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Abstract. For any set X, let P(X) be the set of subsets of X and let Pω1 (X) be the set of countable

subsets of X. AD+ is Woodin’s extension of the axiom of determinacy, AD. The Countable Power Set

Conjecture states under AD+ that for all sets X which are surjective images of R, P(ω1) injects into
Pω1 (X) if and only if P(ω1) already injects into X. Since R × ω1 and ωω1 (the set of ω-sequences of

countable ordinals) represent two distinguished cardinalities strictly below |P(ω1)|, the following provides

evidence for the conjecture:
• Assume AD+. If X is a surjective image of R and |P(ω1)| ≤ |Pω1 (X)|, then |R× ω1| < |ωω1| < |X|.
Let <ω1ω1 be the set of all countable sequences of countable ordinals. The above result is closely related

to primeness properties of <ω1ω1. The ω-Primeness Conjecture for <ω1ω1 states that assuming the strong

partition property ω1 →∗ (ω1)
ω1
2 , <ω1ω1 is ω-prime which means for any sequence ⟨Yn : n ∈ ω⟩ of sets,

<ω1ω1 injects into
∏

n∈ω Yn if and only if there is an n̄ ∈ ω so that <ω1ω1 already injects into Yn̄. The
following evidence for this conjecture will be given:

• Assume ω1 →∗ (ω1)
ω1
2 . For any sequence ⟨Yn : n ∈ ω⟩, if |<ω1ω1| ≤ |

∏
n∈ω Yn|, then there exists an

n̄ ∈ ω so that |ωω1| ≤ |Yn̄|.

1. Introduction

A cardinality is an equivalence class of a set under the bijection equivalence relation. If X is a set, then
the cardinality of X, denoted |X|, is the bijection equivalence class of X. If X and Y are two sets, then
one writes |X| ≤ |Y | if and only if there is an injection of X into Y . One write |X| < |Y | if and only if
|X| ≤ |Y | but ¬(|Y | ≤ |X|). A cardinal is an ordinal which does not inject into any smaller ordinal. If X is
a wellorderable set, then |X| has a unique cardinal as a member.

The axiom of determinacy, AD, fully classifies the cardinalities below P(ω) or R. Regularity properties
for R (including the perfect set property, property of Baire, and the Lebesgue measurability) answer many
questions concerning combinatorial properties of the cardinality of R or P(ω).

A major goal of recent research under determinacy has been to classify the cardinalities below P(ω1).
Many cardinalities below P(ω1) have been identified and distinguished from each other according to the
injection comparison relation. A deep understanding of many of the cardinalities strictly below P(ω1) have
been obtained. However, the full classification below P(ω1) and many basic combinatorial properties of
P(ω1) are very far from fully understood. Further development toward understanding the cardinality of
P(ω1) has been motivated by many conjectures concerning inaccessibility of the cardinality of P(ω1).

One such inaccessibility feature concerns the regularity of P(ω1) and the search for the cofinality of
P(ω1). Chan, Jackson, and Trang developed the basic theory of regularity and cofinality in the choiceless
determinacy context in [9]. The conjecture is that P(ω1) has globally regular cardinality which means that
for all setsX which are images of R such that P(ω1) does not inject intoX and all functions Φ : P(ω1) → X,
there is an x ∈ X so that |Φ−1[{x}]| = |P(ω1)|. [9] provides substantial evidence for the global regularity
of P(ω1).

This paper will focus on another inaccessibility conjecture for P(ω1) which was investigated in [5] involving
the countable power set operation. If X is a set, then P(X) is the power set of X consisting of all subsets
of X. If κ is a cardinal, then Pκ(X) = {Y ⊆ X : |Y | < κ}. (That is, the collection of all subsets Y of X so
that Y injects into κ but κ does not inject into Y .) A particularly interesting case is Pω1(X) which is the
collection of all countable subsets of X.

The Countable Power Set Conjecture states that for any set X, if P(ω1) injects into Pω1
(X), then P(ω1)

already injected into X. The intuition is that the countable power set operation applied to any set X cannot
create a copy of P(ω1) in Pω1

(X) unless a copy of P(ω1) was already present in X.

May 16, 2025. This research was funded in whole or in part by the Austrian Science Fund (FWF) 10.55776/Y1498.

1



P(ω1) contains many important smaller cardinalities which include R, ω1, R ⊔ ω1, R × ω1, [ω1]
ω, and

[ω1]
<ω1 . Evidence for the above conjecture can be given by showing that for any set X, if |P(ω1)| ≤

|Pω1
(X)|, then X must have an injective copy of R, ω1, R ⊔ ω1, R× ω1, [ω1]

ω, or [ω1]
<ω1 .

An ∞-Borel code is a pair (S, φ) so that S is a set of ordinals and φ is a formula in the language of set
theory. A set A ⊆ R is ∞-Borel if and only if there is an ∞-Borel code (S, φ) so that A = {x ∈ R : L[S, x] |=
φ(S, x)}. An ∞-Borel code for A is a highly absolute definition for A in the sense that to query membership
of x ∈ A, one only needs to determine the truth of φ(S, x) in L[S, x] which is the minimal inner model of
ZFC containing x and the code set S. The statement that all subsets of R have ∞-Borel codes and DCR
are part of Woodin’s extension of determinacy known as AD+. [5] Theorem 6.10 began this investigation by
showing that under AD+, for any set X which is an image of R, if |P(ω1)| ≤ |Pω1(X)|, then |R⊔ω1| < |X|.
[5] asked if X is an image of R and |P(ω1)| ≤ |Pω1

(X)|, then does |R × ω1| < |X| hold? Moreover, since
|R×ω1| < |[ω1]

ω| < |P(ω1)|, an even stronger question would be under the same setting, does |[ω1]
ω| < |X|

holds? The goal of the paper is to answer the latter question positively which will provide evidence for the
Countable Power Set Conjecture:

• (Theorem 3.6) Assume AD, DCR, and all subsets of R are∞-Borel. For any set Y which is a surjective
image of R, if |P(ω1)| ≤ |Pω1

(Y )|, then |[ω1]
ω| < |Y |.

The key combinatorial property for the main theorem requires having a sufficiently deep understanding
of cardinalities of sets to answer a class of related “finite-dimensional combinatorial questions”. Vaguely, an
n-dimensional combinatorial question on a set X requires finding an X̃ ⊆ X with |X̃| = |X| for which one has

complete control over all n-tuples from X̃. An important one-dimensional combinatorial question concerns
regularity and cofinality. For example, for a particular set X and cardinal δ, X is δ-regular if and only if for
all functions Φ : X → δ, there exists a γ < δ such that |Φ−1[{γ}]| = |X|. One can asks for which ordinal δ is
X δ-regular? There are many important two-dimensional combinatorial questions including primeness and
basis for linear orderings. Important finite-dimensional questions (of arbitrary finite dimension) include the
Jónssonness property and optimal colorings for partitions on n-tuple through a set X. Primeness is most
relevant here. Chan, Jackson, and Trang defines the notion of primeness in [8]. A set X is a said to be
prime (or 2-prime) if and only if for all sets A and B, if |X| ≤ |A × B|, then |X| ≤ |A| or |X| ≤ |B|. [8]

shows that under ACR
ω and all subsets of R have the Baire property, R and R/E0 are prime. [8] shows that

if κ is an uncountable cardinal satisfying κ →∗ (κ)ω+ω
2 , then [κ]ω is prime. Moreover, [8] shows that for all

n < ω, [ωn]
ω is prime and even [ωω]

ω is prime (even through ωn does not possess partition property since
ωn is singular when 3 ≤ n ≤ ω). More recently, Chan [2] has used a generalized Namba forcing (a form
of Cox-Krueger Namba forcing [11] or diagonal Prikry forcing) over HOD-type inner models under AD+ to
determine the exact extent of ordinal regularity for ωκ for all cardinals κ < Θ. These Namba forcing methods
can be adapted to establish the primeness of ωκ for other κ < Θ. These recent developments have provided
a deep combinatorial understanding of the cardinality of ω-sequences of ordinals (which corresponds to the
smallest nonwellorderable cardinal exponentiations). In particular, note that the 2-primeness of [ω1]

ω under
the partition relation ω1 →∗ (ω1)

ω+ω
2 can be regarded as an inaccessibility phenomenon for [ω1]

ω with respect
to the two-fold cartesian product operator: For any set A and B, A×B has an injective copy of [ω1]

ω if and
only if one of the factors A or B already possessed an injective copy of [ω1]

ω.
However, one is still missing such understanding for the cardinality of [ω1]

<ω1 . If κ is an ordinals and
X is a set, then say that X is κ-prime if and only if for any sequence ⟨Yα : α < κ⟩, if |X| ≤ |

∏
α<κ Yα|,

then there exists an ᾱ < κ so that |X| ≤ |Yᾱ|. Cardinals of countable cofinality are not ω-prime. It is
shown in [8] that if κ is a cardinal and λ < κ, then κ is λ-prime if and only if λ < cof(κ) and for all
δ < κ, ¬(|κ| ≤ |λδ|). Steel ([19] Theorem 8.26) and Woodin ([20] Theorem 2.16) showed that under AD+,
boldface GCH holds below Θ which is that statement that for all κ < Θ, κ+ does not inject into P(κ). Thus
under AD+, a cardinal κ is λ-prime if and only if λ < cof(κ). In particular, any cardinal of uncountable
cofinality is ω-prime under AD+. Note that [ω1]

ω is clearly not ω-prime although it is 2-prime under the
partition relation ω1 →∗ (ω1)

ω+ω
2 . There are currently no known example of a nonwellorderable ω-prime set

but the natural candidate is [ω1]
<ω1 . However, it is not presently known if [ω1]

<ω1 is even 2-prime. The
ω-Primeness Conjecture for [ω1]

<ω1 is the statement that the strong partition property ω1 →∗ (ω1)
ω1
2 (or the

very strong partition property ω1 →∗ (ω1)
ω1
<ω1

) implies [ω1]
<ω1 is ω-prime. Intuitively this conjecture states

that [ω1]
<ω1 is inaccessible to the countable cartesian product operation in the sense that for any sequence
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⟨Yn : n ∈ ω⟩ of sets, [ω1]
<ω1 injects into

∏
n∈ω Yn if and only if there is a factor Yn̄ which already has an

injective copy of [ω1]
<ω1 . The key combinatorial fact needed to prove Theorem 3.6 is the following evidence

for the ω-Primeness Conjecture for [ω1]
<ω1 :

• (Theorem 2.11) Assume ω1 →∗ (ω1)
ω1
2 . Let ⟨Yn : n ∈ ω⟩ be a sequence of sets. If |[ω1]

<ω1 | ≤
|
∏

n<ω Yn|, then there is an n̄ ∈ ω so that |[ω1]
ω| < |Yn̄|.

The last ingredient to prove the main result of the paper will involve some consequences of Woodin’s
analysis of nice models of AD+ by OD ∞-Borel code forcings (a variation of Vopěnka forcing). This forcing
will not be used directly here but two consequences will be needed. The first states in nice AD+ models,
there is a uniform procedure to transform ordinal definable (with parameters) definition of subsets of R into
ordinal definable (with same parameters) ∞-Borel code for this subset of R. Woodin’s perfect set dichotomy
([1],[4]) states that if X is a surjective image of R, then either X is wellorderable or R injects into X. The
second necessary fact is a uniform version of Woodin’s perfect set dichotomy which states that if X is a
quotient of an equivalence relation E on R with ∞ Borel (S, φ) and X is wellorderable, then a wellordering
of X can be founded uniformly from the ∞-Borel code (S, φ). If Y is a set, let I<ω1(Y ) be the set of all
injective functions f : ϵ→ Y where ϵ < ω1. The following will be shown:

• (Theorem 3.5) Assume AD, DCR, and all subsets of R are ∞-Borel. If Y is a surjective image of

R and Φ : P(ω1) → Pω1
(Y ), then there exists a function Φ̃ : P(ω1) → I<ω1

(Y ) so that Φ̃(A)
enumerate Φ(A) for all A ∈ P(ω1).

What is remarkable about Theorem 3.5 is that there is generally no map Γ : Pω1
(Y ) → I<ω1

(Y ) so that
Γ(B) is a wellordered enumeration of B for all B ∈ P<ω1

(Y ). In fact, there is generally no injection from
Pω1

(Y ) into I<ω1
(Y ). For example for Y = R, one can show that |I<ω1

(R)| < |Pω1
(R)|.

Given the main result of the paper that for any set X which is an image of R, |P(ω1)| ≤ |Pω1(X)|
implies |[ω1]

ω| < |X|, the next natural evidence one would like for the Countable Power Set Conjecture
would be to show that |P(ω1)| ≤ |Pω1

(X)| implies |[ω1]
<ω1 | < |X|. If the ω-Primeness Conjecture for

[ω1]
<ω1 can be shown, then the arguments of Section 3 will immediately show that |P(ω1)| ≤ |Pω1

(X)|
implies |[ω1]

<ω1 | < |X|. One will need a deeper grasp of the cardinality of [ω1]
<ω1 to handle ω-primeness

and other finite dimensional combinatorial questions involving [ω1]
<ω1 .

2. Evidence for Primeness

Definition 2.1. If ϵ ∈ ON and f : ϵ→ ON.

• f is discontinuous everywhere if and only if for all β < ϵ, sup(f ↾ β) = sup{f(α) : α < β} < f(β).
• f has uniform cofinality ω if and only if there is a function F : ϵ×ω → ON so that for all α < ϵ and
n ∈ ω, F (α, n) < F (α, n + 1) and f(α) = sup{F (α, n) : n ∈ ω}. (A function F : ϵ × ω → ON with
this property will be a called a witness for the uniform cofinality ω of f .)

• f has the correct type if and only if f is both discontinuous everywhere and has uniform cofinality
ω.

If X ⊆ ON and ϵ ∈ ON, then [X]ϵ∗ will denote the collection of f : ϵ→ X of the correct type.

The following is the correct type club partition relation.

Definition 2.2. Let κ be a cardinal.

• Let ϵ ≤ κ and γ < κ. κ→∗ (κ)ϵγ asserts that for all P : [κ]ϵ∗ → γ, there is a β < γ and a club C ⊆ κ
so that for all f ∈ [C]ϵ∗, P (f) = β.

• Let ϵ ≤ κ and γ ≤ κ. κ→∗ (κ)<ϵ
<γ asserts that for all ϵ′ < ϵ and γ′ < γ, κ→∗ (κ)ϵ

′

γ′ .

• If κ satisfies κ→∗ (κ)κ2 , then κ is called a strong partition cardinal.
• If κ satisfies κ→∗ (κ)κ<κ, then κ is called a very strong partition cardinal.
• If κ satisfies κ→∗ (κ)<κ

2 , then κ is called a weak partition cardinal.

See [17], [4], and [3] for more information on the combinatorial aspects of partition properties. The
ordinary partition relation κ→ (κ)ϵγ is the assertion that for all P : [κ]ϵ → κ, there is a β < γ and an A ⊆ κ
with |A| = κ so that for all f ∈ [A]ϵ, P (f) = β. The correct type club partition and the ordinal partition
relation are closely related after a small shift in exponent: κ →∗ (κ)ϵ2 implies κ → (κ)ϵ2 and κ → (κ)ω·ϵ

2

implies κ →∗ (κ)ϵ2. The correct type partition relation is much more practical for combinatorial arguments
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and essentially all applications of partition properties in determinacy context directly or indirectly use the
notion of a correct type partition.

It can be shown that for any ϵ < κ, κ→∗ (κ)ϵ+ϵ
2 implies that κ→ (κ)ϵ<κ. Thus if κ is a weak partition car-

dinal, then κ→∗ (κ)<κ
<κ holds. It is open if a strong partition cardinal must always be a very strong partition

cardinal. The most natural universes to study partition properties are those satisfying AD. Moreover, the
only known method to establish the existence of a strong partition cardinal comes from Martin’s argument
which uses pointclass boundedness principles under determinacy to create good coding systems for functions
from certain ordinals to certain ordinals. (See [15], [14], [4], and [3] for more information concerning good
coding systems.)

If Γ is a pointclass, then let Γ̌ refer to the dual pointclass. δ(Γ) is the supremum of the length of the
prewellordering in Γ ∩ Γ̌. For each n ∈ ω, δ1n is defined to be δ(Σ1

n). By using the Kunen-Martin Theorem,
Kunen and Martin showed that δ12n+2 = (δ12n+1)

+ for all n ∈ ω. Jackson ([14], [13], and [12]) computed

the value of all the projective ordinals δ1n for 1 ≤ n < ω. δ11 = ω1 and thus δ12 = ω2. Martin showed
that δ13 = ωω+1 and thus δ14 = ωω+2. δ21 is defined to be δ(Σ2

1). Let A ∈ P(ω1). δA is the least δ such
that Lδ(A,R) ≺1 L(A,R) (Σ1-elementarity in the language of set theory augmented with constant symbols
for each real and the collection of all reals and the models are given the intended interpretation). It can
be shown that δ∅ = (δ21)

L(R). The following are some important examples of partition cardinals under the
axiom of determinacy for which the results of this paper apply.

Fact 2.3. Assume AD.

• (Martin; [15] Theorem 12.2, [4] Corollary 4.27) ω1 is a very strong partition cardinal.
• (Martin-Paris; [15] Corollary 13.5, [4] Theorem 5.19 and Corollary 6.17) ω2 is a weak partition

cardinal but not a strong partition cardinal.
• (Jackson; [13],[12]) δ12n+1 is a very strong partition cardinal.

• (Jackson; [14], [13],[12]) δ12n+2 is a weak partition cardinal and not a strong partition cardinal.
• (Kechris-Kleinberg-Moschovakis-Woodin; [16], [18] Theorem 5.8) For any A ∈ P(κ), δA is a very
strong partition cardinal.

• (Kechris-Kleinberg-Moschovakis-Woodin; [16], [18] Theorem 5.5) (DCR) δ
2
1 is a very strong partition

cardinal.

First, one will define a combinatorially useful injection of [ω1]
ω into [ω1]

<ω1 .

Definition 2.4. Let κ be a cardinal and ∆ : κ × ω → κ be a function. Define d∆ : κ → κ be defined
d∆(α) = sup{∆(α, n) : n ∈ ω}. Say that ∆ : κ × ω → κ is a witness for uniform cofinality ω for some
discontinuous function (namely d∆) if and only if the following hold.

(1) For all α < κ and n ∈ ω, 0 < ∆(α, n) < ∆(α, n+ 1).
(2) Then d∆ : κ → κ is a discontinuous function (that is, for all α < κ, sup(d∆ ↾ α) < d∆(α) and thus

d∆ must be a strictly increasing function).

(Note that ∆ witnesses that d∆ is a function of uniform cofinality ω and thus d∆ ∈ [κ]κ∗ .)
Let γ < κ and α < d∆(γ). Let nγα be the least n so that α < ∆(γ, n). Let L∆ consists of all tuples

(γ, α, β0, ..., βnγ
α−1) with the following properties.

(1) γ < κ and α < d∆(γ).
(2) If nγα = 0, then the tuple takes the form (γ, α).
(3) If nγα > 0, then β0 < β1 < ... < βnγ

α−1 < γ.

Let ≺∆ be the lexicographic ordering on L∆. Explicitly, (γ
0, α0, β0

0 , ..., β
0

nγ0

α0−1
) ≺∆ (γ1, α1, β1

0 , ..., β
1

nγ1

α1−1
)

if and only if the disjunction of the following holds.

(1) γ0 < γ1.
(2) γ0 = γ1 and α0 < α1.

(3) γ0 = γ1, α0 = α1, and there exists an i < nγ0

α0 = nγ
1

α1 such that for all j < i, β0
j = β1

j and β0
i < β1

i .

Denote L∆ to be the linear ordering (L∆,≺∆).

Fact 2.5. Let κ be a cardinal. Let ∆ : κ× ω → κ be a witness for uniform cofinality ω for some increasing
discontinuous function. L∆ = (L∆,≺∆) is a wellordering of ordertype κ.
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Proof. Suppose ⟨xk : k ∈ ω⟩ is a sequence in L∆ so that for all k ∈ ω, xk+1 ≺∆ xk. Say xk =
(γk, αk, βk

0 , ..., β
k

nγk

αk−1
). Thus ⟨γk : k ∈ ω⟩ is a non-increasing sequence of ordinals since for all k ∈ ω,

xk+1 ≺∆ xk. By the wellfoundedness of the ordinals, there is a K0 ∈ ω and a γ̄ so that for all K0 < k < ω,
γk = γ̄. Since xk+1 ≺∆ xk for all k ∈ ω, ⟨αk : K0 < k < ω⟩ is a non-increasing sequence of ordinals.
By wellfoundedness of the ordinals, there is a K1 > K0 and an ᾱ < d∆(γ̄) so that for all K1 < k < ω,

αk = ᾱ. Thus for all K1 < k < ω, nγ
k

αk = nγ̄ᾱ. Let n̄ = nγ̄ᾱ. (If n̄ = 0, then the next steps are not relevant.)

Suppose i ≤ n̄ − 1, β̄j for all j < i have been defined, and Ki+1 ∈ ω has been defined so that for all all
Ki+1 < k < ω, γk = γ̄, αk = ᾱ, and for all j < i, βk

j = β̄j . Then ⟨βk
i : Ki+1 < k < ω⟩ is a non-increasing

sequence of ordinals. By wellfoundedness, there is a Ki+2 > Ki+1 and β̄i so that for all Ki+2 < k < ω,
βk
i = β̄i. Thus for all k such that Kn̄+1 < k < ω, xk = (γ̄, ᾱ, β̄0, ..., β̄n̄−1). Thus the sequence ⟨xk : k ∈ ω⟩

is eventually constant. This violates the assumption that xk+1 ≺∆ xk for all k ∈ ω. It has been shown that
Lκ is wellfounded.

For each γ < κ, let Aγ consist of those elements of L∆ whose first coordinate is less than γ. Since Aγ

injects into
⋃

n<ω
n
(
d∆(γ)

)
, |Aγ | = |d∆(γ)| < |κ|. Hence the order type of each Aγ is less than κ. Since for

each γ < κ, Aγ is an initial segment of L∆ under ≺∆, the ordertype of L∆ is κ. □

Definition 2.6. Let κ, ∆, and d∆ be as in Definition 2.4. A pair (∆,Σ) is suitable if and only if the following
holds.

(1) Σ : L∆ → κ is an order preserving function from L∆ = (L∆,≺∆) into (κ,<) (the usual ordinal
ordering on κ).

(2) For all γ0 < γ1 < κ and (γ0, α, β0, ..., βnγ0
α −1) ∈ L∆, d∆(γ0) < Σ(γ0, α, β0, ..., βnγ0

α −1) < d∆(γ1).
(3) Σ has the correct type in the following natural sense:

(a) Σ is discontinuous: For all x ∈ L∆, sup(Σ ↾ x) = sup{Σ(y) : y ≺∆ x} < Σ(x).
(b) Σ has uniform cofinality ω: There is a Π : L∆ × ω → κ so that for all x ∈ L∆ and n ∈ ω,

Π(x, n) < Π(x, n+ 1) and Σ(x) = sup{Π(x, n) : n ∈ ω}.
For each f ∈ [κ]ω, define a function Λ(∆,Σ)(f) : d∆(sup(f)) → κ by

Λ(∆,Σ)(f)(α) = Σ(sup(f), α, f(0), ..., f(nsup(f)α − 1))

for each α < d∆(sup(f)). Thus Λ(∆,Σ) : [κ]
ω → <κκ.

Fact 2.7. Let κ, ∆, d∆, L∆ = (L∆,≺∆), Σ, Λ(∆,Σ) be as in Definition 2.4 and Definition 2.6. The following
properties hold.

(1) For all f ∈ [κ]ω and α0 < α1 < d∆(sup(f)), Λ(∆,Σ)(f)(α0) < Λ(∆,Σ)(f)(α1).

(2) For all f ∈ [ω1]
ω, Λ(∆,Σ)(f)(0) > d∆(sup(f)) and Λ(∆,Σ)(f) ∈ [κ]

d∆(sup(f))
∗ .

(3) For all f, g ∈ [κ]ω, if sup(f) < sup(g), then sup(Λ(∆,Σ)(f)) < d∆(sup(g)) < Λ(∆,Σ)(g)(0).
(4) Suppose f, g ∈ [κ]ω, sup(f) = sup(g), m ∈ ω is least so that f(m) ̸= g(m), and f(m) < g(m).

For all α < ∆(sup(f),m) = ∆(sup(g),m), Λ(∆,Σ)(f)(α) = Λ(∆,Σ)(g)(α). For all ∆(sup(f),m) =
∆(sup(g),m) ≤ α < d∆(sup(f)) = d∆(sup(g)), Λ(∆,Σ)(f)(α) < Λ(∆,Σ)(g)(α) < Λ(∆,Σ)(f)(α+ 1).

(5) ΛΣ : [κ]ω → [κ]<κ
∗ is an injection. Let K = Σ[L∆] and J = d∆[κ]. For all ϵ ∈ J , cof(ϵ) = ω.

Λ(∆,Σ) : [κ]
ω →

⋃
ϵ∈J [K \ (ϵ+ 1)]ϵ∗ is an injection.

Proof. (1) Let f ∈ [κ]ω and α0 < α1 < d∆(sup(f)). Observe (sup(f), α0, f(0), ..., f(n
sup(f)
α0 − 1)) ≺∆

(sup(f), α1, f(0), ..., f(n
sup(f)
α1 −1)) by comparing the second coordinate. Thus Λ(∆,Σ)(f)(α0) < Λ(∆,Σ)(f)(α1).

(2) By the suitability of the pair (∆,Σ), Λ(∆,Σ)(f)(0) = Σ(sup(f), 0) > d(sup(f)). Note that (1)
shows that Λ(∆,Σ)(f) is an increasing function. For all α < d∆(sup(f)), sup(Λ(∆,Σ)(f) ↾ α) = sup(Σ ↾

(sup(f), α, f(0), ..., f(n
sup(f)
α − 1))) < Σ(sup(f), α, f(0), ..., f(n

sup(f)
α − 1)) = Λ(∆,Σ)(f)(α) using the dis-

continuity of Σ. Thus Λ(∆,Σ)(f) is discontinuous everywhere. Fix a function Π : L∆ × ω → κ which
witnesses that Σ has uniform cofinality ω as in Definition 2.6 (3b). Define F : d∆(sup(f)) × ω → κ by

F (α, n) = Π((sup(f), α, f(0), ..., f(n
sup(f)
α − 1)), n). F witnesses that Λ(∆,Σ)(f) has uniform cofinality ω.

Thus Λ(∆,Σ)(f) has the correct type and hence Λ(∆,Σ)(f) ∈ [κ]
d∆(sup(f))
∗ .
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(3) Suppose f, g ∈ [κ]ω and sup(f) < sup(g). For all α < d∆(sup(f)), (sup(f), α, f(0), ..., f(n
sup(f)
α −

1)) ≺∆ (sup(f) + 1, 0) by comparing the first coordinates. Thus Λ(∆,Σ)(f)(α) < Σ(sup(f) + 1, 0) <
d∆(sup(g)) < Λ(g)(0) for all α < d∆(sup(f)) by (2) established above and condition (2) in Definition
2.6. Hence sup(Λ(∆,Σ)(f)) < d∆(sup(g)) < Λ(∆,Σ)(g)(0).

(4) Suppose f, g ∈ [κ]ω, sup(f) = sup(g), m is the least so that f(m) ̸= g(m), and f(m) < g(m). Suppose

α < ∆(sup(f),m) = Σ(sup(g),m). Then n
sup(f)
α = n

sup(g)
α ≤ m. Thus

Λ(∆,Σ)(f)(α) = Σ(sup(f), α, f(0), ..., f(nsup(f)α − 1)) = Σ(sup(g), α, g(0), ..., g(nsup(g)α − 1)) = Λ(∆,Σ)(g)(α).

Now suppose ∆(sup(f),m) = ∆(sup(g),m) ≤ α. Then n
sup(f)
α = n

sup(g)
α > m. Thus

(sup(f), α, f(0), ..., f(nsup(f)α −1)) ≺∆ (sup(g), α, g(0), ..., g(nsup(g)α −1)) ≺∆ (sup(f), α+1, f(0), ..., f(n
sup(f)
α+1 ))

by comparing the (m + 2)th entries for the first inequality and comparing the second entry for the second
inequality. Thus Λ(∆,Σ(f)(α) < Λ(∆,Σ)(g)(α) < Λ(∆,Σ)(f)(α+ 1).

(5) Suppose f, g ∈ [κ]ω and f ̸= g. If sup(f) ̸= sup(g), then (3) implies Λ(∆,Σ)(f) ̸= Λ(∆,Σ)(g). Suppose
sup(f) = sup(g). There is a least m ∈ ω so that f(m) ̸= g(m). Then Λ(∆,Σ)(f) ̸= Λ(∆,Σ)(g) by (4).
Thus Λ(∆,Σ) is an injection. Let K = Σ[L∆] and J = d∆[κ]. By definition of Σ and Λ(∆,Σ) and (2),

for all f ∈ [κ]κ, Λ(∆,Σ)(f) ∈ [K]
d∆(sup(f))
∗ . Since Λ(∆,Σ)(f)(0) > d∆(sup(f)) by (2) and d∆(sup(f)) ∈ J ,

Λ(∆,Σ)(f) ∈
⋃

ϵ∈J [K \ (ϵ+1)]ϵ∗. Note that for all γ ∈ κ, cof(d∆(γ)) = ω as witnessed by the cofinal sequence
⟨∆(γ, n) : n ∈ ω⟩. Thus for all ϵ ∈ J , cof(ϵ) = ω. □

Let X ⊆ κ with |X| = κ. Let enumX : κ → X be the increasing enumeration of X. For α, β < κ, let
nextαX(β) be the (1 + α)th-element of X greater than β.

Fact 2.8. Let κ be a cardinal and C ⊆ κ be a club subset of κ. Then there is a suitable (∆,Σ) such that
∆ : κ × ω → [C]1∗ and Σ : L∆ → C. (Note that d∆ : κ → [C]1∗ and Σ : L∆ → [C]1∗ since Σ has the correct
type by suitability.)

Proof. The function ∆ : κ× ω → [C]1∗, Σ : L∆ → C, and Π : L∆ × ω → κ will be defined by recursion. Let
γ < κ. Suppose ∆ ↾ γ × ω has been defined. This implies one can meaningfully define the objects d∆ ↾ γ,
nηα for all η < α < d∆(η), and a linear ordering Aγ using the definition of L∆ from Definition 2.4 with
the restriction that the first coordinate is less than γ. Suppose Σ ↾ Aγ and Π ↾ Aγ × ω have been defined.
Suppose the following properties have been shown:

(1) Σ ↾ Aγ is increasing.
(2) For all x ∈ Aγ with first coordinate η < γ, d∆(η) < Σ(x).
(3) For all γ0 < γ1 < γ and x ∈ Aγ with first coordinate γ0, Σ(x) < d∆(γ1).
(4) Π ↾ Aγ × ω : Aγ × ω → κ witnesses that Σ ↾ Aγ has uniform cofinality ω.

Let δγ = sup(Σ ↾ Aγ). Let ∆(γ, n) = nextn[C]1∗
(δγ). Let d∆(γ) = sup{∆(γ, n) : n ∈ ω}. Now one

can meaningfully define Aγ+1 using the definition of L∆ from Definition 2.4 restricted below γ + 1. Let
Bγ = Aγ+1 \ Aγ which are the elements of Aγ+1 with first coordinate γ. Note that ot(Aγ+1) < κ and
ot(Bγ) < κ by the argument from Fact 2.5. Let ζγ = ot(Bγ) and πγ : Bγ → ζγ be the unique order preserving

bijection. For x ∈ Bγ , let Σ(x) = next
ω·πγ(x)+ω
C (d∆(γ)) and for n ∈ ω, let Π(x, n) = next

ω·πγ(x)+n
C (d∆(γ)).

One has defined ∆ ↾ (γ+1)×ω and Σ ↾ Aγ+1. Using the induction hypothesis that Σ ↾ Aγ is order preserving,
Σ ↾ Aγ+1 is order preserving by construction. Note that d∆(γ) < Σ(x) for all x ∈ Bγ by construction. Now
suppose γ0 < γ and x ∈ Aγ+1 with first coordinate γ0. Σ(x) ≤ sup(Σ ↾ Aγ) = δγ < ∆(γ, 0) < d∆(γ).
Π ↾ Aγ+1 × ω witnesses that Σ ↾ Aγ+1 has uniform cofinality ω. Thus the four properties hold at γ + 1 for
∆ ↾ (δ + 1)× ω, Σ ↾ Aγ+1, and Π ↾ Aγ+1 × ω.

If γ is a limit ordinal and for all γ̃ < γ, ∆ ↾ γ̃ × ω, Σ ↾ Aγ̃ , and Π ↾ Aγ̃ × ω have been defined with
the above four properties. Note Aγ =

⋃
γ̃<γ Aγ̃ . ∆ ↾ γ × ω, Σ ↾ Aγ , and Π ↾ Aγ × ω also have these four

properties.
This completes the construction of ∆ : κ × ω → [C]1∗ and Σ : L∆ → C. If α < β < κ, then d∆(α) <

sup(Σ ↾ Aα+1) < d∆(β) using properties (2) and (3) at β + 1. Thus d∆ is an increasing function. Suppose
α < κ, sup(d∆ ↾ α) ≤ sup(Σ ↾ Aα) = δα < ∆(α, 0) < d∆(α) by property (2) and (3) at α + 1. Thus
d∆ is discontinuous. Σ : L∆ → κ is increasing by (1). For all γ0 < γ1 < κ and x ∈ L∆ with first
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coordinate γ0, d∆(γ0) < Σ(x) < d∆(γ1) follows by property (2) and (3) at γ1 + 1. This verifies property
(2) of Definition 2.6. Suppose x ∈ L∆ with first coordinate γ and hence x ∈ Bγ . If x is the least element
of Bγ , then πγ(x) = 0 and sup(Σ ↾ x) = sup(Σ ↾ Aγ) = δγ < ∆(γ, 0) < d∆(γ) < nextωC(d∆(γ)) =

next
ω·πγ(x)+ω
C (d∆(γ)) = Σ(x). Now suppose x is not the minimal element of Bγ . Then sup(Σ ↾ x) =

sup{Σ(y) : y ≺∆ x} = sup{nextω·πγ(y)+ω
C (d∆(γ)) : y ≺∆ x} = sup{nextω·ν+ω

C (d∆(γ)) : ν < πγ(x)} ≤
next

ω·πγ(x)
C (d∆(γ)) < next

ω·πγ(x)+ω
C (d∆(γ)) = Σ(x). Thus Σ is discontinuous. Π witnesses that Σ has

uniform cofinality ω. Σ has the correct type. Thus (∆,Σ) is suitable with the desired properties. □

If δ < ϵ and f : ϵ → ON, then let drop(f, δ) : (ϵ − δ) → ON be defined by drop(f, δ)(α) = f(δ + α). If
κ is a cardinals, then clubκ denote the set of all club subsets of κ. For any cardinal κ and ϵ ≤ κ, a relation
R ⊆ [κ]ϵ∗×clubκ is ⊆-downward closed in the clubκ-coordinate if and only if for all ℓ ∈ [κ]ϵ∗ and clubs C ⊆ D,
if R(ℓ,D) holds, then R(ℓ, C) holds. Without of the axiom of choice, uniform choice of homogeneous sets
for many partitions is a very subtle and challenging problem. “Club uniformization” results are often very
important for combinatorial questions involving partition spaces. The club uniformization of [7] Theorem
3.10 is more than sufficient for the proof of Theorem 2.11 (for just the cardinal ω1); however, the proof is not
purely combinatorial. The following club uniformization results are proved from just the strong partition
property and will allow for the selection of club homogeneous for various desired property in the main
construction of Theorem 2.11

Fact 2.9. Assume κ→∗ (κ)κ2 and ϵ < κ. Let R ⊆ [κ]ϵ∗×clubκ be ⊆-downward closed in the clubκ-coordinate.
Then there is a club C ⊆ κ so that for all ℓ ∈ dom(R) ∩ [C]ϵ∗, R(ℓ, C \ (sup(ℓ) + 1)).

Proof. Fix ϵ < κ. If g ∈ [κ]κ∗ , then let Cg be the closure of g[κ] which is a club. Define P : [κ]κ∗ → 2 by
P (f) = 0 if and only if drop(f, ϵ) ∈ dom(R) implies R(f ↾ ϵ, Cdrop(f,ϵ)). By κ→∗ (κ)κ2 , there is a club C ⊆ κ
and an i ∈ 2 so that for all f ∈ [C]κ∗ , P (f) = i. Pick any ℓ ∈ [C]ϵ∗. First, suppose ℓ /∈ dom(R). Pick any
g ∈ [C \ (sup(ℓ) + 1)]κ∗ and let f = ℓ̂ g. Then f ∈ [C]κ∗ and P (f) = 0. Now suppose ℓ ∈ dom(R). There is
some club D ⊆ κ so that R(ℓ,D). Let g ∈ [D]κ∗ with g(0) > sup(ℓ) and observe that Cg ⊆ D. Since R is
⊆-downward closed in the clubκ-coordinate, R(ℓ, Cg). Let f = ℓ̂ g. Note that f ∈ [C]κ∗ and g = drop(f, ϵ).
Thus P (f) = 0. Since C was assumed to be homogeneous for P , this shows that i = 0. Fix an h ∈ [C]κ∗ . Let
E = Ch which is a club subset of κ. Suppose ℓ ∈ dom(R) ∩ [E]ϵ∗. Let α < κ be least so that h(α) > sup(ℓ).
Let f = ℓ̂ drop(h, α) and note that f ∈ [C]κ∗ , f ↾ ϵ = ℓ, drop(f, ϵ) = drop(h, α), E \ (sup(ℓ)+ 1) = Cdrop(h,α).
P (f) = 0 implies that R(f ↾ ϵ, Cdrop(f,ϵ)). Thus R(ℓ, E \ (sup(ℓ) + 1)). E is the desired club. □

Fact 2.10. Assume κ→∗ (κ)κ2 . Let R ⊆ [κ]<κ
∗ × clubκ be ⊆-downward closed in the clubκ-coordinate. There

is a club C ⊆ κ so that for all ℓ ∈ dom(R) ∩
⋃

ϵ∈[C]1∗
[C \ (ϵ+ 1)]ϵ∗, R(ℓ, C \ (sup(ℓ) + 1)).

Proof. Fix ϵ < κ. Define Rϵ ⊆ [κ]ϵ∗ × clubκ by Rϵ(ℓ, C) if and only if R(ℓ, C). Rϵ is ⊆-downward closed in
the clubκ-coordinate. By Fact 2.9, there is a club D so that for all ℓ ∈ dom(Rϵ)∩ [C]ϵ∗, R(ℓ,D \ (sup(ℓ)+1)).
Define S ⊆ κ×clubκ by S(ϵ, C) if and only if for all ℓ ∈ [C]ϵ∗, R

ϵ(ℓ, C \(sup(ℓ)+1)). By the above discussion,
dom(S) = κ. By Fact 2.9 applied with ϵ = 1, there is a club E ⊆ κ so that for all ϵ ∈ [E]1∗, S(ϵ, E \ (ϵ+ 1)).
Let ϵ ∈ [E]1∗ and ℓ ∈ [E\(ϵ+1)). S(ϵ, E\(ϵ+1)) holds. Since ℓ ∈ [E\(ϵ+1)]ϵ∗, R

ϵ(ℓ, (E\(ϵ+1))\(sup(ℓ)+1)).
Since (E \ (ϵ+ 1)) \ (sup(ℓ) + 1)) = E \ (sup(ℓ) + 1), Rϵ(ℓ, E \ (sup(ℓ) + 1)). Thus R(ℓ, E \ (sup(ℓ) + 1)). E
is the desired club. □

The following will provide evidence for the conjecture that [ω1]
<ω1 is ω-prime. In the following argument,

there will be a very large family of relevant partitions. Fact 2.10 will provide a club which is “simultaneously
homogeneous” for all the relevant partition in the formal sense of Fact 2.10. Using this club, one will define
an injection of the form presented in Definition 2.6. A number of fine technical details need to be verified to
see that this injection interacts meaningfully with all the relevant partitions.

Theorem 2.11. Assume κ is a cardinal satisfying κ→∗ (κ)κ2 . Let λ < κ and ⟨Yη : η < λ⟩ be a sequence of
sets. If |[κ]<κ| ≤ |

∏
η<λ Yη|, then there is an η̄ < λ so that |[κ]ω| ≤ |Yη̄|.

Proof. Since |[κ]<κ| ≤ |
∏

η∈λ Yη|, let Φ : [κ]<κ →
∏

η∈λ Yη be an injection. If f, g ∈ [κ]<κ and f ̸= g,

then let χ(f, g) be the least η ∈ λ so that Φ(f)(η) ̸= Φ(g)(η). Let Z ⊆ κ be the club of indecomposable
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ordinals below κ and work within Z. Note that κ →∗ (κ)κ2 implies κ →∗ (κ)<κ
2 and hence κ →∗ (κ)<κ

<κ by
the comments in the paragraphs following Definition 2.2.

For any ϵ ∈ Z and ι ∈ [Z]ϵ∗, let ι
0, ι1 ∈ [Z]ϵ∗ be defined by ιi(α) = ι(2 · α + i). For any (δ, ϵ) ∈ [Z]2∗

(hence δ < ϵ) and ℓ ∈ [Z]δ∗, define Pδ,ϵ,ℓ : [Z]ϵ∗ → λ by Pδ,ϵ,ℓ(ι) = χ(ℓ̂ ι0, ℓ̂ ι1). By κ →∗ (κ)ϵλ, there
is an ηδ,ϵ,ℓ ∈ λ and a club C ⊆ Z so that for all ι ∈ [C]ϵ∗, Pδ,ϵ,ℓ(ι) = ηδ,ϵ,ℓ. For (δ, ϵ) ∈ [Z]2∗, define
Pδ,ϵ : [Z]δ∗ → λ by Pδ,ϵ(ℓ) = ηδ,ϵ,ℓ. By κ →∗ (κ)δλ, there is a club C ⊆ Z and an ηδ,ϵ ∈ λ so that for all
ℓ ∈ [C]δ∗, Pδ,ϵ(ℓ) = ηδ,ϵ,ℓ = ηδ,ϵ. Define P : [Z]2∗ → λ by P (δ, ϵ) = ηδ,ϵ. By κ→∗ (κ)2λ, fix a club C0

0 ⊆ Z and
an η̄ ∈ λ so that for all (δ, ϵ) ∈ [C0

0 ]
2
∗, P (δ, ϵ) = ηδ,ϵ = η̄. For (δ, ϵ) ∈ [C0

0 ]
2
∗, let Rδ,ϵ ⊆ [C0

0 ]
δ
∗× clubκ be defined

by Rδ,ϵ(ℓ, C) if and only if for all ι ∈ [C]ϵ∗, Pδ,ϵ,ℓ(ι) = η̄. Fix (δ, ϵ) ∈ [C0
0 ]

2
∗. By definition of C0

0 , ηδ,ϵ = η̄. By
definition of ηδ,ϵ = η̄, there is a club D ⊆ Z so that for all ℓ ∈ [D]δ∗, Pδ,ϵ(ℓ) = ηδ,ϵ,ℓ = ηδ,ϵ = η̄. Fix ℓ ∈ [D]δ∗.
By definition of ηδ,ϵ,ℓ = η̄, there is a club E ⊆ Z so that for all ι ∈ [E]ϵ∗, Pδ,ϵ,ℓ(ι) = ηδ,ϵ,ℓ = ηδ,ϵ = η̄. Thus
Rδ,ϵ(ℓ, E). So ℓ ∈ dom(Rδ,ϵ). Since ℓ ∈ [D]δ∗ was arbitrary, [D]δ∗ ⊆ dom(Rδ,ϵ). Rδ,ϵ is ⊆-downward closed
in the clubκ-coordinate. By Fact 2.9, there is a club F ⊆ D so that for all ℓ ∈ dom(Rδ,ϵ) ∩ [F ]δ∗ = [F ]δ∗
(since [D]δ∗ ⊆ dom(Rδ,ϵ)), Rδ,ϵ(ℓ, F \ (sup(ℓ) + 1)). Since (δ, ϵ) ∈ [C0

0 ]
2
∗ was arbitrary, it has been shown

that for all (δ, ϵ) ∈ [C0
0 ]

2
∗, there is a club C with the property that for all ℓ ∈ [C]δ∗, Rδ,ϵ(ℓ, C \ (sup(ℓ) + 1)).

Define R ⊆ [C0
0 ]

2
∗ × clubκ by R((δ, ϵ), C) if and only if for all ℓ ∈ [C]δ∗, Rδ,ϵ(ℓ, C \ (sup(ℓ) + 1)). Note that

dom(R) = [C0
0 ]

2
∗ by the above discussion. R is ⊆-downward closed in the clubκ-coordinate. By Fact 2.9,

there is a club C0
1 ⊆ C0

0 so that for all (δ, ϵ) ∈ dom(R) ∩ [C0
1 ]

2
∗ = [C0

1 ]
2
∗, R((δ, ϵ), C

0
1 \ (ϵ+ 1)). In summary,

for all (δ, ϵ) ∈ [C0
1 ]

2
∗, all ℓ ∈ [C0

1 \ (ϵ+ 1)]δ∗, and all ι ∈ [C0
1 \ (sup(ℓ) + 1)]ϵ∗, Pδ,ϵ,ℓ(ι) = χ(ℓ̂ ι0, ℓ̂ ι1) = η̄.

For (δ, ϵ) ∈ [Z]2∗ and ℓ ∈ [Z]δ∗, let Qδ,ℓ,ϵ : [Z]ϵ∗ → 2 be defined by Qδ,ℓ,ϵ(ι) = 0 if and only if Φ(ℓ)(η̄) ̸=
Φ(ι)(η̄). By κ→∗ (κ)ϵ2, there is a jδ,ℓ,ϵ ∈ 2 and a club C ⊆ Z so that for all ι ∈ [C]ϵ∗, Qδ,ℓ,ϵ(ι) = jδ,ℓ,ϵ. For all
δ ∈ [Z]1∗ and ℓ ∈ [Z]δ∗, define Qδ,ℓ : [Z]

1
∗ → 2 by Qδ,ℓ(ϵ) = jδ,ℓ,ϵ. By κ→∗ (κ)12, there is a jδ,ℓ ∈ 2 and a club

C ⊆ Z so that for all ϵ ∈ [C]1∗, Qδ,ℓ(ϵ) = jδ,ℓ. For all δ ∈ [Z]1∗, let Qδ : [Z]δ∗ → 2 be defined by Qδ(ℓ) = jδ,ℓ.
By κ→∗ (κ)δ2, there is jδ ∈ 2 and a club C ⊆ Z so that for all ℓ ∈ [C]δ∗, Qδ(ℓ) = jδ,ℓ = jδ. Define Q : [Z]1∗ → 2
by Q(δ) = jδ. By κ→∗ (κ)12, there is a j̄ ∈ 2 and a fixed club C1

0 ⊆ Z so that for all δ ∈ [C1
0 ]

1
∗, Q(δ) = jδ = j̄.

Let S ⊆ [Z]1∗×clubκ be defined by S(δ, C) if and only if for all ℓ ∈ [C]δ∗, jℓ = j̄. S is ⊆-downward closed in the
clubκ-coordinate. By Fact 2.9, there is a club C1

1 ⊆ C1
0 so that for all δ ∈ dom(S)∩ [C1

1 ]
1
∗, S(δ, C

1
1 \ (δ+1)).

Suppose δ ∈ [C1
0 ]

1
∗. By definition of C1

0 , jδ = j̄. By definition of jδ = j̄, there is some club C ⊆ Z so that
for all ℓ ∈ [C]δ∗, jδ,ℓ = jδ = j̄ and hence S(δ, C). So δ ∈ dom(S). Since δ ∈ [C1

0 ]
1
∗ was arbitrary, this shows

that [C1
0 ]

1
∗ ⊆ dom(S) and hence [C1

1 ]
1
∗ ⊆ [C1

0 ]
1
∗ ⊆ dom(S). Therefore for all δ ∈ [C1

1 ]
1
∗, S(δ, C

1
1 \ (δ + 1)).

Define T ⊆ [Z]<κ
∗ × clubκ by T (ℓ, C) if and only if for all ϵ ∈ [C]1∗, for all ι ∈ [C \ (ϵ + 1)]ϵ∗, Q|ℓ|,ℓ,ϵ(ι) = j̄.

T is ⊆-downward closed in the clubκ-coordinate and therefore by Fact 2.10, there is a club C1
2 ⊆ C1

1 so that
for all ℓ ∈ dom(T ) ∩

⋃
δ∈[C1

2 ]
1
∗
[C1

2 \ (δ + 1)]δ∗, T (ℓ, C
1
2 \ (sup(ℓ) + 1)). Fix ℓ ∈

⋃
δ∈[C1

1 ]
1
∗
[C1

1 \ (δ + 1)]δ∗. Thus

|ℓ| ∈ [C1
1 ]

1
∗. Define Uℓ ⊆ Z × clubκ by Uℓ(ϵ, C) if and only if for all ι ∈ [C]ϵ∗, Q|ℓ|,ℓ,ϵ(ι) = j̄. Since |ℓ| ∈ [C1

1 ]
1
∗,

ℓ ∈ [C1
1 \ (|ℓ| + 1)]

|ℓ|
∗ , and S(|ℓ|, C1

1 \ (|ℓ| + 1)), one has that j|ℓ|,ℓ = j̄. By definition of j|ℓ|,ℓ = j̄, there is

a club D ⊆ Z so that for all ϵ ∈ [D]1∗, j|ℓ|,ℓ,ϵ = j|ℓ|,ℓ = j̄. Fix ϵ ∈ [D]1∗. By definition of j|ℓ|,ℓ,ϵ = j̄, there

is a club E ⊆ Z so that for all ι ∈ [E]ϵ∗, Q|ℓ|,ℓ,ϵ(ι) = j|ℓ|,ℓ,ϵ = j̄ and thus Uℓ(ϵ, E). So ϵ ∈ dom(Uℓ). Since

ϵ ∈ [D]1∗ was arbitrary, this shows that [D]1∗ ⊆ dom(Uℓ). Uℓ is ⊆-downward closed in the clubκ-coordinate.
Thus by Fact 2.9, there is a club F ⊆ D so that for all ϵ ∈ dom(Uℓ) ∩ [F ]1∗ = [F ]1∗, Uℓ(ϵ, F \ (ϵ+ 1)). Thus
for all ϵ ∈ [F ]1∗, for all ι ∈ [F \ (ϵ + 1)]ϵ∗, Q|ℓ|,ℓ,ϵ(ι) = j̄. Thus T (ℓ, F ). This shows that ℓ ∈ dom(T ). Since

ℓ ∈
⋃

δ∈[C1
1 ]

1
∗
[C1

1 \ (δ + 1)]δ∗ was arbitrary, it has been shown that
⋃

δ∈[C1
1 ]

1
∗
[C1

1 \ (δ + 1)]δ∗ ⊆ dom(T ) and

hence
⋃

δ∈[C1
2 ]

1
∗
[C1

2 \ (δ + 1)]δ∗ ⊆
⋃

δ∈[C1
1 ]

1
∗
[C1

1 \ (δ + 1)]δ∗ ⊆ dom(T ). Thus for all ℓ ∈
⋃

δ∈[C1
2 ]

1
∗
[C1

2 \ (δ + 1)]δ∗,

T (ℓ, C1
2 \ (sup(ℓ)+1)). In summary, for all δ ∈ [C1

2 ]
1
∗, for all ℓ ∈ [C1

2 \ (δ+1)]δ∗, for all ϵ ∈ [C1
2 \ (sup(ℓ)+1)]1∗,

and all ι ∈ [C1
2 \ (ϵ+ 1)]ϵ∗, Qδ,ℓ,ϵ(ι) = j̄.

Let C̄ = C0
1 ∩ C1

2 . Let δ ∈ [C̄]1∗, ℓ0 ∈ [C̄ \ (δ + 1)]δ∗, ϵ ∈ [C̄ \ (sup(ℓ0) + 1)]1∗, ℓ1 ∈ [C̄ \ (ϵ + 1)]δ∗, and
ι ∈ [C̄ \ (sup(ℓ1) + 1)]ϵ∗. For i ∈ 2, let ιi ∈ [C̄ \ (sup(ℓ1) + 1)]ϵ∗ be defined by ιi(α) = ι(2 · α + i) and let
σi ∈ [C̄ \ (ϵ+1)]ϵ∗ be defined by σi = ℓ1 ι̂

i. Since (δ, ϵ) ∈ [C̄]2∗, ℓ1 ∈ [C̄ \ (ϵ+1)]δ∗, and ι ∈ [C̄ \ (sup(ℓ1)+1)]ϵ∗,
one has that χ(σ0, σ1) = χ(ℓ1 ι̂

0, ℓ1 ι̂
1) = Pδ,ϵ,ℓ1(ι) = η̄ by the definition of C0

1 . Thus Φ(σ0)(η̄) ̸= Φ(σ1)(η̄).

Hence there must be some î ∈ 2 so that Φ(σî)(η̄) ̸= Φ(ℓ0)(η̄). Thus Qδ,ℓ0,ϵ(σ
î) = 0. Since δ ∈ [C̄]1∗,

ℓ0 ∈ [C̄ \ (δ + 1)]δ∗, ϵ ∈ [C̄ \ (sup(ℓ0) + 1)]1∗, and σ
î ∈ [C̄ \ (ϵ+ 1)]ϵ∗, Qδ,ℓ0,ϵ(σ

î) = j̄. It has been shown that
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j̄ = 0. In summary, for all δ ∈ [C̄]1∗, for all ℓ ∈ [C̄ \ (δ + 1)]δ∗, for all ϵ ∈ [C̄ \ (sup(ℓ) + 1)]1∗, and for all
ι ∈ [C̄ \ (ϵ+ 1)]ϵ∗, Φ(ℓ)(η̄) ̸= Φ(ι)(η̄).

By Fact 2.8, let (∆,Σ) be a suitable pair so that ∆ : κ × ω → [C̄]1∗ and Σ : L∆ → [C̄]1∗. Note that
d∆ : κ → [C̄]1∗. Let Λ(∆,Σ) : [κ]ω →

⋃
ϵ∈[C̄]1∗

[C̄ \ (ϵ + 1)]ϵ∗ be the injection as defined in Definition 2.6

possessing the properties proved in Fact 2.7. Suppose f, g ∈ [κ]ω and f ̸= g. First, suppose sup(f) ̸=
sup(g) and without loss of generality, sup(f) < sup(g). d∆(sup(f)) ∈ [C̄]1∗. By Fact 2.7 (2) and (5),

Λ(∆,Σ)(f) ∈ [C̄\(d∆(sup(f))+1)]
d∆(sup(f))
∗ and Λ(∆,Σ)(g) ∈ [C̄\(d∆(sup(g))+1)]

d∆(sup(g))
∗ . d∆(sup(g)) ∈ [C̄\

(sup(Λ(∆,Σ)(f))+1)]1∗ by Fact 2.7 (3). By the observation shown above, Φ(Λ(∆,Σ)(f))(η̄) ̸= Φ(Λ(∆,Σ)(g))(η̄).
Secondly, suppose sup(f) = sup(g), m ∈ ω is least so that f(m) ̸= g(m), and without loss of generality,
suppose f(m) < g(m). Let δ = ∆(sup(f),m) = ∆(sup(g),m) and note that δ ∈ [C̄]1∗ by definition of
∆. Let ϵ = d∆(sup(f)) = d∆(sup(g)) and note that ϵ ∈ [C̄]1∗, δ < ϵ, and hence (δ, ϵ) ∈ [C̄]2∗. By Fact
2.7 (4), Λ(∆,Σ)(f) ↾ δ = Λ(∆,Σ)(g) ↾ δ. Let ℓ = Λ(∆,Σ)(f) ↾ δ = Λ(∆,Σ)(g) ↾ δ. Note that ϵ < ℓ(0) by
Fact 2.7 (2). The set A = {Λ(∆,Σ)(f)(α),Λ(∆,Σ)(g)(α) : δ = ∆(sup(f),m) = ∆(sup(g),m) < α < ϵ} has

ordertype ϵ (since ϵ ∈ C̄ ⊆ Z is indecomposable). Let ι : ϵ → A be the increasing enumeration of A.
Since Λ(∆,Σ)(f) and Λ(∆,Σ)(g) have the correct type, ι has the correct type and thus ι ∈ [C̄ \ (sup(ℓ) + 1)]ϵ∗.

By Fact 2.7 (4), ι0 = drop(Λ(∆,Σ)(f), δ) and ι1 = drop(Λ(∆,Σ)(g), δ). Therefore, ℓ̂ ι0 = Λ(∆,Σ)(f) and

ℓ̂ ι1 = Λ(∆,Σ)(g). Thus (δ, ϵ) ∈ [C̄]1∗, ℓ ∈ [C̄ \ (ϵ+1)]δ∗, and ι ∈ [C̄ \ (sup(ℓ) + 1)]ϵ∗. By the observation shown

above (the property of C0
1 ⊇ C̄), η̄ = Pδ,ϵ,ℓ(ι) = χ(ℓ̂ ι0, ℓ̂ ι1) = χ(Λ(∆,Σ)(f),Λ(∆,Σ)(g)). By definition of χ,

Φ(Λ(Σ,∆)(f))(η̄) ̸= Φ(Λ(∆,Σ)(g))(η̄).
Let Γ : [κ]ω → Yη̄ be defined by Γ(f) = Φ(Λ(∆,Σ)(f))(η̄). It has been shown that Γ is an injection. Thus

|[κ]ω| ≤ |Yη̄|. □

Fact 2.12. ([10]) Suppose κ is a cardinal such that κ →∗ (κ)<κ
2 . For all χ < κ, there is no injection of

[κ]<κ into χON, the class of χ length sequence of ordinals.

Corollary 2.13. Suppose κ is a cardinal satisfying κ →∗ (κ)κ2 , λ < κ, and Y be a set. If |[κ]<κ| ≤ |λY |,
then |[κ]ω| < |Y |.

Proof. Let Φ : [κ]<κ → λY be an injection. For η < λ, let Yη = Y . By applying Theorem 2.11 to
⟨Yη : η < λ⟩, |[κ]ω| ≤ |Y |. Suppose |Y | = |[κ]ω|. Let Σ : Y → [κ]ω be an injection. Define Π : λY → ω·λκ by
Π(f)(ω · δ + n) = Σ(f(δ))(n) for all δ < λ and n ∈ ω. Π is an injection. Then Π ◦ Φ : [κ]<κ → ω·λκ is an
injection which violates Fact 2.12. This shows that |[κ]ω| < |Y |. □

Remark 2.14. In light of the strict cardinality inequality of Corollary 2.13, one would expect a strict inequality
in statement of Theorem 2.11: that is, there is an η̄ so that |[κ]ω| < |Yη̄|, in the notation for Theorem 2.11.
Unfortunately, the argument for Corollary 2.13 would require the existence of a sequence ⟨Ση : η < λ⟩ such
that Ση : Yη → [κ]ω is an injection for each η < λ. When λ > ω, there is insufficient general choice principle
even under determinacy to find such a sequence. Of course, the ideal strategy to produce the strict inequality
in Theorem 2.11 would be to answer the question of whether [κ]<κ is λ-prime for all λ < κ when κ satisfies
suitable partition properties: If |[κ]<κ| ≤ |

∏
η<λ Yη|, then there is an η̄ < λ so that |[κ]<κ| ≤ |Yη̄|.

The following asserts that if κ is a strong partition cardinal, then P(κ) is ON-regular.

Fact 2.15. ([3]) Suppose κ is a cardinal satisfying κ →∗ (κ)κ2 . For all functions Ψ : P(κ) → ON, there is
an α ∈ ON so that |Ψ−1[{α}]| = |P(κ)|.

Proof. Since |P(κ)| = |κ2| = |[κ]κ∗ |, one will interchangeably use the various presentations of this cardinality.
Assume the result fails. By replacement, for every function Ψ : [κ]κ∗ → ON, there is a δ ∈ ON so that
Ψ : [κ]κ∗ → δ. Let δ be the least ordinal so that there is a function Ψ : [κ]κ∗ → δ with the property that for
all α < δ, |Ψ−1[{α}]| < |[κ]κ∗ |. By minimality, δ must be a cardinal. If f ∈ [κ]κ∗ , then let f0, f1 ∈ [κ]κ∗ be
defined by f i(α) = f(2 ·α+ i) for both i ∈ 2. Define P : [κ]κ∗ → 2 by P (f) = 0 if and only if Ψ(f0) ≤ Ψ(f1).
By κ →∗ (κ)κ2 , there is a club C0 ⊆ κ which is homogeneous for P . Suppose C0 is homogeneous P taking
value 1. Fix g ∈ [C0]

κ
∗ . For each n ∈ ω, let gn ∈ [C0]

κ
∗ be defined by gn(α) = g(ω · α + n). For each

n ∈ ω, there is an fn ∈ [C0]
κ
∗ so that f0 = gn and g1 = gn+1. For all n ∈ ω, since P (fn) = 1, one

has Ψ(gn+1) = Ψ(f1) < Ψ(f0) = Ψ(gn). Thus ⟨Ψ(gn) : n ∈ ω⟩ is an infinite descending sequence of
ordinals which is a contradiction. Thus C0 is homogeneous for P taking value 0. Let h ∈ [C0]

κ
∗ . Let
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g ∈ [C0]
κ
∗ be defined by g(α) = g(3 · α + 2). Let Φ : κ2 → [C0]

κ
∗ be defined by Φ(p)(α) = h(3 · α + p(α))

where p ∈ κ2 implies p takes the form of a function from κ into 2. Φ : κ2 → [C0]
κ
∗ is an injection.

For each p ∈ κ2, there is a unique fp ∈ [C0]
κ
∗ so that f0p = Φ(p) and f1p = g. P (fp) = 0 implies that

Ψ(Φ(p)) = Ψ(f0p ) ≤ Ψ(f1p ) = Ψ(g). Let η = Ψ(g) and note that η + 1 < δ since δ is a cardinal. Define

Σ : κ2 → η + 1 by Σ(p) = Ψ(Φ(p)). For all α < η + 1, |Σ−1[{α}]| ≤ |Ψ−1[{α}]| < |P(κ)| by the assumption
on Ψ and the fact that Φ : Σ−1[{α}] → Ψ−1[{α}] is an injection. Thus Σ witnesses that η + 1 violates the
minimality of δ. This contradiction implies that P has no homogeneous club. This contradicts κ →∗ (κ)κ2 .
This completes the proof. □

Fact 2.16. If κ is a cardinal satisfying κ→∗ (κ)κ2 , then |[κ]<κ| < |P(κ)|.
Proof. Suppose Φ : P(κ) → [κ]<κ. Let Ψ : P(κ) → κ be defined by Ψ(X) = dom(Φ(f)). By Fact 2.15, there
is an ϵ < κ so that |Ψ−1[{ϵ}]| = |P(κ)|. Let Σ : P(κ) → Ψ−1[{ϵ}] be an injection. Then Φ◦Σ : P(κ) → [κ]ϵ

is an injection. Since |[κ]<κ| ≤ |P(κ)|, this implies there is an injection Λ : [κ]<κ → [κ]ϵ which contradicts
Fact 2.12. □

Theorem 2.17. Suppose κ is a cardinal satisfying κ →∗ (κ)κ2 . Let ⟨Yα : α < κ⟩ be a sequence of sets. If
|P(κ)| ≤ |

⋃
λ<κ

∏
α<λ Yα|, then there is λ̄ < κ so that |[κ]ω| ≤ |Yλ̄|.

Proof. Let Γ : P(κ) →
⋃

λ<κ

∏
α<λ Yα be an injection. Let Ψ : P(κ) → κ be defined by Ψ(A) = dom(Γ(A)).

(Note that Γ(A) ∈
⋃

λ<κ

∏
α<λ Yα implies that Γ(A) is a function on some λ < κ and thus Ψ(A) is this λ.)

By Fact 2.15, there is a λ < κ so that |Ψ−1[{λ}]| = |P(κ)|. Let Σ : P(κ) → Ψ−1[{λ}] be an injection.
Since |[κ]<κ| < |P(κ)|, let Π : [κ]<κ → P(κ) be an injection. Let Φ : [κ]<κ →

∏
α<λ Yα be defined by

Φ = Γ ◦ Σ ◦Π. Since Φ is an injection, there is some λ̄ < κ so that |[κ]ω| ≤ |Yλ̄| by Theorem 2.11. □

Corollary 2.18. Let κ be a cardinal satisfying κ →∗ (κ)κ2 and Y be a set. If |P(κ)| ≤ |<κY |, then
|[κ]ω| < |Y |.
Proof. Let Φ : P(κ) → <κY be an injection. For each α < κ, let Yα = Y . By applying Theorem 2.17 to
⟨Yα : α < κ⟩, |[κ]ω| ≤ |Y |. Now suppose |[κ]ω| = |Y |. Let Σ : Y → [κ]ω be an injection. Define Π : <κY →
<κκ as follows: If f ∈ λY for some λ < κ, then Π(f) ∈ ω·λκ is defined by Π(f)(ω · δ + n) = Σ(f(δ))(n) for
all δ < κ and n ∈ ω. Π is an injection. Then Π ◦ Φ : P(κ) → <κκ is an injection which violates Fact 2.16.
This shows that |[κ]ω| < |Y |. □

3. Wellordered Power Set Operation

To study the wellordered power set operation, some results concerning determinacy in the presence of
∞-Borel codes will be necessary. Below the two relevant facts will be summarized. See [4] or [18] for more
information about ∞-Borel codes.

Definition 3.1. A pair (S, φ) is an ∞-Borel code if and only if S is a set of ordinal and φ is a formula of
set theory. A set A ⊆ R is ∞-Borel if and only if there is an ∞-Borel code (S, φ) so that A = {x ∈ R :
L[S, x] |= φ(S, x)}.

The following result states that if AD and DCR holds and J is a set of ordinals, then there is a uniform

procedure which translate an OD
L(J,R)
{J,z} definition for a set of reals to an OD

L(J,R)
{J,z} ∞-Borel code for that set

of reals. This is done using Woodin’s result that models of the form L(J,R) |= AD + DC is a “symmetric

collapse extension” of HOD
L(J,R)
{J} when J is a set of ordinals. In particular, truth in L(J,R) can be captured

by a suitable remainder forcing of the ω-direct limit of the OD{J} ∞-Borel code forcing on the various Rn.
See [2] and [4] for the details concerning this forcing and these results in the model L(R).

Fact 3.2. (Woodin) Assume AD and DCR. There is a function Ξ so that for all formula ϕ of set theory,
sets of ordinals J , z ∈ R, and finite sequences of ordinals α⃗, Ξ(ϕ, J, z, α⃗) is an ∞-Borel code for the set
A = {x ∈ R : L(J,R) |= ϕ(x, J, z, α⃗)}. (Moreover, the definition of Ξ(ϕ, J, z, α⃗) is absolute into L(J,R) and
thus Ξ(ϕ, J, z, α⃗) ∈ L(J,R).)

Proof. This is shown for L(R) in [4] Theorem 7.19. The same argument works for L(J,R) after suitable
relativization. Moreover, the proof provides a uniform manner of obtaining such ∞-Borel code from ϕ, J ,
z, and α⃗. Also [2] provides a proof in full generality. □
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Fact 3.3. (Woodin Perfect Set Dichotomy; [4] Theorem 8.5) Assume AD and DCR. Let E be an equivalence
relation with ∞-Borel code (S, φ). Then exactly one of the following holds.

(1) R/E ⊆ OD
L(S,R)
{S} and hence R/E has an OD

L(S,R)
{S} wellordering (which is obtained uniformly from

(S, φ)).
(2) |R| ≤ |R/E| (there is an injection of R into R/E).

Proof. The definability of the wellordering in the first case can be seen by the inspecting the argument
corresponding to the first case. See the proof of this result as presented in [6] Theorem 3.2 which states this
more explicitly. □

Definition 3.4. Let X be a set. Let PWO(X) be the collection of all sets A ⊆ X so that A is well orderable.
If κ is a cardinal, let Pκ(X) be the collection of all A ⊆ X so that |A| < κ (that is, A injects into κ but κ
does not inject into A). Note that for all cardinals κ, Pκ(X) ⊆ PWO(X).

If δ ∈ ON, then let I<δ(X) be the set of all injective functions f : ϵ → X with ϵ < δ. Let I<ON(X)
be the set of all injective functions f : ϵ → X for some ordinal ϵ. (By the axiom of replacement, there is
a cardinal κ so that I<κ(X) = I<ON(X).) Let r : I<ON(X) → PWO(X) be defined by r(f) = f [dom(f)].
r : I<ON(X) → PWO(X) is a surjection. For any cardinal κ, the restriction of r to I<κ(X) is a surjection of
the form r : I<κ(X) → Pκ(X).

Theorem 3.5. Assume AD, DCR, and all sets of reals have an ∞-Borel code. Let κ < Θ and Y be a surjective
image of R. Let Φ : P(κ) → PWO(Y ). Let r : I<ON(Y ) → PWO(X) be defined by r(f) = f [dom(f)]. Then

there is a function Φ̃ : P(κ) → I<ON(Y ) such that Φ = r ◦ Φ̃.

Proof. Since κ < Θ, let ϕ : R → κ be a surjection. Define a prewellordering ⪯ on R by x ⪯ y if and only
if ϕ(x) ≤ ϕ(y). Let rk⪯(x) be the rank of x in the prewellordering ⪯ and note that rk⪯ = ϕ. Let Γ be
any nonselfdual pointclass closed under ∧, ∃R, and contains ⪯ (for example, the pointclass Σ1

1(⪯) frequently
used for the Moschovakis coding lemma). Let U ⊆ R× R× R be a set in Γ and universal for subsets of R2

in Γ (which exists by an application of the Wadge lemma). Let 0̄ ∈ R be the constant 0 function. For each
e ∈ R, let Ce = {α ∈ κ : (∃x)(rk⪯(x) = α ∧ U(e, x, 0̄))}. For each A ⊆ κ, let TA ⊆ R × R be defined by
TA(x, y) if and only if rk⪯(x) ∈ A ∧ y = 0̄. By the Moschovakis coding lemma, there is an V ⊆ R2 with

V ∈ Γ such that V ⊆ TA and for all α < κ, TA ∩ (rk−1
⪯ [{α}]×R) ̸= ∅ if and only if V ∩ (rk−1

⪯ [{α}]×R) ̸= ∅.
Since U is universal for subsets of R2 in Γ, there is an e ∈ R so that V = Ue = {(x, y) : U(e, x, y)}. Then
Ce = A. Thus the map e 7→ Ce is a surjection of R onto P(κ) via the explicit coding procedure described
above using ⪯ and the universal set U . Note that this coding is absolute to any inner model M containing
all the reals, ⪯, and U . This implies that P(κ) = P(κ) ∩M .

Since Y is a surjective image of R, let π : R → Y be a surjection. Define an equivalence relation E on
R by x E y if and only if π(x) = π(y). Thus there is a bijection Υ : R/E → Y . Define R ⊆ P(κ) × R by
R(A, z) if and only if Υ([z]E) ∈ Φ(A). Note that for all A ∈ P(κ), RA = {z ∈ R : R(A, z)} =

⋃
Υ−1[Φ(A)]

and Υ : RA/E → Φ(A) is a bijection. Define R̂ ⊆ R× R by R̂(e, z) if and only if R(Ce, z).
Since all sets of reals have ∞-Borel codes, let (S0, φ

′
0), (S1, φ

′
1), (S2, φ

′
2), and (S3, φ

′
3) be ∞-Borel codes

for ⪯, U , E, and R̂, respectively. For notational simplicity, merge all four sets of ordinals S0, S1, S2, and S3

into a single set of ordinals T in some simple manner. Then one can find four formulas φ0, φ1, φ2, and φ3

so that (T, φ0), (T, φ1), (T, φ2), and (T, φ3) are ∞-Borel codes for ⪯, U , E, and R̂, respectively.

Thus ⪯, U,E, R̂ ∈ L(T,R). By the discussion above, P(κ) ⊆ L(T,R). Thus R ∈ L(T,R) since within

L(T,R), one can define R(A, z) if and only if there exists an e ∈ R so that R̂(e, z) and Ce = A. Moreover

using the ∞-Borel code (T, φ0), (T, φ1), (T, φ2), and (T, φ3), the above shows that R is OD
L(T,R)
{T} . Let

A ∈ P(κ). Define EA ⊆ R× R by x EA y if and only if x E y ∧ R(A, x) ∧ R(A, y) which is an equivalence

relation on RA = {x : R(A, x)}. Note that EA and RA are OD
L(T,R)
{T,A} . Since T and A can be merged

into a single set of ordinals and EA is OD
L(T,R)
{T,A} , Fact 3.2 implies there is ∞-Borel code for EA which is

OD
L(T,R)
{T,A} . Let (SA, φA) be the least such ∞-Borel according to the canonical ordering of OD

L(T,R)
{T,A} (or let it

be the ∞-Borel code obtained by the uniform procedure of Fact 3.2). Since RA/EA = RA/E is in bijection

with Φ(A), RA/EA is wellorderable. Thus by Fact 3.3, R/E has an OD
L(T,R)
{T,A} wellordering. Let ⊏A be
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the OD
L(T,R)
{T,A} -least such wellordering (or more explicitly, the wellordering uniformly defined from (SA, φA)

as in the proof of Fact 3.3 found in [4]). Let ψA : ot(⊏A) → RA/EA be the canonical order preserving

enumeration of RA/EA via ⊏A. Let Φ̃(A) = Υ ◦ ψA. Thus Φ̃ : P(κ) → I<ON(Y ). Since for A ∈ P(κ),

Υ : RA/EA → Φ(A) is a bijection, r(Φ̃(A)) = Φ(A). Thus r ◦ Φ̃ = Φ. □

In other words, Theorem 3.5 states that for all Φ : P(κ) → PWO(Y ), there is a function Φ̃ : P(κ) →
I<ON(Y ) so that Φ̃(A) is an wellordered enumeration of Φ(A) for any A ∈ P(κ). Note that there is no map
Γ : PWO(Y ) → I<ON(Y ) which assigns a wellorderable B ⊆ Y to a wellordered enumerate Γ(B) of B. In
fact, there is in general no injection of PWO(Y ) into I<ON(Y ). For example, let Y = R. Let E0 be the
equivalence relation on ω2 defined by x E0 y if and only if there exists an m ∈ ω so that for all n ≥ m,
x(n) = y(n). If ACR

ω holds and all subsets of R have the property of Baire, then R/E0 is not linear orderable.
R/E0 injects into Pω1

(R) by the inclusion map since E0 is an equivalence relation with all countable classes.
Thus Pω1(R) is not linear orderable. However I<ω1(R) is linearly orderable by the lexicographic ordering.
(Also one can inject I<ω1(R) into P(ω1) and use the lexicographic ordering on P(ω1).) This shows that
Pω1

(R) does not inject into I<ω1
(R). One can show |I<ω1

(R)| < |Pω1
(R)|.

Theorem 3.6. Assume AD, DCR, and all sets of reals have an ∞-Borel code. Let κ < Θ satisfies κ→∗ (κ)κ2 .
Let Y be a surjective image of R. If |P(κ)| ≤ |Pκ(Y )|, then |[κ]ω| < |Y |.

Proof. Let Φ : P(κ) → Pκ(Y ) be an injection. By Theorem 3.5, there is a Φ̃ : P(κ) → I<ON(Y ) so that

Φ = r ◦ Φ̃. Since Φ is injective, this implies that Φ̃ must be injective. For all A ∈ P(κ), Φ(A) = r(Φ̃(A)) =

Φ̃[dom(Φ̃(A))] implies that Φ̃(A) is a wellordered injective enumeration of Φ(A). Since Φ(A) ∈ Pκ(Y ),

Φ̃(A) ∈ I<κ(Y ) and thus Φ̃ : P(κ) → I<κ(Y ). Since I<κ(Y ) ⊆ <κY , Φ̃ may be regarded as an injective

function Φ̃ : P(κ) → <κY . Then |[κ]ω| < |Y | by Corollary 2.18. □
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