 and δ = [Γ(δ)]µn
ω1
. Let hk = Γ(δn). One has defined a sequence

⟨hk : n ∈ ω⟩ with the property that for all n ∈ ω, En = {ℓ ∈ [ω1]
n+1 : Kn,hk+1(ℓ) < Kn,hk(ℓ)} ∈ µn+1

ω1
. Then

E =
⋂

k∈ω Ek ∈ µn+1
ω1

since µn+1
ω1

is countably complete. Pick any ℓ̄ ∈ E. Then ⟨Kn,hk(ℓ̄) : k ∈ ω⟩ is an
infinite descending sequence of ordinals in the usual ordinal ordering. Contradiction. This shows jµn+1

ω1
(ω1)

is a wellordering.
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By Fact 2.14, jµn
ω1
(ω1) order embeds into a proper initial segment of jµn+1

ω1
(ω1). Thus ωn+1 = jµn

ω1
(ω1) <

jµn+1
ω1

(ω1). Let x ∈ jµn+1
ω1

(ω1). Let f : [ω1]
n+1 → ω1 be such that [f ]µn+1

ω1
= x. By ⋆, let K be a Kunen

function bounding Jf . By the argument above, for each y < x, there is a δ < ωn+1 so that for any
h : [ω1]

n → ω1 with δ = [h]µn
ω1
, y = [Kn,h]µn

ω1
. Let δy be the least such δ. Let Φ : initµn+1

ω1
(x) → ωn+1 be

defined by Φ(y) = δy. Φ is an injection and thus, |initµn+1
ω1

(x)| ≤ ωn+1. Since jµn+1
ω1

(ω1) has been shown to be

a wellordering and hence an ordinal, this implies that jµn+1
ω1

(ω1) ≤ (ωn+1)
+ = ωn+2. By Fact 2.6, jµn+1

ω1
(ω1)

must be a cardinal strictly greater than ωn+1 and less than or equal to ωn+2. Thus jµn+1
ω1

(ω1) = ωn+2.

Note that cof(ωn+2) = ω2 follows from Fact 2.15.
Let A ⊆ ωn+2 = jµn+1

ω1
(ω1) with |A| ≤ ω1. Since it has just been shown that cof(ωn+2) = ω2, sup(A) <

ωn+2. Let f : [ω1]
n+1 → ω1 be such that sup(A) = [f ]µn+1

ω1
. By ⋆, let K be a Kunen function bounding Jf .

By the argument above, for each x ∈ A, there is a δ < ωn+1 so that for any h : [ω1]
n → ω1 with δ = [h]µn

ω1
,

x = [Kn,h]µn+1
ω1

. Let δx be the least such δ. Let B = {δx : x ∈ A}. Note that B ⊆ ωn+1 and |B| ≤ ω1. By

the induction hypothesis at n, there is a function Σ on B so that for all δ ∈ B, [Σ(δ)]µn
ω1

= δ. For each

x ∈ A, let Γ(x) = Kn,Σ(δx). Then x = [Γ(x)]µn+1
ω1

for all x ∈ A.

The result has been shown at n+ 1. The full result follows from induction. □

Fact 2.19. Assume ω1 →∗ (ω1)
ω1
2 and ⋆. If A ⊆ ωω with sup(A) < ωω and |A| ≤ ω1, then there is a

function Γ on A with the following properties:

(1) If α ∈ A and α < ω1, then Γ(α) = α.
(2) If there is an 1 ≤ n < ω so that α ∈ ωn+1 \ ωn, then Γ(α) : [ω1]

n → ω1 and α = [Γ(α)]µn
ω1
.

Proof. Since sup(A) < ωω, let n̄ be least n ∈ ω such that A ⊆ ωn+1. Let A0 = {α ∈ A : α < ω1}. For
1 ≤ n ≤ n̄, let An = {α ∈ A : ωn ≤ α < ωn+1}. Let Γ0 be the identity function on A0. For 1 ≤ n < n̄, let
Γn be a function on An with the property that for all α ∈ An, α = [Γn(α)]µn

ω1
obtained from Fact 2.18 (4)

applied to An. Define Γ on A by Γ(α) = Γn(α) where n is unique such that α ∈ An. □

Jackson showed that for any ordinal α < ωω, α has a unique type. That is, for any 1 ≤ n < ω and ordinal
α ∈ ωn+1 \ωn, there is permutation of n inducing a wellordering on [ω1]

n and a particular uniform cofinality
so that α = [f ]µn

ω1
where f : [ω1]

n → ω1 is a function respecting the given wellordering on [ω1]
n and has the

specified uniform cofinality. This analysis of type for ordinals is important for Jackson’s description theory
and the measures on ωω roughly corresponds to these possible types. For the purpose of this section, one
will only need some nice types which will be described below.

Definition 2.20. Suppose X = (X,≺) be a linear ordering. The lexicographic ordering <X
lex on <ωX is

defined by

• ι ⊊ ℓ (ι is a proper substring of ℓ).
• If k < |ι| is least so that ι(k) ̸= ℓ(k), then ι(k) ≺ ℓ(k).

Definition 2.21. For 1 ≤ n < ω. When one writes (α0, ..., αn−1) ∈ [ω1]
n, the implicit assumption is that

α0 < α1 < ... < αn−1. Define ⊏n on [ω1]
n by (α0, ..., αn−1) ⊏n (β0, ..., βn−1) if and only if the least i < n

such that αn−1−i ̸= βn−1−i, then αn−1−i < βn−1−i. (⊏n is the reverse lexicographic ordering on [ω1]
n which

can be more explicitly be written as (α0, ..., αn−1) ⊏n (β0, ..., βn−1) if and only if (αn−1, αn−2, ..., α0) <
ω1

lex

(βn−1, βn−2, ..., β0).) Let Tn = ([ω1]
n,⊏n). Note that ot(Tn) = ω1.

A function f : [ω1]
n → ω1 has type n if and only if the following holds:

• f is order preserving between Tn into (ω1, <) with the usual ordering.
• f is discontinuous everywhere: for all ℓ ∈ [ω1]

n, sup(f ↾ ℓ) = sup{f(ι) : ι ⊏n ℓ} < f(ℓ).
• f has uniform cofinality ω: there is a function F : [ω1]

n×ω → ω1 so that for all ℓ ∈ [ω1]
n and k ∈ ω,

F (ℓ, k) < F (ℓ, k + 1) and f(ℓ) = sup{F (ℓ, k) : k ∈ ω}.
For 1 ≤ n < ω, let Bn+1 be the set of [f ]µn

ω1
such that f : [ω1]

n → ω1 has type n. Note that Bn+1 ⊆
ωn+1 \ ωn. If C ⊆ ω1 is a club, then let BC

n+1 be the set of [f ]µn
ω1

such that f : [ω1]
n → C has type n.

Definition 2.22. Let 1 ≤ n < ω. Suppose f : [ω1]
n → ω1 be a function which is order preserving on Tn =

([ω1]
n,⊏n). For each 1 ≤ k ≤ n, define Ikf : [ω1]

k → ω1 by Ikf (ι) = sup{f(τ ι̂) : τ ∈ [κ]n−k ∧ sup(τ) < ι(0)}.
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(Note that Inf = f .) If α ∈ Bn+1 and 1 ≤ k ≤ n, then let Ik
α = [Ikf ]µk

ω1
for any f : [ω1]

n → ω1 of type n such

that [f ]µn
ω1

= α.

Definition 2.22 is made only for functions f : [ω1]
n → ω1 which are order preserving with respect to ⊏n.

There is a more general invariant for any function f : [ω1]
n → ω1 in [17] but it will not be needed here.

Fact 2.23. Assume ω1 →∗ (ω1)
ω1
2 and ⋆. Let 1 ≤ n < ω. If δ ∈ ωn+1 \ ωn, then there is an f : [ω1]

n → ω1

so that δ = [f ]µn
ω1
, and for all ι0, ι1 ∈ [ω1]

n, if ι0(n− 1) < ι1(n− 1), then f(ι0) < f(ι1).

Proof. Let δ ∈ ωn+1 \ ωn. Let g : [ω1]
n → ω1 be such that [g]µn

ω1
= δ. Let P : [ω1]

n
∗ → ω1 be defined by

P (ℓ) = 0 if and only if g(ℓ) ≥ ℓ(n − 1). By ω1 →∗ (ω1)
n
2 , there is a club C0 ⊆ ω1 which is homogeneous

for P . If C0 is homogeneous for P taking value 1, then for all ℓ ∈ [C0]
n
∗ , one has that g(ℓ) < ℓ(n − 1). By

Fact 2.13, there is an h : [ω1]
n−1 → ω1 and club C1 ⊆ C0 so that for all ℓ ∈ [C1]

n
∗ , g(ℓ) = h(ℓ ↾ n). Then

δ = [h]µn−1
ω1

< ωn. This contradicts δ ∈ ωn+1\ωn. Thus C0 is homogeneous for P taking value 0. By Fact 2.10,

there is club C2 ⊆ C0 so that for all ℓ ∈ [C2]
n
∗ , f(ℓ) < nextωC2

(ℓ(n−1)). Let C3 = {α ∈ C2 : enumC2
(α) = α}.

Pick ℓ0, ℓ1 ∈ [C3]
n
∗ with ℓ0(n − 1) < ℓ1(n − 1). Then g(ℓ0) < nextωC2

(ℓ0(n − 1)) < ℓ1(n − 1) ≤ g(ℓ1) by
the property of C2 and since P (ℓ1) = 0. Let f : [ω1]

n → ω1 be defined by f(ℓ) = g(enumC3
◦ ℓ). Let

ℓ0, ℓ1 ∈ [ω1]
n be such that ℓ0(n − 1) < ℓ1(n − 1). Then enumC3

(ℓ0(n − 1)) < enumC3
(ℓ1(n − 1)). Thus

f(ℓ0) = g(enumC3 ◦ ℓ0) < g(enumC3 ◦ ℓ1) = f(ℓ1). Let C4 = {α ∈ C3 : enumC3(α) = α}. For all ℓ ∈ [C3]
n,

enumC3 ◦ ℓ = ℓ and thus f(ℓ) = g(ℓ). So [f ]µn
ω1

= [g]µn
ω1

= δ. □

Definition 2.24. Let 1 ≤ n < ω. Let Un be the set of tuples (αn−1, ..., α0, γ) where α0 < ... < αn−1 and
γ < αn−1. Let Un = (Un, <ω1

lex) where <
ω1

lex is the lexicographic ordering on <ω(ω1) induced from the usual
ordering on ω1. Note that ot(Un) = ω1. A function H : Un → ω1 has the correct type if and only if the
following hold:

• H is order preserving between Un and (ω1, <).
• H is discontinuous everywhere: For all x ∈ Un, sup(H ↾ x) = sup{H(y) : y <ω1

lex x} < H(x).
• H has uniform cofinality ω: There is a function H̄ : Un × ω → ω1 so that for all x ∈ Un and k ∈ ω,
H̄(x, k) < H̄(x, k + 1) and H(x) = sup{H̄(x, k) : k ∈ ω}.

Fact 2.25. Assume ω1 →∗ (ω1)
ω1
2 and ⋆. For all 1 ≤ n < ω and club C ⊆ ω1, |BC

n+1| = |ωn+1|.

Proof. Fix H : Un → C which has the correct type from Un into (C,<). Suppose δ ∈ ωn+1 \ ωn. By Fact
2.23, there is an f : [ω1]

n → ω1 such that [f ]µn
ω1

= δ and for all ℓ0, ℓ1 ∈ [ω1]
n, if ℓ0(n− 1) < ℓ1(n− 1), then

f(ℓ0) < f(ℓ1). Let H : [ω1]
n+1 → C be any function of type n+ 1. Define f̂ : [ω1]

n → ω1 by

f̂(α0, ..., αn−1) = H(I1f (ω + αn−1), I
1
f (ω + αn−2), ..., I

1
f (ω + α0), f(α0, ..., αn−1))

Suppose (α0, ..., αn−1) ⊏n (β0, ..., βn−1). Let k < n be largest such that αk ̸= βk. For all k < j < n,
If (ω + αj) = If (ω + αj) and If (ω + αk) < f(0, 1, ..., n− 2, ω + αk + 1) < If (ω + βk) using the property of

f . Since H is order preserving on Un, it is clear that f̂(α0, ..., αn−1) < f̂(β0, ..., βn−1). f̂ is discontinuous

and has uniform cofinality since H is discontinuous and has uniform cofinality ω. Thus f̂ has type n. Thus

[f̂ ]µn
ω1

∈ BC
n+1. Define Φ : (ωn+1\ωn) → BC

n+1 be defined by Φ(δ) = [f̂ ]µn
ω1

and note that this is independent

of the choice of f representing δ. Suppose δ0 < δ1. Let f̃0, f̃1 : [ω1]
n → ω1 be two functions representing

δ0 and δ1, respectively, with the property that for all i ∈ 2 and ℓ0, ℓ1 ∈ [ω1]
n, ℓ0(n− 1) < ℓ1(n− 1) implies

f̃i(ℓ0) < f̃i(ℓ1). Let A = {ℓ ∈ [ω1]
n : f0(ℓ) < f1(ℓ)} ∈ µn

ω1
. Let D0 ⊆ ω1 be a club such that [D0]

n
∗ ⊆ A.

Define fi(ℓ) = fi(enumD0
◦ ℓ) for i ∈ 2. Note that [fi]µn

ω1
= [f̃i]µn

ω1
= δi, f0(ℓ) < f1(ℓ) for all ℓ ∈ [ω1]

n, and

for all ℓ0, ℓ1 ∈ [ω1]
n, if ℓ0(n− 1) < ℓ1(n− 1), then fi(ℓ0) < fi(ℓ1) for all i ∈ 2. For all (α0, ..., αn−1) ∈ [ω1]

n,

for all k < n, I1f0(αk) ≤ I1f1(αk) and f0(α0, ..., αn−1) < f1(α0, ..., αn−1). Thus f̂0(ℓ) < f̂1(ℓ) for all ℓ ∈ [ω1]
n.

This shows that Φ is an order preserving map and in particular, Φ is an injection. □

Definition 2.26. Let ⋄ be a new symbol. Let 𭟋 be the linear ordering (ω1 ∪ {⋄}, <𭟋) where ⋄ is <𭟋-
less than all elements of ω1 and <𭟋 restricted to ω1 is the usual order on ω1. Let V be the set of all
(αn−1, αn−2, ..., α0, ⋄, γ) such that α0 < ... < αn−1 and γ < αn−1. Let V = (V,<𭟋

lex) (where <𭟋
lex is the

lexicographic ordering induced from 𭟋.). Note that ot(V) = ω1. A function H : V → ω1 has the correct
type if and only if the following conditions holds:
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• H is order preserving from V into (ω1, <).
• H is discontinuous everywhere: For all x ∈ V , sup(H ↾ x) = sup{H(y) : y <ω1

lex x} < H(x).
• H has uniform cofinality ω: There is a function H̄ : V × ω → ω1 so that for all x ∈ V and k ∈ ω,
H̄(x, k) < H̄(x, k + 1) and H(x) = sup{H̄(x, k) : k ∈ ω}.

If X ⊆ ω1, let [X]V∗ be the set of all increasing correct type function H : V → X.
Fix H ∈ [ω1]

V
∗ . Let H̄ : V × ω → ω1 witness that H has uniform cofinality ω.

• Let hHn : [ω1]
n → ω1 be defined by hHn (α0, ..., αn−1) = sup{H(αn−1, ..., α0, γ, ⋄, 0) : γ < α0}. Let

δHn = [hHn ]µn
ω1
.

• Let ΦH : (ωω \ ω1) → ωω be defined as follows: Let 1 ≤ n < ω and η ∈ ωn+1 \ ωn. Let

f : [ω1]
n → ω1 be such that η = [f ]µn

∗
. Let f̂ : [ω]n+1 → ω1 be defined by f̂(α0, ..., αn) =

H(αn, ..., α0, ⋄, f(α0, ..., αn−1)) whenever f(α0, ..., αn−1) < αn. Let ΦH(f) = [f̂ ]µn
ω1
. (It will be

check below that Φ is well defined.)
• Define ΨH : (ωω \ ω1) → ωω as follow: Let η < ωω \ ω1. Let 1 ≤ n < ω be so that η ∈ ωn+1 \
ωn. Let f : [ω1]

n → ω1 be such that [f ]µn
ω1

= η. Define f̌ : [ω1]
n+1 → ω1 by f̌(α0, ..., αn) =

sup{H(αn, ..., α0, ⋄, γ) : γ < f(α0, ..., αn−1)}. Let ΨH(η) = [f̌ ]µn+1
ω1

.

• Define ΥH,H̄ : (ωω \ ω1)× ω → ωω be defined as follow: Let η < ωω \ ω1. Let 1 ≤ n < ω be so that

η ∈ ωn+1 \ ωn. Let f : [ω1]
n → ω1 be such that [f ]µn

ω1
= η. For k < ω1, let f̃

k : [ω1]
n+1 → ω1 be

defined by f̃k(α0, ..., αn) = H̄((αn, ..., α0, ⋄, f(α0, ..., αn−1)), k). Let ΥH,H̄(η, k) = [f̃k]µn+1
ω1

.

Lemma 2.27. (With Jackson and Trang) Assume ω1 →∗ (ω1)
ω1
2 and ⋆. Let C ⊆ ω1 be a club. Let H ∈ [C]V∗

be a function of the correct type which is order preserving from V into (C,<) and let H̄ : V ×ω → ω1 witness
that H has uniform cofinality ω. Then ⟨δHn : 1 ≤ n < ω⟩, ΦH , ΨH , and ΥH,H̄ have the following properties

(1) For all n ∈ ω, δHn ∈ ωn+1. For all 1 ≤ m < n < ω, Im
δHn

= δHm

(2) Let 1 ≤ n < ω, f : [ω1]
n → ω1, and D ⊆ ω1 be an f -bounding club. Then f̂ is defined on [D]n+1

∗
and for all 1 ≤ m ≤ n, and ℓ ∈ [D]m∗ , Imf (ℓ) = hHm(ℓ). For all 1 ≤ n < ω, if η ∈ ωn+1 \ ωn, ΦH(η) is

well defined independent of choice of representative of η and InΦH(η) = δHn .

(3) For all 1 ≤ n < ω, if η ∈ ωn+1 \ ωn, then ΦH(η) ∈ BC
n+2. ΦH : (ωω \ ω1) → ωω is an increasing

function (and hence an injection). For all η ∈ (ωω \ ω1), sup(ΦH ↾ η) = ΨH(f) < ΦH(f). ΦH has
uniform cofinality ω as witnessed by ΥH,H̄ . (Thus ΦH is a function of the correct type.)

Proof. Fix the objects from above and use the notation from Definition 2.26.

(1) It is clear that δHn ∈ ωn+1 for each 1 ≤ n < ω. Now suppose 1 ≤ m < n < ω. Let (β0, ..., βm−1) ∈
[ω1]

m
∗ .

ImhH
n
(β0, ..., βm−1) = sup{hHn (γ0, ..., γn−m−1, β0, ..., βm−1) : γ0 < ... < γn−m−1 < β0}

= sup{sup{H(βm−1, ..., β0, γn−m−1, ..., γ0, ζ, ⋄, 0) : ζ < γ0} : γ0 < ... < γn−m−1 < β0}
= sup{H(βm−1, ..., β0, ζ, ⋄, 0) : ζ < β0} = hHm(β0, ..., βm−1)

To see the two supremum are the same: For all ζ < γ0 < ... < γn−m−1 < β0 < ... < βm−1 with
(β0, ..., βm−1) ∈ [ω1]

m
∗ , let ξ = γn−m−1 + 1 and note that ξ < β0 since β0 is a limit ordinal. Then

one has

(βm−1, ..., β0, γn−m−1, ..., γ0, ζ, ⋄, 0) <𭟋
lex (βm−1, ..., β0, ξ, ⋄, 0).

For ζ < β0 with (β0, ..., βm−1) ∈ [ω1]
m
∗ , one can find ζ < ξ < γ0 < ... < γm−n−1 < β0 since β0 is a

limit ordinal. Then

(βm−1, ..., β0, ζ, ⋄, 0) <𭟋
lex (βm−1, ..., β0, γm−n−1, ..., γ0, ξ, ⋄, 0).

(2) Fix 1 ≤ n < ω, f : [ω1]
n → ω1, and D ⊆ ω1 be an f -bounding club (which exists by Fact 2.12). By

the definition of f̂ , f̂ is defined on [D]n+1
∗ . Let (α0, ..., αn−1) ∈ [D]n∗ .

In
f̂
(α0, ..., αn−1) = sup{f̂(γ, α0, ..., αn−1) : γ < α0} = sup{H(αn−1, ..., α0, γ, ⋄, f(α0, ..., αn−1)) : γ < α0}

= sup{H(αn−1, ..., α0, γ, ⋄, 0) : γ < α0} = hn(α0, ..., αn−1)
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This shows that In
f̂
= hHn on [D]n∗ . The same argument shows that for all 1 ≤ m ≤ n, Im

f̂
= hHm.

If η ∈ ωn+1 \ ωn, it is clear that ΦH(η) is independent of the choice of f : [ω1]
n → ω1 so that

[f ]µn
ω1

= η. The above implies that In
ΦH(η) = δHn .

(3) Fix η ∈ ωn+1 \ ωn. Let f : [ω1]
n → ω1 with the property that [f ]µn

ω1
= η. By Fact 2.12, let D0 ⊆ ω1

be an f -bounding club. Let D1 = {α ∈ D0 : enumD0(α) = α}. Let g : [ω1]
n+1 → C be defined by

g(ℓ) = f̂(enumD0
◦ ℓ) = H(enumD0

(ℓ(n)), ..., enumD0
(ℓ(0)), ⋄, f(enumD0

◦ ℓ)). For all ℓ ∈ [D1]
n+1
∗ ,

enumD0 ◦ ℓ = ℓ by Fact 2.9. Thus [g]µn+1
ω1

= [f̂ ]µn+1
ω1

= ΦH(η). It is clear that g : [ω1]
n+1
∗ → C has

type n+ 1. Thus ΦH(η) ∈ BC
n+2.

Let ωn < η0 < η1 < ωn+1. Let f0, f1 : [ω1]
n → ω1 be such that [f0]µn

ω1
= η0 and [f1]µn

ω1
= η1.

There is a club D ⊆ ω1 which is f0-bounding, f1-bounding, and for all ι ∈ [D]n∗ , f0(ι) < f1(ι). Then
for all (α0, ..., αn) ∈ [D]n+1

∗ ,

f̂0(α0, ..., αn) = H(αn, ..., α0, ⋄, f0(α0, ..., αn−1) < H(αn, ..., α0, ⋄, f1(α0, ..., αn−1) = f̂1(α0, ..., αn).

This shows ΦH(η0) = [f̂0]µn+1
ω1

< [f̂1]µn+1
ω1

= ΦH(η1). ΦH is an increasing function.

Let ωn < η < ωn+1, [f ]µn
ω1

= η, andD is a f -bounding club. Note that for all (α0, ..., αn) ∈ [D]n+1
∗ ,

f̌(α0, ..., αn) = sup{H(αn, ..., α0, ⋄, γ) : γ < f(α0, ..., αn−1)}

< H(αn, ..., α0, ⋄, f(α0, ..., αn−1)) = f̂(α0, ..., αn−1)

since H was assumed to be discontinuous. Thus ΨH(η) < ΦH(η). It is clear that if η0 < η1, then
ΦH(η0) ≤ ΨH(η1) < ΦH(η). This also shows that ΦH is discontinuous everywhere.

Let ωn < η < ωn+1 and ζ < ΦH(η). Let f : [ω1]
n → ω1 be such that [f ]µn

ω1
and g : [ω1]

n+1 → ω1

be such that [g]µn+1
ω1

= ζ. For µn+1
ω1

-almost all ℓ, g(ℓ) < f̂(ℓ) = H(ℓ(n), ..., ℓ(0), ⋄, f(ℓ ↾ n)).

Since H̄ witness that H has uniform cofinality ω, let p(ℓ) be the least k ∈ ω so that g(ℓ) <
H̄((ℓ(n), ..., ℓ(0), ⋄, f(ℓ ↾ n)), k). By the countably completeness of µn+1

ω1
, there is a k̄ so that p(ℓ) = k̄

for µn+1
ω1

-almost all ℓ. Then ζ = [g]µn+1
ω1

< ΥH,H̄(η, k̄). ΥH,H̄ witnesses that ΦH has uniform cofinal-

ity ω.

This completes the proof □

Fact 2.28. Suppose 1 ≤ n < ω and ω1 →∗ (ω1)
max{n,2}
2 . Suppose g : ω1 → ω1 is a function of type 1.

Suppose f : [ω1]
n → ω1 is a function of type n. Assume [g]µ1

ω1
< [I1f ]µ1

ω1
. Then there is a club C ⊆ ω1 with

the following properties.

• For all α ∈ [C]1∗ and ℓ ∈ [C]n∗ , if α ≤ ℓ(n− 1), then g(α) < f(ℓ).
• For all α ∈ [C]1∗ and ℓ ∈ [C]n∗ , if ℓ(n− 1) < α, then f(ℓ) < α < g(α).

Proof. Let C0 be a club so that for all α ∈ [C0]
1
∗, g(α) < I1f (α). Define P : [C0]

n → 2 by P (ℓ) = 0 if

and only if g(ℓ(n − 1)) < f(ℓ). By ω1 →∗ (ω1)
n
2 , there is a club C1 ⊆ C0 which is homogeneous for P .

Let C2 = {α ∈ C1 : enumC1
(α) = α}. Pick any ᾱ ∈ C2. Since g(ᾱ) < I1f (ᾱ), there is some ι ∈ [ω1]

n with

ι(n−1) = ᾱ and f(ι) > g(ᾱ). Let ℓ ∈ [C1]
n be defined by ℓ(k) = nextω·k+ω

C1
(ι(k)) if k < n−1 and ℓ(n−1) = ᾱ.

Note that ℓ is an increasing function using Fact 2.9 and ℓ ∈ [C1]
n
∗ . Since f has type n, g(ᾱ) < f(ι) < f(ℓ).

Then P (ℓ) = 0. Thus C1 is homogeneous for P taking value 0. C1 is the desired club satisfying the first
property. Using Fact 2.12 and ω1 →∗ (ω1)

2
2, let C3 ⊆ C2 be a club which is I1f -bounding. Suppose ℓ ∈ [C3]

n
∗

and α ∈ [C3]
n
∗ with ℓ(n− 1) < α. Since C3 is I1f -bounding, one has that f(ℓ) ≤ I1f (ℓ(n− 1)) < α < g(α). C3

is a club which also has the second property. □

For the main result of this section, one will need ω1-many partitions of (essentially) [ω1]
ω1 . Each partition

will be defined from one of ω1-many instructions for how to create partitions.

Definition 2.29. An instruction i is a tuple (ϵi, φi) satisfying the following properties.

• ϵi < ω1.
• φi : ϵi → ω \ {0} is a nondecreasing function strictly bounded below ω.

Let I be the set of all instructions. Note that |I| = ω1.
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Definition 2.30. Let ♣0, ♣1, and ♣2 be three new formal symbols. Let ω♣
1 = {♣0,♣1,♣2} ∪ ω1. Define

≪ on ω♣
1 by ♣0 ≪ ♣1 ≪ ♣2 ≪ α ≪ β for all α < β < ω1. Let Ω = (ω♣

1 ,≪). Note that Ω is simply three
new elements put before a copy of the ordinary ordering on ω1. Thus ot(Ω) = 3 + ω1 = ω1.

Each instruction has a corresponding linear ordering which is order isomorphic to the usual ordering on
ω1.

Definition 2.31. Suppose i ∈ I is an instruction of the form i = (ϵi, φi). Let T i consists of the following
objects:

(1) (α,♣0) for each α < ω1.
(2) (αφi(η),♣1, αφi(η)−1, ..., α0,♣2, η) for all η < ϵi and all α0 < α1 < ... < αφi(η)−1 < αφi(η) < ω1.

(Note that φi take nonzero value by the definition of i being an instruction.)

Let T i = (T i, <Ω
lex) which is the linear ordering on T i with the lexicographic ordering induced from Ω

(restricted to T i). Note that ot(T i) = ω1.

Now one can intuitively explain the purpose of the three new formal symbol ♣0, ♣1, and ♣2. ♣0 and
♣1 ensure that tuple of type (1) starting with α < ω1 will be <Ω

lex-smaller than any tuple of type (2) also
starting with the same α. Suppose η0 < η1 with m = φi(η0) < φi(η1) = n. The purpose of ♣2 is to
serve as a barrier point to distinguish tuple of type (2) of different length starting with the same ordinals.
More precisely, suppose α0 < α1 < ... < αm < ω1 and β0 < β1 < ... < βn < ω1 with the property
that for all k ≤ m, αm−k = βn−k. The ♣2 of the first tuple ensures that (αm,♣1, αm−1, ..., α0,♣2, η0) =
(βn,♣1, βn−1, ..., βn−m,♣2, η0) <

Ω
lex (βn,♣1, βn−1, ..., β0,♣2, η1).

Definition 2.32. Let i be an instruction. A function F : T i → ω1 has type i if and only if the following
holds:

• F is order preserving between T i into (ω1, <).
• F is discontinuous everywhere: For all x ∈ T i, sup(F ↾ x) = sup{F (y) : y <Ω

lex x} < F (x).
• F has uniform cofinality ω: There is a function G : T i × ω → ω1 so that for all k ∈ ω and x ∈ T i,
G(x, k) < G(x, k + 1) and F (x) = sup{G(x, k) : k ∈ ω}.

If X ⊆ ω1, then let [X]T
i

∗ be the collection of all functions of type i.

Definition 2.33. Let i be an instruction and F ∈ [ω1]
T i

∗ . Let F i,△ : ω1 → ω1 be defined by F i,△(α) =

F (α,♣0). For each η < ϵt, let F i,η : [ω1]
φi(η)+1 → ω1 be defined as follows: for any (α0, ..., αφi(η)) ∈

[ω1]
φi(η)+1, F i,η(α0, ..., αφi(η)) = F (αφi(η),♣1, αφi(η)−1, ..., α0,♣2, η). Define △i,F ∈ ω2 by △i,F = [F i,△]µ1

ω1
.

Define pi,F (η) ∈ ωφi(η)+2 by pi,F (η) = [F i,η]
µ
φi(η)+1
ω1

. Note that pi,F : ϵi → (ωsup(φi)+2 \ ω2).

Lemma 2.34. Assume ω1 →∗ (ω1)
ω1
2 and ⋆. Suppose C ⊆ ω1 is a club, H ∈ [C]V∗ , and H̄ : V × ω → ω1

witness that H has uniform cofinality ω. Let Z = ΦH [(ωω \ω1)]. Let p ∈ BIωω (< ω1, Z), and χ ∈ BC
2 so that

χ < δH1 . Let ϵ = dom(p) and φ : ϵ→ ω be defined by φ(η) be the least 1 ≤ n < ω so that ωn+1 ≤ p(η) < ωn+2.

Let i = (ϵ, φ). Then there is an F ∈ [C]T
i

∗ so that ∆i,F = χ and pi,F = p.

Proof. Note that i as defined above is an instruction since p ∈ BIωω
(< ω1, Z). Let g : ω1 → C be a function

of type 1 so that χ = [g]µ1
ω1
. Let G : ω1 × ω → ω1 witness that g has uniform cofinality ω. By Lemma

2.27 (2), ΦH [ωω \ ω1] ∈ ωω \ ω2. Let nη = φ(η). Let ζη = Φ−1
H (p(η)) and note that by Lemma 2.27,

ζη ∈ ωφ(η)+1. Apply Fact 2.19, for each η < ϵ, there is an fη : [ω1]
nη → ω1 so that [fη]µnη

ω1
= ζη. Then

p(η) = ΦH(ζη) = [f̂η]µnη+1
ω1

. For each η < ϵ, let A0
η = {τ ∈ [ω1]

ω : f(τ ↾ nη) < τ(nη)}. By Fact 2.11,

there is a club D ⊆ ω1 which is fη-bounding. Then A0
η ∈ µω

ω1
since [D]ω∗ ⊆ Aη. For η0 < η1 < ϵ, let

A1
η0,η1

= {τ ∈ [ω1]
ω : fη0

(τ ↾ nη0
) < fη1

(τ ↾ nη1
)}. Since ΦH is increasing by Fact 2.27 and p is an increasing

function, [fη0
]
µ
nη0
ω1

< [fη1
]
µ
nη1
ω1

. This implies that A1
η0,η1

∈ µω
ω1
. For each η < ϵ, let

A2
η = {τ ∈ [ω1]

ω : g(τ(nη)) < f̂η(τ ↾ nη + 1) ∧ f̂η(τ ↾ nη + 1) < τ(nη + 1) < g(τ(nη + 1))}.

By Fact 2.28, A2
η ∈ µω

ω1
since [g]µ1

ω1
= χ < δH1 = [I1

f̂η
]µ1

ω1
. Note that µω

ω1
is countably complete by

ω1 →∗ (ω1)
ω+ω
2 and Fact 1.21. Let A =

⋂
{A0

η0
, A1

η0,η1
, A2

η0
: η0 < η1 < ϵ}. Note that A ∈ µω

ω1
since it is
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a countable union of sets from µω
ω1
. Let D ⊆ ω1 be a club so that [D]ω1

∗ ⊆ A.1 To summarize, D has the
following properties:

(1) For all η < ϵ, D is fη-bounding. Thus f̂η is defined on [D]
nη+1
∗ and for all 1 ≤ m ≤ nη, I

m
fη

= hHm on

[D]m∗ by Lemma 2.27.
(2) For all η0 < η1 < ϵ and ℓ ∈ [D]

nη1
∗ , fη0(ℓ ↾ nη0) < fη1(ℓ).

(3) For all η < ϵ, α ∈ [D]1∗, and ℓ ∈ [D]
nη+1
∗ ,

(i) If α ≤ ℓ(nη), then g(α) < f̂η(ℓ).

(ii) If ℓ(nη) < α, then f̂η(ℓ) < α < g(α).

Let e = enumD. Define F : T i → ω1 be defined by as follows:

(a) For all α < ω1, let F (α,♣0) = g(e(α)).
(b) For all η < ϵ, α0 < ... < αnη

< ω1, let

F (αnη
,♣1, αnη−1, ..., α0,♣2, η) = f̂η(e(α0), ..., e(αnη

)).

Note that F is defined everywhere on T i since it is defined in all instance of (b) using property (1) of the

club D. Since g maps into C and f̂η maps into C (since H maps into C), one has that F : T i → C. Define

F̃ : T i × ω → ω1 as follows:

F̃ (x, k) =

{
G(e(α), k) x = (α,♣0)

H̄((e(αnη
), ..., e(α0), ⋄, f(e(α0), ..., e(αnη−1))), k) x = (αnη

,♣1, αnη−1, ..., α0,♣0, η)
.

F̃ witnesses that F has uniform cofinality ω. Next, one will show that F is order preserving from T i into
(C,<). Suppose x, y ∈ T i with x <Ω

lex y.

(A) x = (α,♣0) and y = (β,♣0) with α < β: Then F (x) = g(e(α)) < g(e(β)) = F (y) since g is an
increasing function (since g has type 1).

(B) x = (α,♣0) and y = (βnη ,♣1, βnη−1, ..., β0,♣2, η) with α ≤ βnη and η < ϵ: Then

F (x) = g(e(α)) < f̂η(e(β0), ..., e(βnη
)) = F (y)

by property (3i) of the club D.
(C) x = (αnη

,♣1, αnη−1, ..., α0,♣2, η) and y = (β,♣0) with αnη
< β and η < ϵ: Then

F (x) = f̂η(e(α0), ..., e(αnη
)) < g(e(β)) = F (y)

by property (3ii) of the club D.
(D) x = (αnη0

,♣1, αnη0
−1, ..., α0,♣2, η0) and y = (βnη1

,♣1, βnη1
−1, ..., β0,♣2, η1) and there is some

j < min{nη0
, nη1

} so that αnη0−j < βnη1−j and for all i < j, αnη0−i = βnη1−i. Then

F (x) = f̂η0
(e(α0), ..., e(αnη0

)) = H(e(αnη0
), ..., e(α0), ⋄, f(e(α0), ..., e(αnη0

)))

< H(e(βnη1
), ..., e(β0), ⋄, f(e(β0), ..., e(βnη1

))) = f̂η1
(e(β0), ..., e(βnη1

)) = F (y)

with the inequality coming from comparing to the jth position consisting of e(αnη0
−j) and e(βnη1

−j).

(E) x = (αnη0
,♣1, αnη0−1, ..., α0,♣2, η0) and y = (βnη1

,♣1, βnη1−1, ..., β0,♣2, η1) with nη0
< nη1

, and
for all j ≤ nη0 , αnη0

−j = βnη1
−j . Then

F (x) = f̂η0
(e(α0), ..., e(αnη0

)) = H(e(αnη0
), ..., e(α0), ⋄, f(e(α0), ..., e(αnη0

−1)))

= H(e(βnη1
), ..., e(βnη1−nη0

), ⋄, f(e(α0), ..., e(αnη0−1)))

< H(e(βnη1
), ..., e(β0), f(e(β0), ..., e(βnη1

−1))) = f̂η1
(e(β0), ..., e(βnη1

)) = F (y)

where the inequality comes from comparing ⋄ <𭟋 e(βnη1−nη0−1) and using the fact that H is order

preserving on <𭟋
lex.

1Countable choice of club subsets of ω1 generally may not be possible from these hypotheses. The purpose of using µω
ω1

is

to find this club D using the countably completeness of µω
ω1

.
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(F) x = (αnη0
,♣1, αnη0

−1, ..., α0,♣2, η0) and y = (βnη1
,♣1, βnη1

−1, ..., β0,♣2, η1) with η0 < η1, nη0 =
nη1

, αj = βj for all j ≤ nη0
= nη1

. Then

F (x) = f̂η0
(e(α0), ..., e(αnη0

)) = H(e(αnη0
), ..., e(α0), ⋄, f(e(α0), ..., e(αnη0−1)))

< H(e(βnη1
), ..., e(β0), ⋄, f(e(β0), ..., e(βnη1−1))) = f̂η1

(e(β0), ..., e(βnη1
)) = F (y)

since fη0(e(α0), ..., e(αnη0
− 1)) < fη1(e(β0), ..., βnη1

− 1) by property (2) of the club D.

It has been shown that F is order preserving from T i into (C,<). Next, one will show that F is discontinuous
everywhere. Let x ∈ T i.

(I) Suppose x = (α,♣0).

sup(F ↾ x) = sup{F (y) : y <𭟋
lex x} = sup{f̂η(e ◦ ℓ) : η < ϵ ∧ ℓ ∈ [ω1]

nη+1 ∧ ℓ(nη) < α}

≤ e(α) < g(e(α)) = F (x)

using property (3ii) of the club D.
(II) Suppose x = (αn0 ,♣1, n0 − 1, n0 − 2, ..., 0, ⋄, 0). The immediate <𭟋

lex predecessor of x is (αn0 ,♣0).

sup(F ↾ x) = F (αn0
,♣0) = g(e(αn0

)) < f̂(e(0), ..., e(n0 − 1), e(αn0
)) = F (x)

by property (3i) of the club D.
(III) Suppose x is not as in Case (I) or Case (II). Say x = (αnη ,♣1, αnη−1, ..., α0,♣0, η). Let E be

the set of y ∈ T i so that y <Ω
lex x and y takes the form (βnη̄

,♣1, βnη̄−1, ..., β0,♣2, η̄). Note that
sup(F ↾ x) = sup{F (y) : y ∈ E}. If y ∈ E and y = (βnη̄

,♣1, βnη̄−1, ..., β0,♣2, η̄), then

(e(βnη̄ ), ..., e(β0), ⋄, fη̄(e(β0), ..., e(βnη̄−1))) <
𭟋
lex (e(αnη ), ..., e(α0), ⋄, fη(e(α0), ..., e(αnη−1)))

using property (2) of the club D (when nη̄ = nη). Thus

sup(F ↾ x) = sup{H(e(βnη̄ ), ..., e(β0), ⋄, fη̄(e(β0), ..., e(βnη̄−1))) : (βnη̄ ,♣1, βnη̄−1, ..., β0,♣2, η̄) ∈ E}

< H(e(αnη
), ..., e(α0), ⋄, fη(e(α0), ..., e(αnη−1))) = F (x)

using the discontinuity of H.

It has been shown that F is discontinuous everywhere. This shows that F has the correct type and thus

F ∈ [C]T
i

∗ . For all α ∈ ω1,

F i,△(α) = F (α,♣0) = g(e(α)).

For all η < ϵ and ℓ ∈ [ω1]
nη+1,

F i,η(ℓ) = F (e(ℓ(nη)),♣1, e(ℓ(nη − 1)), ..., e(ℓ(0)),♣2, f(e ◦ ℓ)) = f̂(e ◦ ℓ).

Let D̃ = {α ∈ D : enumD(α) = α}. For all α ∈ [D̃]1∗, e(α) = enumD(α) = α so F i,△(α) = g(e(α)) = g(α).

For all η < ϵ and ℓ ∈ [D̃]
nη+1
∗ , e ◦ ℓ = enumD ◦ ℓ = ℓ and so F i,η(ℓ) = f̂η(e ◦ ℓ) = f̂η(ℓ). Thus △i,F =

[F i,△]µ1
ω1

= [g]µ1
ω1

= χ and for all η < ϵ, pi,F (η) = [F i,η]
µ
nη+1
ω1

= [f̂η]µnη+1
ω1

= p(η). This completes the

proof. □

Observe that the set of instruction I has cardinality ω1. Each element i ∈ I will induces a certain
partition on Pi : [ω1]

ω1 → 2 in the main theorem below. One will need to be able to choose homogeneous
club for ω1-many partitions in order to construct the relevant objects. In many combinatorial constructions
involving partition relations, one often needs to choose clubs for a large family of partitions possibly indexed
by uncountable and even nonwellorderable sets. [3] has an extensive study of club uniformization principles.

Here, one will need a form of wellordered club uniformization. AD implies ACR
ω and thus by the Moschovakis

coding lemma, one can choose clubs from a countable family of club subsets of ω1. However, here one will
formulate all result in a setting that does not assume any form of countable choice. The very strong partition
property of ω1 will allow the ability to choose ω1-many clubs.

For an uncountable cardinal κ, clubκ will denote the set of all club subsets of κ. If X is a set and
R ⊆ X × clubκ, then R is said to be ⊆-downward closed in the clubκ-coordinate if and only if for all x ∈ X
and clubs C ⊆ D, if R(x,D) holds, then R(x,C) holds.

Fact 2.35. Assume κ is an uncountable cardinal satisfying the very strong partition relation κ→∗ (κ)κ<κ.
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• If R ⊆ κ × clubκ is ⊆-downward closed in the clubκ-coordinate, then there is a club C ⊆ κ so that
for all α ∈ dom(R), R(α,C \ (α+ 1)).

• If R ⊆ [κ]2 × clubκ is ⊆-downward closed in the clubκ-coordinate, then there is a club C ⊆ κ so that
for all (α, β) ∈ dom(R), R((α, β), C \ (β + 1)).

Proof. The second statement will be shown. If f ∈ [κ]κ, then let Cf be the closure of f [κ] which is a club
subset of κ. Let ≺ be a wellordering in [κ]2 defined by (α, β) ≺ (γ, δ) if and only if (β < δ)∨ (β = δ∧α < γ).
Let g : [κ]2 → κ be the Gödel pairing function defined by g(α, β) is the rank of (α, β) under ≺. Fix
R ⊆ [κ]2 × clubκ which is ⊆-downward closed in the clubκ-coordinate. Define P : [κ]κ → 2 by P (f) = 0 if
and only if for all (α, β) ∈ [f(0)]2, (α, β) ∈ dom(R) ⇒ R((α, β), Cf ). By κ →∗ (κ)κ2 , there is a club C0 ⊆ κ
which is homogeneous for P . One may assume C0 is closed under the Gödel pairing function g in the sense
that for all γ ∈ C0, for all α < β < γ, g(α, β) < γ. Suppose C0 was homogeneous for P taking value 1. For
any f ∈ [C0]

κ
∗ , there is a (α, β) < [f(0)]2 with (α, β) ∈ dom(R) and R((α, β), Cf ). Let Ψ : [C0]

κ
∗ → κ be

defined by Ψ(f) is g(α, β) for the ≺-least such (α, β) with the previous property. By the property that f(0)
is closed under g, one has that for all f ∈ [C0]

κ
∗ , Ψ(f) < f(0). By κ →∗ (κ)κ<κ, Fact 2.13 implies there is

a club C1 ⊆ C0 and a ζ < κ so that for all f ∈ [C1]
κ
∗ , Ψ(f) = ζ. Let (ᾱ, β̄) = g−1(ζ). By definition of Ψ,

(ᾱ, β̄) ∈ dom(R). Let D ⊆ C1 be a club so that R((ᾱ, β̄), D). Let f ∈ [D]κ∗ with β̄ < f(0). Since Cf ⊆ D and
R is ⊆-downward closed, one has that R((ᾱ, β̄), f). This contradicts, Ψ(f) = ζ = g(ᾱ, β̄). So C0 must have
been homogenous for P taking value 0. Pick any h ∈ [C0]

κ
∗ . Let E = Ch which is a club subset of κ. Suppose

(α, β) ∈ dom(R). Let ηα,β be the least η < κ so that β < h(η). Note that β < h(ηα,β) = drop(h, ηα,β)(0).
Since P (drop(h, ηα,β)) = 0, (α, β) ∈ dom(R), and β < drop(h, ηα,β)(0), one has that R((α, β), Cdrop(h,ηα,β)).
Since E \ (β + 1) = Cdrop(h,ηα,β), one has that R((α, β), E \ β + 1). E is the desired club. □

So in the main argument, one will have a club C which is simultaneous homogeneous for Pi for each i ∈ I
in the sense that for each i, there is an ordinal ξi so that C \ (ξi + 1) is homogeneous for Pi. The shift by
ξi + 1 will cause no harm for the main argument because each ω1-sequence through the homogeneous set is
meant to represent ordinals in ultrapowers by various µn

ω1
. Thus shifting the representative up above ξi + 1

does not change the represented ordinal. The details follow next which answer [1] Question 2.7 of Ben-Neria
and Garti.

Theorem 2.36. Assume ω1 → (ω1)
ω1
<ω1

and jµ1
ω1
(ω1) = ω2. ωω is a Magidor cardinal.

Proof. Let Ψ : BIωω
(< ω1, ωω) → ωω. Since |I| = |ω1|, let b : ω1 → I be a fixed bijection. For each i ∈ I, let

ξi = b−1(i). For each i ∈ I, let Pi : [ω1]
T i → 2 be defined by Pi(F ) = 0 if and only if I1

Ψ(pi,F ) < △i,F . By

ω1 →∗ (ω1)
ω1
2 , there is a club homogeneous for Pi taking value ji ∈ 2. Define a relation R ⊆ ω1 × clubω1 by

R(α,C) if and only if C is homogeneous for Pb(α) (necessarily taking value jb(α)). Clearly R is ⊆-downward
closed in the clubω1

-coordinate and dom(R) = ω1 by the discussion above. Since ω1 →∗ (ω1)
ω1
<ω1

holds,
Fact 2.35 implies there is a club C ⊆ ω1 so that for all α ∈ ω1, R(α,C \ (α + 1)). In other words, for all
instructions i ∈ I, C \ (ξi + 1) is homogeneous for Pi taking value ji.

Pick η0 ∈ BC
2 . Pick a function J ∈ [ω1]

V
∗ so that η0 < δJ1 (where δJ1 is defined for J as in definition 2.26).

Since |BC
2 | = |ω2|, pick any η1 ∈ BC

2 with δJ1 < η1. Pick any H ∈ [C]V∗ so that η1 < δH1 (where again δH1 is
defined in Definition 2.26 for H). Let Z = ΦH [ωω \ ω1] and note that |Z| = |ωω| since ΦH is an injection.
For any i ∈ I, let H i ∈ [C \ (ξi + 1)]V∗ be defined by H i(x) = enumC(ξi + enum−1

C (H(x))). Note that H and

H i only disagree on countably many x ∈ V . Thus δH1 = δH
i

1 and Z = ΦHi [ωω \ ω1].
Suppose p ∈ BIωω

(< ω1, Z). Let ϵ = dom(p) and φ : ϵ → ω be defined by φ(η) is the least 1 ≤ n < ω so
that ωn+1 ≤ p(η) < ωn+2. Let i = (ϵ, φ) and note that i ∈ I is an instruction.

(1) (ji = 0) Since η0 ∈ BC
2 = B

C\(ξi+1)
2 , η0 < δH1 = δH

i

1 and p ∈ BIωω (< ω1, Z), Lemma 2.34

applied to C \ (ξi + 1) and H i gives an F ∈ [C \ (ξi + 1)]T
i

∗ so that ∆i,F = η0 and pi,F = p.
Since C \ (ξi + 1) is homogeneous for Pi taking value ji, one has Pi(F ) = ji = 0 implies that
I1
Ψ(p) = I1

Ψ(pi,F ) < ∆i,F = η0 < δJ1 .

(2) (ji = 1) Since η1 ∈ BC
2 = B

C\(ξi+1)
2 , η1 < δH1 = δH

i

1 and p ∈ BIωω
(< ω1, Z), Lemma 2.34

applied to C \ (ξi + 1) and H i gives an F ∈ [C \ (ξi + 1)]T
i

∗ so that ∆i,F = η1 and pi,F = p.
Since C \ (ξi + 1) is homogeneous for Pi taking value ji, one has Pi(F ) = ji = 1 implies that
δJ1 < η1 = ∆i,F ≤ I1

Ψ(pi,F ) = I1
Ψ(p).
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In either case, I1
Ψ(p) ̸= δJ1 . Let K = {γ ∈ ωω : I1

γ = δJ1 }. By Fact 2.27 applied to J , ΦJ is an injection of

(ωω \ ω1) into K. Thus |K| = |ωω|. Since p ∈ BIωω
(< ω1, Z) was arbitrary, K ∩Ψ[BIωω

(< ω1, Z)] = ∅. Thus
Ψ[BIωω

(< ω1, Z)] ̸= ωω (and moreover, Ψ[BIωω
(< ω1, Z)] misses a subset of ωω of cardinality ωω). Ψ is not

a Magidor function. Since Ψ was arbitary, ωω is Magidor. □

Similar arguments which more directly involves Kunen functions should be able to show that for all ϵ < ω2,
ωω is ϵ-Magidor and (< ϵ)-Magidor. It is not known if ωω is (< ω2)-Magidor, ω2-Magidor, lower-Magidor,
or super-Magidor.

3. Remarks on Magidor Filters

Definition 3.1. Let κ be a cardinal and ϵ < κ. A uniform filter F on κ (which means for all A ∈ F , |A| = |κ|)
is an ϵ-Magidor filter if and only if for all Φ : BIκ(ϵ, κ) → κ, there is an A ∈ F so that Φ[BIκ(ϵ, A)] ̸= κ.

Let κ be a cardinal and ϵ < κ. A uniform filter F on κ is a (< ϵ)-Magidor filter if and only if for all
Φ : BIκ(< ϵ, κ) → κ, there is an A ∈ F so that Φ[BIκ(< ϵ,A)] ̸= κ.

A Magidor filter is a (< ω1)-Magidor filter.
Let κ be a cardinal. A uniform filter F on κ is a super-Magidor filter if and only if for all ϵ < κ and

Φ : BIκ(< ϵ, κ) → κ, there is an A ∈ F so that Φ[BIκ(< ϵ,A)] ̸= κ.

[11] showed that under ZFC, there may exists Magidor cardinals assuming very powerful large cardinal
axioms, but there cannot exist any Magidor filters. This section will have some remarks about the existence
of Magidor filter (of various partial extent) in the choiceless framework.

Next, one will show that for partition cardinals κ, the ω-club filter µ1
κ is a (< ω ·ω)-Magidor filter but is not

a ω ·ω-Madidor filter. Recall that the correct type partition relation is formulated to have club homogeneous
sets for functions of the correct type and being of the correct type means the function is discontinuous
everywhere and has uniform cofinality ω. However, [κ]ϵ (the set of all increasing ϵ-sequences) may contain
functions which are not discontinuous everywhere. To handle non-discontinuous increasing functions while
using the correct type partition relation, one will need to represent a non-discontinuous increasing function
by the correct type function which induces it. If ϵ < ω · ω, then there are only finitely many limit ordinals
below ϵ. Thus there are only finitely many “types” for functions on ϵ when ϵ < ω ·ω. This is the key property
that makes Proposition 3.2 possible. When ϵ ≥ ω ·ω, there will be infinitely many limit ordinals below ϵ and
one will have an R-index family of possible “types”. Proposition 3.5 will show that this leads to a coding of
R using these infinitely many limit ordinals and hence µ1

κ cannot be a ω · ω-Magidor filter.
Ben-Neria and Sharon [1] showed that that ω-club filter µ1

κ is a ω-Magidor filter at suitable partition
cardinals κ. The following generalization is the optimal extent that µ1

κ can “serve as a Magidor filter”.

Proposition 3.2. Let κ be an uncountable cardinal and assume ACP(κ)
ω . Let 1 ≤ ϵ < ω · ω and assume

κ→ (κ)1+ϵ
2 holds. Then µ1

ω1
is an ϵ-Magidor ultrafilter on κ.

Proof. κ →∗ (κ)22 implies that κ is regular and µ1
κ is normal. Fix ϵ < ω · ω. Thus BIκ(ϵ, κ) is equal to [κ]ϵ.

Let Φ : [κ]ϵ → κ. Let L be the set of limit ordinals below ϵ. Since ϵ < ω · ω, L is a finite set. If F ⊆ L,
let ζF = ot(ϵ \ F ) and let eF : ζF → ϵ \ F be the increasing enumeration of ϵ \ F . If f : ζF → κ, then let
fF : ϵ→ κ be defined by

fF (α) =

{
f(β) α /∈ L ∧ β = e−1

F (α)

sup{f(β) : eF (β) < α} α ∈ L

Note that fF is continuous precisely at the points α ∈ L. For each F ⊆ L, let PF : [κ]1+ζF → 2 be defined
by PF (g) = 0 if and only if Φ(drop(g, 1)F ) < g(0). By κ →∗ (κ)1+ϵ

2 , for each F ⊆ L, there is a club
which is homogeneous for PF taking value iF ∈ 2. Since there are only finitely many F ⊆ L because L is
finite, there is a single club C which is homogeneous for all PF for F ⊆ L. Let D = [C]1∗ or in other words,
D = {α ∈ C : cof(α) = ω}. Let ᾱ < β̄ be the first two elements ofD. Let E = D\(β̄+1). Note that E ∈ µ1

ω1
.

The claim is that ᾱ /∈ Φ[[E]ϵ] = Φ[BIκ(ϵ, E)]. To see this, let h ∈ [E]ϵ. Let F = {α ∈ ϵ : sup(h ↾ α) = h(α)}
and note that F ⊆ L. Define f : ζF → D by f(α) = h(eF (α)). Note that f is an everywhere discontinuous
function and fF = h.
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• Suppose iF = 0. Let g = ⟨ᾱ⟩̂ f . Note that g : 1 + ζf → D is everywhere discontinuous. Since

1 + ζF < ϵ · ϵ < ω1 and D = [C]1∗, AC
P(κ)
ω implies g has uniform cofinality ω.2 Thus g ∈ [C]1+ζF

∗ .
PF (g) = iF = 0 implies that Φ(h) = Φ(fF ) = Φ(drop(g, 1)F ) < g(0) = ᾱ.

• Suppose iF = 0. Let g = ⟨β̄⟩̂ f . As in the previous case, g ∈ [C]
1+ζf
∗ . Thus PF (g) = iF = 1 implies

that ᾱ < β̄ = g(0) ≤ Φ(drop(g, 1)F ) = Φ(fF ) = Φ(h).

So in either case Φ(h) ̸= ᾱ. Since h ∈ [E]ϵ was arbitary, ᾱ /∈ Φ[[E]ϵ]. Thus Φ[[E]ϵ] = Φ[BIκ(ϵ, E)] ̸= κ and
E ∈ µ1

κ. Since Φ was arbitrary, this shows that µ1
κ is an ϵ-Magidor filter. □

Proposition 3.3. Let κ be an uncountable cardinal and assume ACP(κ)
ω . Let 1 ≤ ϵ < ω · ω and assume

κ→ (κ)<ω·ω
2 holds. Then µ1

κ is a (< ω · ω)-Magidor ultrafilter on κ.

Proof. Fix a function Φ : BIκ(< ω · ω, κ) → κ. Since κ is regular, BIκ(< ω · ω, κ) = [κ]<ω·ω. Thus
Φ : [κ]<ω·ω → κ. For each ϵ < ω · ω, let Φϵ : [κ]ϵ → κ be defined by Φϵ(f) = Φ(f). For ϵ < ω · ω, let Lϵ be
the set of limit ordinals below ϵ which is a finite set. For F ⊆ ϵ, let ζϵ,F = ot(ϵ \ F ) and eϵ,F : ζF → ϵ \ F
be the increasing enumeration of ϵ \ F . If f : ζϵ,F → κ, then let f ϵ,F : ϵ → κ and Pϵ,F be as defined in the
proof of Proposition 3.2 using ϵ. (In the proof of Proposition 3.2, ϵ was fixed but now one must consider all
ϵ < ω · ω.) Let iϵ,F be the unique homogeneous value for Pϵ,F for each ϵ < ω · ω and F ⊆ Lϵ. Since ω · ω is

countable and ACP(κ)
ω holds, there is a sequence ⟨Cϵ,F : ϵ < ω ·ω∧F ⊆ Lϵ⟩ with the property that Cϵ,F ⊆ κ

is a club and is homogeneous for Pϵ,F taking value iF,ϵ. Let C =
⋂
{Cϵ,F : ϵ < ω · ω ∧ F ⊆ Lϵ} which is still

a club subset of κ as it is a countable intersection of club subsets of κ. Let D = [C]1∗. Let ᾱ < β̄ be the first
two elements of D. Let E = D \ (β̄ + 1). Much as in the proof of Proposition 3.2 by considering all P ϵ,F

for ϵ < ω · ω and F ⊆ Lϵ, one can show that ᾱ /∈ Φ[BIκ(< ω · ω,E)]. This shows µ1
κ is a (< ω · ω)-Magidor

filter. □

Proposition 3.4. Assume AD. If κ is an uncountable cardinal satisfying κ →∗ (κ)<ω·ω
2 , then µ1

κ is a
(< ω · ω)-Magidor filter.

In particular, µ1
ω1

and µ1
ω2

are (< ω · ω)-Magidor filters for ω1 and ω2, respectively.

Proof. AD implies ACR
ω. If κ < Θ, then ACR

ω implies ACP(κ)
ω by the Moschovakis coding lemma. The result

now follows from Proposition 3.3. □

Proposition 3.5. If κ is a cardinal with ω1 ≤ κ < Θ, then the ω-club filter µ1
κ on κ is not an ω ·ω-Magidor

filter.

Proof. Since κ < Θ, let π : ω2 → κ be a surjection. Define Φ : BIκ(ω · ω, κ) → ω2 by

Φ(f)(n) =

{
0 sup(f ↾ ω · n+ ω) < f(ω · n+ ω)

1 sup(f ↾ ω · n+ ω) = f(ω · n+ ω)

Define Ψ : BIκ(ω · ω, κ) → κ by π ◦ Φ.
Suppose A ∈ µ1

κ. Thus there is a club C ⊆ κ so that [C]1∗ ⊆ A. Let h : ω · ω → C be the enumeration of
the first ω · ω element of [C]1∗. Since C is club, note that for all n ∈ ω, h(ω · n + ω) = sup(h ↾ ω · n + ω).
Pick any r ∈ ω2. Define fr ∈ [A]ω·ω as follows:

fr(ω ·m+ n) =


h(n) m = 0

h(ω ·m+ n) m > 0 ∧ r(m− 1) = 1

h(ω ·m+ 1 + n) m > 0 ∧ r(m− 1) = 0

If r(m) = 0, then sup(fr ↾ ω · m + ω) = h(ω · m + ω) < h(ω · m + ω + 1) = fr(ω · m + ω) and thus
Φ(fr)(m) = 0 = r(m). If r(m) = 1, then sup(fr ↾ ω · m + ω) = h(ω · m + ω) = fr(ω · m + ω) and thus
Φ(fr)(m) = 1 = r(m). This shows that Φ(fr) = r. It has been shown that Φ[BIκ(ω · ω,A)] = ω2. Thus
Ψ[BIκ(ω · ω,A)] = (π ◦ Φ)[BIκ(ω · ω,A)] = κ. Since A ∈ µ1

κ was arbitrary, µ1
κ is not ω · ω-Magidor. □

2The use of AC
P(κ)
ω is important here to ensure any countable sequence through D has uniform cofinality ω.
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Let ζ < κ be a regular cardinal and let νζκ be the ζ-club filter on κ. With the appropriate modification
and a strengthened partition property, one may prove an analogs of the Proposition 3.3 that νζκ is a (< ω ·ω)-
Magidor filter. One can also prove an analog of Proposition 3.5 that νζκ is not an (ω · ω)-Magidor filter.

The author does not know if it is ever possible to have an ω · ω-Magidor filter at a cardinal below Θ even
at strong partition cardinals (like ω1). Next, one will show under AD and DCR that no countably complete
filter on ω1 can ever be an (ω · ω)-Magidor filter.

Definition 3.6. Let 1 ≤ n < ω and π : n→ n be a permutation. Define ≺n,π on [ω1]
n by ι ≺ ℓ if and only

if ι ◦ π <ω1

lex ℓ ◦ π. Let Ln,π = ([ω1]
n,≺n,π). Note that ot(Ln,π) = ω1.

Every injective function Φ : [ω1]
n → ω1 is almost everywhere order preserving on Ln,π for some permu-

tation π such that π(0) = n − 1. Note that if πn = (n − 1, n − 2, ..., 0), then a function of type n is order
preserving on Ln,πn . The proof is a fairly straightforward partition argument.

Fact 3.7. ([17] Lemma 4.23) Let 1 ≤ n < ω and ω1 →∗ (ω1)
n+n
2 . Let C ⊆ ω1 be a club and Φ : [C]n∗ → ω1

be an injective function, then there is a club D ⊆ D and a permutation π : n→ n with π(0) = n− 1 so that
Φ : [D]n∗ → ω1 is order preserving from Ln,π ↾ [D]n∗ = ([D]n∗ ,≺n,π) into (ω1, <).

Recall that under AD, there are no nonprincipal ultrafilters on ω and hence any ultrafilter on any set is
countably complete. If F is a filter on a set X, Y is a set, and Φ : X → Y is a function, then define the
Rudin-Keisler pushforward of µ by Φ, Φ∗µ, which is a filter on Y by A ∈ Φ∗µ if and only if Φ−1[A] ∈ µ. If
F is a filter on a set X and A ∈ F , then F ↾ A = {B ∈ F : B ⊆ A}.

Fact 3.8. (Kunen) Assume AD. If κ < Θ and F is a countably complete filter on κ, then there exists an
ultrafilter µ on κ such that F ⊆ µ.

Proof. If x, y ∈ ω2, let x ≤Turing y indicate that x is Turing reducible to y. Note that for any x ∈ ω2,
{y ∈ ω2 : y ≤Turing x} is countable. Let ≡Turing denote the Turing equivalence relation on ω2 defined by
x ≡Turing y if and only if x ≤Turing y and y ≤Turing x. Let DTuring = ω2/ ≡Turing be the collection of Turing
degrees. If X,Y ∈ DTuring, then define X ≤ Y if and only if there exists x ∈ X and y ∈ Y so that
x ≤Turing y. If X ∈ DTuring, then the Turing cone CX is {Y ∈ DTuring : X ≤ Y }. The Martin measure
µTuring on DTuring is defined by A ∈ µTuring if and only there is an X ∈ DTuring so that CX ⊆ A. Under
AD, Martin showed that µTuring is an ultrafilter on DTuring. Since κ < Θ, there is a surjection of R onto
P(κ) by the Moschovakis coding lemma. Since F ⊆ P(κ), there is a surjection ϖ : R → F . Define
Π : DTuring → κ by Π(X) = min

⋂
{ϖ(z) : [z]≡Turing

≤ X}. Since the intersection of countably many elements
of the countably complete filter F is in F and hence nonempty, Π is well defined. One can check that
Π∗µTuring (the Rudin-Keisler pushforward of µTuring by Π) is an ultrafilter which extends F . □

Fact 3.9. (Kunen; [17] Theorem 4.8) Assume AD and DCR. Assume µ is a countably complete nonprincipal
ultrafilter on ω1. Then there is a 1 ≤ n < ω so that µ is Rudin-Keisler equivalent to µn

ω1
: There is a set

A ∈ µn
ω1
, a set B ∈ µ, and a bijection Φ : A→ B so that µ ↾ B = Φ∗(µ

n
ω1

↾ A) and µn
ω1

↾ A = (Φ−1)∗(µ ↾ B).

Theorem 3.10. Assume AD and DCR. If F is a countably complete nonprincipal ultrafilter on ω1, then F
is not ω · ω-Magidor filter for ω1.

Proof. Since ω1 is regular, BIω1
(ω · ω,X) = [X]ω·ω for any X ⊆ ω1 so one will prefer to use the notation

[X]ω·ω. By Fact 3.8, let µ be an ultrafilter on ω1 which extends F . By Fact 3.9, there is a 1 ≤ n < ω,
A ∈ µn

ω1
, B ∈ µ, and bijection Π : A → B so that µ ↾ B = Π∗(µ

n
ω1

↾ A) and µn
ω1

↾ A = (Π−1)∗(µ ↾ B).
Using Fact 3.7, let π : n → n be a bijection and C ⊆ ω1 be a club with [C]n∗ ⊆ A so Π : [C]n∗ → B is an
order embedding of Ln,π ↾ [C]n into (B,<). Observe that ot(Ln,π ↾ [C]n∗ ) = ω1. If E ⊆ [C]n∗ is countable,
then let sup∗(E) denote the least element of [C]n∗ which is ≺n,π greater than every element of E. Suppose
h ∈ [ω1]

ω·ω. Say that h is suitable if and only if for all α < ω · ω, h(α) ∈ Π[[C]n∗ ]. If h is suitable, let

h̃ : ω · ω → [C]n∗ be defined by h̃(α) = Π−1(h(α)). Let m ∈ ω. Say that m is an h-limit if and only if

h(ω ·m+ ω) = Π(sup∗{h̃(ω ·m+ k) : k < ω}). Now define Ψ : [ω1]
ω·ω → ω2 by

Ψ(h)(m) =


0 h is not suitable

0 h is suitable and m is not an h-limit

1 h is suitable and m is an h-limit

.
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Let X ∈ F . Since F ⊆ µ, X ∈ µ. Note that Π[[C]n∗ ] ∈ µ since µ ↾ B = Π∗(µ
n
ω1

↾ A). Thus X ∩Π[[C]n∗ ] ∈ µ ↾
B. Π−1[X∩Π[[C]n∗ ]] ∈ µn

ω1
. LetD ⊆ C be a club so that [D]n∗ ⊆ Π−1[X∩Π[[C]n∗ ]]. Let u : ω·ω → [D]n∗ be any

order preserving discontinuous map from (ω · ω,<) into ([D]n,≺n,π) where discontinuous means that for all
m < ω, sup∗{u(ω·m+1+k) : k < ω} < u(ω·m+ω). For eachm ∈ ω, let v(m) = sup∗{u(ω·m+1+k) : k < ω}.
Let r ∈ ω2. Let hr ∈ [ω1]

ω·ω be defined by

hr(α) =


Π(α+ 1) α = 0 ∨ α is a successor cardinal

Π(u(ω ·m+ ω)) α = ω ·m+ ω ∧ r(m) = 0

Π(v(m)) α = ω ·m+ ω ∧ r(m) = 1

.

Since Π[[D]n∗ ] ⊆ X, one has that hr ∈ [X]ω·ω. Since for all α < ω ·ω, u(α) ∈ [D]n∗ ⊆ [C]n∗ , Π(u(α)) ∈ Π[[C]n∗ ]
for all α < ω ·ω. Also v(m) ∈ [D]n∗ ⊆ [C]n∗ . Hence Π(v(m)) ∈ Π[[C]n∗ for all m ∈ ω. Thus for all r ∈ ω2, hr is

suitable. Note that for any r ∈ R and m ∈ ω, sup∗{h̃r(ω ·m+ k) : k < ω} = sup{u(ω ·m+1+ k) : k < ω} =
v(m). Suppose r(m) = 0. Since u is discontinuous, u(ω ·m+ ω) > v(m) and thus hr(ω ·m+ ω) = Π(u(ω ·
m+ω)) > Π(v(m)) = Π(sup∗{h̃r(ω ·m+1+k) : k < ω}). m is not an hr-limit. Thus Ψ(hr)(m) = 0 = r(m).

Now suppose r(m) = 1. Then hr(ω ·m + ω) = Π(v(m)) = Π(sup∗{h̃r(ω ·m + 1 + k) : k < ω}). Thus m is
a hr-limit. Thus Ψ(hr)(m) = 1 = r(m). It has been shown that Ψ(hr) = r. This shows that r ∈ Ψ[[X]n].
Since r was arbitrary, Ψ[[X]n] = R. Since X ∈ F was an arbitrary, it has been shown that for all X ∈ F ,
Ψ[[X]ω·ω] = R. Since κ < Θ, let ϖ : R → κ be surjection. Define Φ : [ω1]

ω·ω → κ by Φ = ϖ ◦Ψ. It has been
shown that for all X ∈ F , Φ[[X]ω·ω] = κ. F is not an (ω ·ω)-Magidor filter. Since F was arbitrary countably
complete filter on ω1, it has been shown that no countably complete ultrafilter on ω1 is an (ω · ω)-Magidor
filter. □

Jackson [17] has completely classified all the countably complete measures on any cardinal below the
projective ordinal (and a bit beyond) and they are closely related to the partition properties on the odd
projective ordinals. Similar argument to the above should show that for any cardinal below the supremum
of the projective ordinals, no countably complete filter on that cardinal can be an (ω · ω)-Magidor filter.

The natural question is whether ω1 has an (ω · ω)-Magidor filter under AD. If it exists, it must not be
countably complete. Are there are any cardinals below Θ which possesses an (ω · ω)-Magidor filter under
AD?

4. Singular Super-Magidor Cardinals

Ben-Neria and Garti [1] asked whether there is a singular lower-Magidor cardinal below Θ. This section
will show there are unboundedly many super-Magidor cardinals below Θ. Let δ1ω be the supremum of the
projective ordinals. δ1ω is the smallest such cardinal for which the results of this section applies. Ben-Neria
and Garti [1] also showed that assuming there is a strong partition cardinal above Θ, there is a Prikry-
extension satisfying AD in which there is a singular cardinal possessing an ω-Magidor filter. It is not known
if the existence of a strong partition cardinal above Θ is consistent. In fact, the existence of a cardinal κ > Θ
with κ→∗ (κ)ω2 would already suffice for their argument. To the author’s knowledge, it is not known if even
this is consistent with AD. However, the techniques here show that δ1ω will be a singular cardinal with an
(< ω · ω)-Magidor filter answering a question of Ben-Neria and Garti.

This section will use descriptive set theory under determinacy assumptions. [3] exposits some of the
preliminary material of this section in more details.

One will need some notation associated to winning strategies.

Definition 4.1. A strategy on X is a function ρ : <ωX → X. If σ and τ are strategies on X, then let
σ ∗ τ ∈ ωX be defined by recursion by (σ ∗ τ) = σ(σ ∗ τ ↾ n) if n is even and (σ ∗ τ)(n) = τ(σ ∗ τ ↾ n) if n is
odd.

If f ∈ ωX, then let feven, fodd ∈ ωX be defined by feven(n) = f(2n) and fodd(n) = f(2n+ 1). If f ∈ ωX,
then let ρf : <ωX → X be defined by ρ(s) = f(|s|). If ρ is a strategy, then let Ξ1

ρ : ωX → ωX be defined

by Ξ1
ρ(f) = (ρ ∗ ρf )even. If ρ is a strategy, then let Ξ2

ρ : ωX → ωX be defined by Ξ2
ρ(f) = (ρf ∗ ρ)odd.

Note that Ξ1
ρ and Ξ2

ρ are Lipschitz continuous function and one can show that for every Lipschitz function

Ξ : ωX → ωX, there is a strategy ρ on X so that Ξ = Ξ2
ρ.

The axiom of determinacy, AD, is the assertion that for all A ⊆ ωω, exactly one of the following holds:
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• There is a strategy σ so that for all strategy τ , σ ∗ τ ∈ A (and one will say that σ is a Player 1
winning strategy in the game Gω

A).
• There is a strategy τ so that for all strategy σ, σ ∗ τ /∈ A (and one will say that τ is a Player 2

winning strategy in the game Gω
A).

Definition 4.2. A pointclass Γ is a collection of subsets of spaces of the form X0 × ... × Xn−1 where for
each i < n, Xi is either ω or ωω closed under continuous preimages (or Wadge reductions) (which means for
continuous functions Φ : X → Y and B ⊆ Y with B ∈ Γ, Φ−1[B] ∈ Γ). (More generally, Γ could be a set of
subsets of various Polish spaces.) If Γ is a pointclass, then Γ̌ refers to its dual pointclass. Let ∆Γ = Γ ∩ Γ̌.
Γ is nonselfdual if and only if Γ ̸= Γ̌. A set P ∈ Γ is Γ-complete if and only if for for all Q ∈ Γ, Q is the
preimage of P under some Lipschitz continuous function. By the Wadge lemma under AD, every nonselfdual
pointclass Γ has a Γ-complete set. A set U ∈ Γ with U ⊆ R ×X is Γ-universal for X if and only if for all
P ∈ Γ with P ⊆ X, there is an e ∈ R so that P = Ue = {x ∈ X : U(e, x)}. Every nonselfdual pointclass has
a Γ-universal set for all Polish spaces X.

For simplicity, one will make the following definition for subsets of R (or ωω). The reader can adapt these
definition to the more general Polish spaces.

Definition 4.3. A prewellordering on a set P ⊆ R is a wellfounded, reflexive, transitive, and total relation ≺
on P . A norm on P is a function φ : P → κ for some ordinal κ. Prewellorderings can be uniquely identified
with a surjective norm onto an ordinal.

If Γ is a pointclass, then δ(Γ) is the supremum of the rank of the prewellordering ≺∈ ∆Γ. δ(Γ) is called
the prewellordering ordinal of Γ. The projective ordinals δ1n are defined to be δ(Π1

n). Familiar examples
include δ11 = ω1, δ

1
2 = ω2, δ

1
3 = ωω+1, δ

1
4 = ωω+2.

If Γ is a pointclass, then a prewellordering φ : P → κ is a Γ-prewellordering if and only if there are
relations ≤φ

Γ∈ Γ and ≤φ

Γ̌
∈ Γ̌ so that

(∀y)
(
P (y) ⇒ (∀x)

[
(P (x) ∧ φ(x) ≤ φ(y)) ⇔ x ≤φ

Γ y ⇔ x ≤φ

Γ̌
y
])
.

A pointclass Γ has the prewellordering property if and only if for all P ∈ Γ, there is a Γ-norm of P . For all
n ∈ ω, Π1

2n+1 and Σ1
2n+2 have the prewellordering property by the first periodicity theorem of Moschovakis

([24]).

Fact 4.4. (Boundedness property) Let Γ be a pointclass closed under ∀R and ∧. Suppose there is a P ∈ Γ
which is Γ-complete and has a surjective Γ-norm φ : P → κ (onto some ordinal κ). If A ⊆ P is Γ̌, then
there is a δ < κ so that φ[A] ⊆ δ.

Fact 4.5. (Moschovakis; [17] Lemma 2.13 and Lemma 2.16) Let Γ be a pointclass closed under ∧, ∨, and
∀R. Suppose there is a Γ-complete set P ∈ Γ and a surjective Γ-norm φ : P → κ. Then the length of φ
(namely κ) is δ(Γ) and δ(Γ) is a regular cardinal.

The following is Solovay’s method of coding a “dense” collection of clubs subsets of ω1 by strategies.

Definition 4.6. Let Γ be a nonselfdual pointclass closed under ∧, ∨, and ∀R. Suppose there is a Γ-complete
set P ∈ Γ and a surjective Γ-norm φ : P → κ, where κ = δ(Γ) by Fact 4.5. Let clubcodeφκ be the collection
of strategies on ω with the property that

(∀w)(w ∈ P ⇒ (Ξ2
ρ(w) ∈ P ∧ φ(w) < φ(Ξ2

ρ(w)))).

If ρ ∈ clubcodeφκ , then define

Cφ,κ
ρ = {η ∈ κ : (∀w)((w ∈ P ∧ φ(w) < η) ⇒ φ(Ξ2

ρ(w)) < η)}.

The next several results follow from the boundedness property (Fact 4.4). See [3] for the details.

Fact 4.7. Assume the setting of Definition 4.6. For each ρ ∈ clubcodeφκ , C
φ,κ
ρ is a club subset of κ.

Fact 4.8. (Solovay) Assume the setting of Definition 4.6 and AD. If C ⊆ κ is a club subset of κ, then there
is a ρ ∈ clubcodeφκ so that Cφ,κ

ρ ⊆ C.
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Proof. Only the game will be presented but see [3] or [5] Fact 4.6 for the full details. Fix a club C ⊆ κ.
Consider the game SC where Player 1 produce v ∈ ωω and Player 2 produces w ∈ ωω, separately.

SC

I v(0) v(1) v(2) . . . v

II w(0) w(1) w(2) . . . w

Player 2 wins SC if and only if v ∈ P ⇒ (w ∈ P ∧ φ(v) < φ(w) ∧ φ(w) ∈ C). By the boundedness property
(Fact 4.4) and AD, one can show that Player 2 has a winning strategy ρ and Cφ,κ

ρ ⊆ C. □

The following is the most important tool for club selection in this section. See [3] or [5] Fact 4.7 for the
proof.

Fact 4.9. Assume the setting of Definition 4.6. Suppose A ⊆ clubcodeφκ and A ∈ Γ̌, then uniformly from A,
there is a club C ⊆ κ so that for all ρ ∈ A, C ⊆ Cφ,κ

ρ .3

The only known method to establish strong partition cardinals in any set theoretic framework is through
a descriptive set theoretic coding of functions by reals developed by Martin under determinacy called a good
coding system. One will follow the notational convention developed in [3].

Definition 4.10. (Martin) Let κ be a cardinal and ϵ ≤ κ. A good coding system G for ϵκ is G =
(Γ, decode,GCβ,γ : β < ϵ, γ < κ) with the following properties:

• κ is a regular cardinal.
• Γ is a nonselfdual pointclass closed under ∀R.
• decode is a function of the form decode : R → P(ϵ× κ) with the property that for all f : ϵ → κ,
there is an x ∈ R, decode(x) = f . (One will often identify functions with their graph.)

• For all β < ϵ and γ < δ, GCβ,γ ∈ ∆Γ and for all x ∈ R, x ∈ GCβ,γ if and only if

decode(x)(β, γ) ∧ (∀ξ < κ)(decode(x)(β, ξ) ⇒ γ = ξ).

• For each β < ϵ, let GCβ =
⋃

γ<κ GCβ,γ . For all β < ϵ and for all A ∈ ∃R∆, if A ⊆ GCβ , then there is

a δ < κ so that A ⊆
⋃

γ<δ GCβ,γ .

Let GC =
⋂

β<ϵ GCβ . Say that κ is ϵ-reasonable if and only if there is a good coding system for ϵκ.

If one needs to emphasize the good coding system G, one might write, ΓG , decodeG , GCG
β,γ , GC

G
β , or GC

G .

The idea is that x ∈ GCβ,γ implies that decode(x)(β, γ) code the graph of a potential partial function
which at least maps β to γ. x ∈ GCβ intuitively means that decode(x) codes the graph of a potential partial
function which is defined at β taking some value below κ. x ∈ GC means decode(x) is the graph of a function
from ϵ into κ.

The pointclass that appears in a good coding system can be shown to have many additional properties:

Fact 4.11. ([17] Remark 2.35) Assume AD. Let G = (Γ, decode,GCβ,γ : β < ϵ, γ < κ) be a good coding
system for ϵκ. Then Γ is a nonselfdual pointclass closed under countable union, countable intersection, and
∀R, has the prewellordering property, and κ = δ(Γ). ∆Γ is closed under less than κ-length unions and
intersections.

The primary application of good coding systems is to prove partition properties:

Fact 4.12. (Martin) If κ is ω · ϵ-reasonable, then κ→∗ (κ)ϵ<κ.

Good coding system supply an almost everywhere uniformization relative to the good codes. This will
also be used later to select clubs.

Definition 4.13. Let ϵ ∈ ON and f : ω · ϵ→ ON. Then let block(f) : ϵ→ ON be defined by block(f)(α) =
sup{f(ω · α+ n) : n ∈ ω}.

3Uniformly means there is a function Υ : Γ̌ → P(κ) so that for all A ∈ Γ̌ with A ⊆ clubcodeφκ , Υ(A) is a club subset of κ
and for all ρ ∈ A, Υ(A) ⊆ Cφ,κ

ρ .
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Fact 4.14. ([3], Almost everywhere good code uniformization) Let ϵ ≤ κ and G = (Γ, decode,GCβ,γ : β <
ω · ϵ, γ < κ⟩ be a good coding system for ω·ϵκ. Let R ⊆ [κ]ϵ∗ × R. There exists a club C ⊆ κ and a Lipschitz
function Ξ : R → R so that for all x ∈ GC with decode(x) ∈ [C]ω·ϵ, R(block(decode(x)),Ξ(x)).

Definition 4.15. Let ϵ ≤ κ and G be a good coding system for ϵκ. If X ⊆ κ, then let Inc(X) be the set of
all x ∈ GC so that decode(x) ∈ [X]ϵ. If the good coding system G needs to be made explicit, one will write

IncG(X).

One will need explicit applications of the Moschovakis coding lemma (rather than merely its consequence
that if κ < Θ, then R surjects into P(κ) which has been used previously).

Fact 4.16. ([17] Theorem 2.12) Assume AD. Let Γ be a pointclass closed under ∃R and ∧. Let P ∈ Γ and
φ : P → κ be a surjective norm so that the associated prewellordering ≺ belongs to Γ. For any R ⊆ P × R,
there is an S ∈ Γ with the following properties:

• S ⊆ R.
• For all α < κ, if there exists v ∈ dom(R) with φ(v) = α, then there exists w ∈ dom(S) with
φ(w) = α.

Fact 4.17. Suppose Γ is a nonselfdual pointclass closed under ∃R and ∧. Γ is closed under less than
δ(Γ)-length unions.4 Thus Γ̌ is closed under less than δ(Γ)-length intersections.

Proof. Let δ < δ(Γ). Let φ : P → δ be a norm whose associated prewellordering belongs to ∆Γ. Let
⟨Aα : α < δ⟩ be a sequence of subsets of R in Γ. Let U ⊆ R×R be Γ-universal for subsets of R. Let R(w, e)
if and only if w ∈ P and Ue = Aφ(w). By the Moschovakis coding lemma (Fact 4.16 applied to the pointclass
Γ), there is an S ∈ Γ with the property specified in the coding lemma. Then x ∈

⋃
α<δ Aα if and only if

(∃w)(∃e)(S(w, e) ∧ U(e, x)). Thus
⋃

α<δ Aα ∈ Γ. □

Fact 4.18. Assume AD. Let ϵ ≤ κ and G = (Γ, decode,GCβ,α : β < ϵ ∧ γ < κ). For all β < ϵ, GCβ ∈ ∃RΓ.
GC ∈ ∀R∃RΓ. For all X ⊆ κ, Inc(X) ∈ ∀R∃RΓ.

Proof. Since κ = δ(Γ), there is a prewellordering of length κ in Γ ⊆ ∆∃RΓ. Thus κ < δ(∃RΓ). For each
β < ϵ, GCβ =

⋃
γ<κ GCβ,γ which is a κ-length union of set from ∆∃RΓ ⊆ ∃RΓ. Thus GCβ ∈ ∃RΓ by

Fact 4.17. GC =
⋂

β<ϵ GCβ and is thus an ϵ-length intersection of sets from ∃RΓ ⊆ ∀R∃RΓ. Note that

ϵ ≤ κ < δ(∃RΓ) ≤ δ(∀R∃Γ). Applying Fact 4.17, one has that ∀R∃RΓ is closed under ϵ-length intersections.
So GC ∈ ∀R∃RΓ. Note that Inc(X) = GC ∩

⋃
{GCβ0,γ0

∩ GCβ1,γ1
: β0 < β1 < ϵ ∧ γ0 < γ1 ∧ γ0, γ1 ∈ X}.

GC was already shown to be ∀R∃RΓ and the latter part of the intersection is a κ-length union of sets in ∆Γ

which was already observed to belong to ∃RΓ. The total complexity is ∀R∃RΓ. □

As an example: in one instance of the intended application of this section, one will have two good coding
systems G1 for ϵ0κ0 and G1 for ϵ1κ1. One would like to have GCG0 ∈ ∆ΓG1 . However Fact 4.18 is already too
coarse for two successive projective ordinals. ω1 has a good coding system G0 where ΓG0 = Π1

1 and ωω+1

has a good coding system G1 where ΓG1 = Π1
3. Fact 4.18 would imply GCG0 ∈ Π1

3 = ΓG1 . This is already

too high. In this case and many others, the complexity can be shown to be lower. By Fact 4.18, GCG0

β is at

most Σ1
2 for each β < ϵ. ∆1

3 can be shown to be closed under < ωω+1-length unions and intersections. Thus

GCG0 =
⋂

β<ϵ GC
G0

β is ∆1
3 which is good enough for the purpose here. Harrington-Kechris ([12] Corollary

2.2) shows that Σ1
n+1, Π

1
n+1, and ∆1

n+1 are closed under ζ-length unions and intersection for all ζ < δ1n
under AD. Thus Σ1

2 is closed under countable intersections. So when ϵ0 < ω1, GC
G0 is Σ1

2. When ϵ0 = ω1, it

can be shown that GCG0 /∈ Σ1
2 (see [3]]). However, by careful inspection of an explicit good coding systems

on δ12n+1, one can get even better complexity estimates. See [3] for the details for the good coding systems
on ω1 and [15] and [16] for the general odd projective ordinals.

Fact 4.19. Assume AD. Let ϵ ≤ ω1. There is a good coding system G = (Π1
1, decode,GCβ,γ : β < ϵ, γ < ω1)

for ϵω1 with the following properties:

• For all β < ϵ, GCβ ∈ Π1
1.

• If ϵ < ω1, then GC ∈ Π1
1. If ϵ = ω1, then GC ∈ Π1

2.

4If Γ has the prewellordering property, then Γ is furthermore closed under wellordered unions. See [17] Lemma 2.21.
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• For ϵ < ω1 and club C ⊆ ω1, Inc(C) ∈ Π1
1. For ϵ = ω1 and club C ⊆ ω1, Inc(C) ∈ Π1

2.

Let n ∈ ω and ϵ ≤ δ12n+1. There is a good coding system G = (Π1
2n+1, decode,GCβ,γ : β < ϵ, γ < δ12n+1)

with the following properties:

• For all β < ϵ, GCβ ∈ Π1
2n+1.

• If ϵ < ω1, then GC ∈ Π1
2n+1. If ϵ = ω1, then GC ∈ Π1

2n+2.

• For ϵ < ω1 and club C ⊆ δ12n+1, Inc(C) ∈ Π1
2n+1. For ϵ = ω1 and club C ⊆ δ12n+1, Inc(C) ∈ Π1

2n+2.

Definition 4.20. Let 1 ≤ n < ω, ⟨κ0, ..., κn−1⟩ be an increasing sequence of cardinals and ⟨ϵ0, ..., ϵn−1⟩ be
a sequence of ordinals such that for all i < n, ϵ0 ≤ κi. Define ⟨κ0, ..., κn−1⟩ →∗ (κ0, ..., κn−1)

ϵ0,...,ϵn−1

2 if and
only if for all functions P :

∏
i<n[κi]

ϵi → 2, there is an i ∈ 2 and sequence ⟨C0, ..., Cn−1⟩ so that for each

j < n, Cj ⊆ κj is a club subset of κi and for all (f0, ..., fn−1) ∈
∏

j<n[Cj ]
ϵj
∗ , P (f0, ..., fn−1) = i.

Definition 4.21. Let 1 ≤ n < ω, ⟨κ0, ..., κn−1⟩ be an increasing sequence of cardinals, and let ⟨ϵ0, ..., ϵn−1⟩
be a sequence of ordinals. Say that ⟨κ0, ..., κn−1⟩ is an ⟨ϵ0, ...ϵn−1⟩-reasonable sequence if and only if there
is a sequence ⟨G0, ...,Gn−1⟩ with the following properties:

• Gi is a good coding system for ϵκi.
• For any i < j < n and club Ci ⊆ κi, Inc

Gi(Ci) ∈ ∆ΓGj .

Example 4.22. Assume AD. Let 1 ≤ n < ω and ℓ : n→ ω be a strictly increasing sequence. Let ⟨ϵi : i < n⟩
be a sequence of ordinals so that ϵi ≤ δ12ℓ(i)+1 for all i < n. Then ⟨δ12ℓ(i)+1 : i < n⟩ is ⟨ϵi : i < n⟩-reasonable
using Fact 4.19.

Example 4.23. Assume AD. Let A ∈ P(R). Let ΣL(A,R)
1 be the subsets of R which are Σ1-definable over

L(A,R) in the language with a symbol Ṙ for R using parameters from R. Let δA the least A-stable ordinal
which is the least ordinal δ so that Lδ(A,R) is a Σ1-elementary substructure of L(A,R). Kechris-Kleinberg-

Moschovakis-Woodin ([19]) showed there is a good coding system G for δAδA so that ΓG = Σ
L(A,R)
1 . (Also

see [3] for a construction of this good coding system.) Note that {δA : A ∈ P(R)} is a collection of strong
partition cardinals which is unbounded in Θ.

Let 1 ≤ n < ω and ℓ : n → P(R) with the property that for all i < j < n, δℓ(i) < δℓ(j). Let ⟨ϵi : i < n⟩
be such that for all i < n, ϵi ≤ δℓ(i). Then ⟨δℓ(i) : i < n⟩ is an ⟨ϵi : i < n⟩-reasonable sequence using Fact

4.18 since the pointclasses Σ
L(ℓ(i),R)
1 and Σ

L(ℓ(j),R)
1 are sufficiently far apart from each other.

The following is an independently interesting multi-cardinal partition relation.

Theorem 4.24. Assume AD. Let 1 ≤ n < ω, ⟨κi : i < n⟩, and ⟨ϵi : i < n⟩ be such that ⟨κi : i < n⟩ is
⟨ω · ϵi : i < n⟩-reasonable. Then ⟨κ0, ..., κn−1⟩ →∗ (κ0, ..., κn)

ϵ0,...,ϵn−1

2 holds.

Proof. This result is proved by induction the length 1 ≤ n < ω.
For n = 1, the hypothesis simply states that κ0 is ω · ϵ0-reasonable. Thus κ0 →∗ (κ0)

ϵ0
2 holds (by Fact

4.12) which is equivalent to ⟨κ0⟩ →∗ (κ0)
ϵ0
2 .

Suppose the result has been shown for 1 ≤ n < ω. Let ⟨κ0, ..., κn⟩ and ⟨ϵ0, ..., ϵn⟩ be such that ⟨κ0, ..., κn⟩
is ⟨ω · ϵ0, ..., ω · ϵn⟩-reasonble. Let ⟨G0, ...,Gn⟩ be a sequence of good coding systems witnessing this. By Fact
4.11, for each i < n, let Wi be a ΓGi-complete set and φi :Wi → κi be a surjective ΓGi -norm. Fix a map P :∏

i<n+1[κi]
ϵi → 2. For each f0 ∈ [κ0]

ϵ0 , define Pf0 :
∏

i<n[κi+1]
ϵi+1 → 2 by Pf0(g1, ..., gn) = P (f0, g1, ..., gn).

By the induction hypothesis at n, ⟨κ1, ..., κn⟩ →∗ (κ1, ..., κn)
ϵ1,...,ϵn
2 holds. Thus for each f0 ∈ [κ]ϵ0 , there

is a unique jf0 ∈ 2 for which there exists ⟨D1, ..., Dn⟩ with the property that for all 1 ≤ i ≤ n, Di ⊆ κi is
a club subset of κi and for all (g1, ..., gn) with gi ∈ [Di]

κi
∗ for all 1 ≤ i ≤ n, Pf0(g1, ..., gn) = jf0 . Define

Q : [κ0]
ϵ0 → 2 by Q(f0) = jf0 . Since the hypothesis implies κ0 is ω · ϵ0-reasonable, Fact 4.12 implies

κ0 →∗ (κ0)
ϵ0
2 . Thus there is a club C0 ⊆ κ and a j̄ ∈ 2 so that for all f0 ∈ [C0]

ϵ0
∗ , Q(f0) = jf0 = j̄.

Define R ⊆ [κ]ϵ0 × nR by R(f0, (ρ1, ..., ρn)) if and only if for all 1 ≤ i ≤ n, xi ∈ clubcodeφi
κi

and for all
(g1, ..., gn) ∈ [Cφ1,κ1

ρ1
]ϵ1∗ × ...× [Cφn,κn

ρn
]ϵn∗ , Pf0(g0, ..., gn) = j̄. The first claim is that dom(R) = [C0]

ϵ0
∗ . To see

this, by the observation above, for each f0 ∈ [C0]
ϵ0
∗ , there is a sequence (D1, ..., Dn) with each Di ⊆ κi club

in κi for all 1 ≤ i ≤ n which is homogeneous for Pf0 taking value jf0 = j̄. By Fact 4.8, for each 1 ≤ i ≤ n,
there is a ρi ∈ clubcodeφi

κi
so that Cφi,κi

ρi
⊆ Di. Then R(f0, (ρ1, ..., ρn)) holds and hence f0 ∈ dom(R). By the

almost everywhere good code uniformization (Fact 4.14), there is a club C1 ⊆ C0 and a Lipschitz continuous
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function Ξ : R → nR so that for all e ∈ IncG0(C1), R(block(decode
G0(e)),Ξ(e)). Let πn

i : nR → R be the
projection onto the ith-coordinate for each 1 ≤ i ≤ n. Let Ξ1, ...,Ξn : nR → R be defined by Ξi = πn

i ◦ Ξ
for each 1 ≤ i ≤ n. Note Ξi are also Lipschitz functions (if the coding of tuples were chosen reasonably).

By the hypothesis, IncG0(C1) ∈ ∆ΓGi for all 1 ≤ i ≤ n. Thus Ξi[Inc
G0(C1)] ∈ ∃R∆ΓGi ⊆ Γ̌Gi . By the

property of Ξ, one has that Ξi[Inc
G0(C1)] ⊆ clubcodeφi

κi
. By Fact 4.9, for each 1 ≤ i ≤ n, there is a club

Ei ⊆ κi so that for all ρ ∈ Ξi[Inc
G0(C1)], Ei ⊆ Cφi,κi

ρ . Let E0 ⊆ C1 be the club of limit points of C1.

The claim is that (E0, ..., En) is homogeneous for P taking value j̄. Pick any (f0, f1, ..., fn) ∈
∏

i<n+1[Ei]
ϵi
∗ .

Since f0 ∈ [E0]
ϵ0
∗ ⊆ [C1]

ϵ0
∗ ⊆ dom(R), one has that f0 ∈ dom(R). Also since E0 consists of limit points

of C1, pick any h0 ∈ [C1]
ω·ϵ so that block(h0) = f0. By the property of the good coding system G0,

there is some e0 ∈ GCG0 so that decodeG0(e0) = h0. Thus e0 ∈ IncG0(C1). Let (ρ1, ..., ρn) = Ξ(e0).

R(f0, (ρ1, ..., ρn)) holds since R(block(decode
G0(e0)),Ξ(e0)) holds. By definition of R, this means that for all

(g1, ..., gn) ∈
∏

1≤i≤n[C
φi,κi
ρi

]ϵ1∗ , Pf0(g1, ..., gn) = j̄. Since (f1, ..., fn) ∈
∏

1≤i≤nEi ⊆
∏

1≤i≤n[C
φi,κi
ρi

]ϵ1∗ , one

has that P (f0, f1, ..., fn) = Pf0(f1, ..., fn) = j̄. Since (f0, ..., fn) ∈
∏

i<n+1[Ei]
ϵi
∗ was arbitrary, this shows

that (E0, ..., En) is homogeneous for P taking value j̄. Since P was arbitrary, this establishes ⟨κ0, ..., κn⟩ →∗
(κ0, ..., κn)

ϵ0,...,ϵn
2 . The result has been shown for n+ 1.

By induction, this completes the proof. □

Definition 4.25. A sequence of cardinals ⟨κn : n ∈ ω⟩ is a reasonable sequence if and only if there are
sequence ⟨ζn : n ∈ ω⟩ and ⟨Γn : n ∈ ω⟩ with the following properties:

(1) For all n ∈ ω, ζn ≤ κn + 1. ⟨ζn : n ∈ ω⟩ is an increasing sequence.
(2) sup{ζn : n ∈ ω} = sup{κn : n ∈ ω}.
(3) For all n ∈ ω, Γn is a pointclass.

(4) For all n ∈ ω and ξ < ζn, there is a good coding system G for ξκn with ΓG = Γn and GCG ∈ ∆Γm

for all m > n. 5

(5) There is a set Z ∈ P(R) which Lipschitz reduces all sets in
⋃

n∈ω Γn.

Example 4.26. The sequence of odd projective ordinals ⟨δ12n+1 : n ∈ ω⟩ is a resonable sequence. This is

witnessed by ⟨ζn : n ∈ ω⟩ and ⟨Π1
2n+1 : n ∈ ω⟩ where ζn = δ12n+1 + 1 for each n ∈ ω. This follows from Fact

4.19.

Example 4.27. Let ⟨An : n ∈ ω⟩ is a sequence in P(R) so that the corresponding sequence of stable

ordinals ⟨δAn
: n ∈ ω⟩ is a strictly increasing sequence. Then ⟨δAn

+ 1 : n ∈ ω⟩ and ⟨ΣL(An,R)
1 : n ∈ ω⟩

witness that ⟨δAn
: n ∈ ω⟩ is a reasonable sequence. This follows from the discussion in Example 4.23.

The following definition is used in the proof of Theorem 4.29.

Definition 4.28. Let ϵ ∈ ON. (< ϵ)-instruction i is a triple (ni, pi, ℓi) such that 1 ≤ ni < ω, pi : ni → ω is
a strictly increasing sequence, and ℓi : ni → ϵ is sequence such that ℓi(0)+ ...+ ℓi(n− 1) < ϵ. If m < ω, then
a (< ϵ)-instruction above m is a (< ϵ)-instruction i with pi(0) > m.

Note that for any ϵ ∈ ON, the collection of (< ϵ)-instructions has cardinality max{|ω|, |ϵ|}.

Theorem 4.29. Assume AD. If κ is the supremum of a reasonable sequence, then κ is a super-Magidor
cardinal.

Proof. Let ⟨κn : n ∈ ω⟩ be a reasonable sequence with κ = sup{κn : n ∈ ω}. Let ⟨Γn : n ∈ ω⟩ be a sequence
of pointclass and let ⟨ζn : n ∈ ω⟩ be a sequence of ordinals witnessing that ⟨κn : n ∈ ω⟩ is a reasonable
sequence as in Definition 4.25. Pick ϵ < κ. Let Φ : BI<κ(< ϵ, κ) → κ. Let m̄ be the least m so that
ω · ϵ < ζm. Let I be the collection of all (< ϵ)-instruction above m̄ + 1. For each instruction i ∈ I, let

Pi : [κm̄+1]
1 ×

∏
i<ni [κpi(i)]

ℓi(i) → 2 be defined by P (α, f0, ..., fni−1) = 0 if and only if Φ(f0 .̂..̂ fni−1) < α.

Then ⟨κm̄+1, κpi(0), ..., κpi(ni−1)⟩ is ⟨ω · 1, ω · ℓi(0), ..., ω · ℓi(ni − 1)⟩-reasonable since ω · ℓi(i) < ω · ϵ <
ζm̄ < ζpi(i) for all i < n by the choice of m̄ and since i ∈ I is a (< ϵ)-instruction above m̄ + 1. Thus

⟨κm̄+1, κpi(0), ..., κpi(ni−1)⟩ →∗ (κm̄+1, κpi(0), ..., κpi(ni−1))
1,ℓi(0),...,ℓi(ni−1)
2 by Fact 4.24. So there is a unique

5Observe that this merely asserts the existence of good coding system but does not provide any ability to uniformly pick
good coding system in n ∈ ω and ξ < ζn.
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ui ∈ 2 which is the homogeneous value for Pi. Note that |I| = |ϵ| so let b : ϵ → I be a bijection. For
each 1 ≤ m < n, let Σn : nR → R be a fixed bijection. Let Πn

m : R → R be recursive bijection so that for
all (x0, ..., xn−1) ∈ nR, Πn

m(Σn(x0, ..., xn−1)) = xm. By the hypothesis of ⟨κn : n ∈ ω⟩ being a reasonable
sequence, there is a Z ∈ P(R) which Lipschitz reduces all sets in

⋃
n∈ω Γn. Define R ⊆ ω × R by R(n, ρ) if

and only (Ξ2
ρ)

−1[Z] is a Γn-norm on a Γn-complete set. By ACR
ω (which holds under AD), let ⟨ρn : n ∈ ω⟩ be

such that for all n ∈ ω, R(n, ρn). Let φn : Wn → κn be the surjective Γn-norm on a complete Γn-set coded
by (Ξ2

ρn
)−1[Z]. Let φ : W → κm̄+1 be a Γm̄+1-norm on a complete Γm̄+1-set. Since ϵ < κm̄, fix ψ : Q → ϵ

be a surjective norm in ∆Γm̄
. Define S ⊆ Q× R by S(q, x) if and only if the following holds:

• Let b(ψ(q)) be the instruction i = (n, p, ℓ).
• Πn+1

0 (x) ∈ clubcodeφκm̄+1
.

• For all i < n, Πn+1
i+1 (x) ∈ clubcode

φp(i)
κp(i)

.

• For all (α, f0, ..., fn−1) ∈ [C
φ,κm̄+1

Πn+1
0 (x)

]1∗ ×
∏

i<n[C
φp(i),κp(i)

Πn+1
i+1 (x)

]
ℓ(i)
∗ , Pi(α, f0, ..., fn−1) = ui.

By the discussion above, dom(S) = Q. By the Moschovakis coding lemma (Fact 4.16) applied to Γ̌m̄ and ψ,
there is a T ⊆ S with T ∈ Γ̌m̄ and for all α < ϵ, there exists some q ∈ dom(T ) with ψ(q) = α. Fix α < ϵ
and suppose b(α) = i = (n, p, ℓ). Let Kα be defined by

Kα = {z ∈ R : (∃w)(∃x)(w ∈ Q ∧ ψ(w) = α ∧ T (w, x) ∧Πn+1
0 (x) = z)}.

Note that Kα ⊆ clubcodeφκm̄+1
and belongs to ∃RΓ̌m̄ = Γ̌m̄. For each i < n, let Kα

i be defined by

Kα
i = {z ∈ R : (∃w)(∃x)(w ∈ Q ∧ ψ(w) = α ∧ T (w, x) ∧ z = Πn+1

i+1 (x))}.

Note that for all i < n, Kα
i ⊆ clubcode

φp(i)
κp(i)

and belongs to Γ̌m̄. Note that Γ̌m̄ ⊆ Γ̌m̄+1 and Γ̌m̄ ⊆ Γ̌κp(i)
for

all i < n since i is an (< ϵ)-instruction above m̄ + 1. Thus by Fact 4.9, one obtains clubs Dα ⊆ κm̄ and

clubs Dα
i ⊆ κp(i) with the property that for all z ∈ Kα, Dα ⊆ Cφ,κm̄

z and for all z ∈ Kα
i , D

α
i ⊆ C

φp(i),κp(i)
z .

Pick any q ∈ dom(T ) with ψ(q) = α. Pick any y with T (q, y). Note that Πn+1
0 (y) ∈ Kα and for all

i < n, Πn+1
i+1 (y) ∈ Kα

i . Thus Dα ⊆ Cφ,κm̄

Πn+1
0 (y)

and for all i < n, Dα
i ⊆ C

φp(i),κp(i)

Πn+1
i+1 (y)

. By definition of

T (q, y), (Cφ,κm̄

Πn+1
0 (y)

,C
φp(0),κp(0)

Πn+1
1 (y)

,C
φp(n−1),κp(n−1)

Πn+1
n (y)

) is homogeneous for Pi taking value ui. Thus (D
α, Dα

0 , ..., D
α
n)

is homogeneous for Pi taking value ui. Since everything was done uniformly from α and b : ϵ → I is a
bijection, one can restate what has been shown as follows: There exists a sequence ⟨(Di, Di

0, ..., D
i
ni−1) : i ∈ I⟩

with the property that for all i ∈ I, Di is a club subset of κm̄+1 and Di
i is a club subset of κpi(i) for all

i < ni, and (Di, Di
0, ..., D

i
ni−1) is homogeneous for Pi taking value ui. Let D =

⋂
{Di : i ∈ I}. Note that

D is a club subset of κm̄+1 since ϵ < κm̄+1 and D is an ϵ-size intersection of club subsets of κm̄+1. For
each m̄ + 1 < n < ω, let Dn =

⋂
{Di

i : pi(i) = n}. Once again, Dn ⊆ κn is a club subset of κn since
ϵ < κm̄+1 < κn and D is an ϵ-length intersection of club subsets of κn. One has define a club D ⊆ κm̄+1

and a sequence ⟨Dn : m̄ + 1 < n < ω⟩ such that for all m̄ + 1 < n < ω, Dn ⊆ κn is a club subset of κn
and for all i ∈ I, (D,Dpi(0), ..., Dpi(ni−1)) is homogeneous for Pi taking value ui. One may also assume that
for all m̄ + 1 < n < ω, Dn ⊆ κn \ κn−1. For all m̄ + 1 < n < ω, let En = {enumDn

(ω · α + ω) : α < κn}.
Let F =

⋃
m̄+1<n<ω En. Note that |F | = κ and for all ξ < ϵ, [F ]ξ = [F ]ξ∗ by Fact 1.22.6 Let α̂ < β̂ be the

first two elements of [D]1∗. The claim is that α̂ /∈ BIκ(< ϵ, F ). Let f ∈ BIκ(< ϵ, F ). Let ξ = dom(f). Let
A = {k ∈ ω : (∃η < ξ)(f(η) ∈ Dk)}. Since f is bounded below κ, A is finite. Let n = |A|. Let p : n→ A be
the increasing enumeration of A. For each i < n, let Ai = {η < ξ : f(η) ∈ Dp(i)}. Let ℓ(i) = ot(Ai). Let
i = (n, p, ℓ) which is an instruction. Note that for all i < n, m̄+1 < p(i) < ω and ℓ(0)+ ...+ℓ(n−1) = ξ < ϵ.
Thus i is a (< ϵ)-instruction above m̄ + 1. Thus i ∈ I. For each i < n, let fi : ℓ(i) → F be defined by

fi(η) = f(
∑

j<i p(j) + η). Note that f = f0 f̂1 .̂..̂ fn−1 and for all i < n, fi ∈ [Dp(i)]
ℓ(i)
∗ .

(1) Suppose ui = 0. (α̂, f0, ..., fn−1) ∈ [D]1∗× [Dp(0)]
ℓ(0)× ...× [Dp(n−1)]

ℓ(n−1)
∗ . Thus Pi(α̂, f0, ..., fn−1) =

ui = 0 implies that α̂ > Φ(f0 .̂..̂ fn−1) = Φ(f).

(2) Suppose ui = 1. (β̂, f0, ..., fn−1) ∈ D×Dp(0)× ...×Dp(n−1). Thus Pi(α̂, f0, ..., fn−1) = ui = 1 implies

that α̂ < β̂ ≤ Φ(f0 .̂..̂ fn−1) = Φ(f).

6Going from E to F obtains the property that [F ]ξ = [F ]ξ∗ which is important since all partitions above used functions of

the correct type but BIκ(< ϵ, F ) refer to all increasing function.
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Since f ∈ BIκ(< ϵ, F ) was arbitrary, one has shown that α̂ /∈ Φ[BIκ(< ϵ, F )]. Thus Φ[BIκ(< ϵ, F )] ̸= κ. Since
ϵ < κ was arbitrary, this implies that κ is super-Magidor. □

The next result answer Question 2.8 of Ben-Neria and Garti from [1].

Theorem 4.30. Assume AD. The supremum of the projective ordinals δ1ω is super-Magidor.

Proof. Use Example 4.26 and Theorem 4.29. □

Theorem 4.31. Assume AD. There are unboundedly many singular super-Magidor cardinals below Θ.

Proof. Use Example 4.27 and Theorem 4.29. □

Next, one will show that the supremum κ of a reasonable sequence ⟨κn : n ∈ ω⟩ has a (< ω · ω)-Magidor
filter. One will define the potential filters next.

Definition 4.32. Let κ⃗ = ⟨κn : n ∈ ω⟩ be a reasonable sequence and let κ = sup κ⃗. Let δ⃗ = ⟨δn : n ∈ ω⟩
and Γ⃗ = ⟨Γn : n ∈ ω⟩ witness that κ⃗ is a very reasonable sequence. Assume that δ0 > ω · (ω · ω). (One can
always drop the first few terms from κ⃗ to obtain such a reasonable sequence.) Define µκ⃗ to be a filter on κ
by X ∈ µκ⃗ if and only if there is a sequence ⟨Dn : n ∈ ω⟩ so that for all n < ω, Dn is a club subset of κn
and for all 1 ≤ n < ω Dn ⊆ κn \ κn−1, and

⋃
n∈ωDn ⊆ X.7

The following is the appropriate notion of instruction for partitions on ordinals below ϵ while accounting
for limit behaviors.

Definition 4.33. Let ϵ < ω · ω. Let Lϵ denote the finite set of limit ordinals below ϵ. If F ⊆ Lϵ is a finite
set. Let χϵ

F = ot(ϵ \ F ). Let eϵF : χϵ
F → ϵ \ F be the increasing enumeration of ϵ \ F . An (ϵ, ⋆)-instruction

is i = (ϵ, F, n, p, ℓ) such that F ⊆ Lϵ, 1 ≤ n < ω, p : n → (ω \ 1) is increasing, and ℓ : n → χϵ
F so that∑

i<n ℓ(i) = χϵ
F . For ϵ < ω · ω, let Iϵ denote the set of (ϵ, ⋆)-instruction. Let I⋆ =

⋃
ϵ<ω·ω Iϵ. Note let I⋆ is

countable.

Theorem 4.34. Assume AD. If κ is the supremum of a reasonable sequence, then κ has a (< ω ·ω)-Magidor
filter.

Proof. Let κ⃗ = ⟨κn : n ∈ ω⟩ be a reasonable sequence such that κ = sup{κn : n ∈ ω}. Let ⟨Γn : n ∈ ω⟩
and ⟨ζn : n ∈ ω⟩ witness that κ⃗ is very reasonable and one may assume that ζ0 > ω · (ω · ω). Let Φ : BIκ(<
ω · ω, κ) → κ. Suppose i ∈ I⋆. Say i takes the form i = (ϵ, F, n, p, ℓ). If (f0, ..., fn−1) ∈

∏
i<n[κp(i)]

ℓ(i),

then let hif0,...,fn−1
: ϵ → κ be defined as follows: For any α /∈ F , let i < n and η < ℓ(i) be such that

α = eϵF (
∑

j<i ℓ(j) + η). Let hif0,...,fn−1
(α) = fi(η). This defines hif0,...,fn−1

↾ (ϵ \ F ). For any α ∈ F , let

hif0,...,fn−1
(α) = sup{hif0,...,fn−1

(β) : β < α ∧ β ∈ ϵ \ F )}. Note that hif0,...,fn−1
is continuous precisely at

α ∈ F . Define Pi : [κ0] ×
∏

i<n[κp(i)]
ℓ(i) → 2 by Pi(α, f0, ..., fn) = 0 if and only if Φ(hif0,...,fn−1

) < α. By

Theorem 4.24, ⟨κ0, κp(0), ..., κp(n−1)⟩ →∗ (κ0, κp(0), ..., κp(n−1))
1,ℓ(0),...,ℓ(n−1)
2 . Thus there is a unique ui ∈ 2

which is the homogeneous value for Pi. By the pointclass arguments in the proof of Theorem 4.29, there
is a sequence ⟨Dn : n < ω⟩ so that for all n < ω, Dn is a club subset of κn and for all i ∈ I⋆ of the
form i = (ϵ, n, F, p, ℓ), (D0, Dp(0), ..., Dp(n−1)) is homogeneous for Pi.

8 Again, one can assume that for all

1 ≤ n < ω, Dn ⊆ κn \ κn−1. Let â < b̂ be the first two elements of D0. Let E =
⋃

1≤n<ωDn. The claim

is that â /∈ Φ[BIκ(< ω × ω,E)]. Pick any f ∈ BI(< ω · ω,E). Let ϵ = |f |. Let F ⊆ Lϵ be those α such
that sup(f ↾ α) = f(α). Let A = {k ∈ ω : (∃η < χϵ

F )(f(e
ϵ
F (η)) ∈ Dk)}. Let n = |A|. Let p : n → A be

the increasing enumeration of A. For i < n, let Bi = {η < χϵ
F : f(eF (η)) ∈ Dp(i)}. Let ℓ(i) = ot(Bi). Let

i = (ϵ, n, p, ℓ). Note that i ∈ I⋆. For each i < n, let fi : ℓ(i) → Dp(i) be defined by fi(η) = f(e(enumBi(α)).

7[1] demands that Magidor filter contain all tails. µκ⃗ does not contain all tails but one can make a simple modification to the
definition to make the filter contain all tails. One can then make an appropriate change in all the arguments below. However,
this seems to be not particularly significant.

8Note that in the proof of Theorem 4.29 κm̄ and κm̄+1 were reserved and one considered instructions so that p maps above

m̄+1. Here coordinate 0 plays the role of κm̄+1. In Theorem 4.29, coordinate m̄ was reserved to do the long ϵ-length selection

of clubs. Here I⋆ is countable so one can use use ACR
ω and the coarse Moschovakis coding lemma to make the corresponding

selection.
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Note that fi ∈ [Dp(i)]
ℓ(i)
∗ (with the uniform cofinality ω given by the fact that ℓ(i) is countable and ACR

ω-

holds). Thus (f0, .., fn) ∈
∏

0≤i<n[Dp(i)]
ℓ(i)
∗ and f = hif0,...,fn−1

. By an argument similar to the proof of

Theorem 4.29 considering the two possible value of ui, one can show that Φ(f) ̸= α̂. Since f ∈ BIκ(< ω ·ω,E)
was arbitrary, this shows that Φ[BIκ(< ω · ω,E)] ̸= κ. Let κ̃ = ⟨κi : 1 ≤ n < ω⟩. Note that E ∈ µκ̃. Since
Φ : BI(< ω · ω, κ) → κ was arbitrary, it has been shown that µκ̃ is a (< ω · ω)-Magidor filter for κ. □

The following answers [1] Question 3.4 (which is interpreted to mean ω-Magidor filter in light of the results
of [1] Section 3 and the stronger Question 3.5).

Theorem 4.35. Assume AD. The supremum of the projective ordinals δ1ω has a (< ω · ω)-Magidor filter.

Proof. Use Example 4.26 and Theorem 4.34. □

Theorem 4.36. Assume AD. There are unboundedly many singular super-Magidor cardinals below Θ which
possess an (< ω · ω)-Magidor filter.

Proof. Use Example 4.27 and Theorem 4.34. □
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