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Abstract

We work under AD+. The main result of this paper is that assuming
ADR, for every κ < Θ, letting X = P(κ), every A ⊆ X has an ∞-Borel
code; furthermore, if V = L(P(R)) holds and κ < Θ, every OD set A ⊆ X
has anOD ∞-Borel code. These results led us to the formulation of AD++,
which is the theory “AD+ + “for every κ < Θ, for every A ⊆ P(κ), A has
an ∞-Borel code”. It is not known whether AD+ implies AD++. AD++

has structural consequences that are not known to follow from AD+. One
such instance is the ABCD Conjecture.

1 Introduction

This paper deals with the topic of ∞-Borel codes, which are generalizations of
Borel codes for Borel sets. Borel codes are reals that canonically code a Borel
set of reals. ∞-Borel codes are sets of ordinals that canonically code (often
times) much more complicated sets of reals or elements of the space λκ for some
ordinals κ, λ. ZFC implies that every set of reals is Suslin and therefore, has
an ∞-Borel code; however, it is not known that the theory ZF+ AD implies
this. The axiom AD+, due to W. H. Woodin, is a strengthening of AD. Part of
AD+ stipulates that every set of reals has an ∞-Borel code. It is not known AD
implies AD+, but every known model of AD satisfies AD+.

∞-Borel codes have a number of applications within the general AD+ theory.
For example, under ZF, suppose there are no uncountable sequences of distinct
reals and every subset of P(ω) has an ∞-Borel code, then every set of reals has
the Ramsey property. In particular, AD+ implies this regularity property for
sets of reals. It is not known if AD implies this.

This paper gives partial answers to the following two questions about ∞-
Borel codes under AD+.

(i) Given a set A, can one construct an ∞-Borel code that is relatively simple
(in definability) compared to the complexity of A?
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(ii) For a cardinal κ > ω, are subsets of P(κ) ∞-Borel?

Regarding (i), Woodin has shown the following unpublished theorem, con-
cerning the definability of ∞-Borel codes under AD+.

Theorem 1.1 (Woodin). Assume AD++V = L(P(R)). Suppose X = P(ω) or
ωω and A ⊆ X is OD. Then A has an OD ∞-Borel code. Suppose furthermore
that V = L(S,R) for some set S ⊂ ON , then every OD(S) A ⊆ X has an
OD(S) ∞-Borel code.

Remark 1.2. The proof of the ”futhermore” clause of Theorem 1.1 can be easily
adapted from a proof of a special case when V = L(R) given in [Cha19] or the
proof of the first part of the theorem. The main challenge is the proof of the
first part of the theorem.

In [IT18, Therem 5], Ikegami and the third author prove the following the-
orem.1 We will outline a proof here. In the following, Θ is the supremum of
ordinals α such that there is a surjection from R onto α and θ0 is the supremum
of ordinals α such that there is an OD surjection from R onto α

Theorem 1.3. Assume AD+. Suppose κ < Θ, X = ωκ and A ⊆ X, then A
has an ∞-Borel code. Additionally, suppose V = L(P(R)) and either Θ = θ0 or
ADR, then for any set of ordinals S, for every OD(S) A ⊆ X, A has an OD(S)
∞-Borel code.

The above theorems have the following corollary.

Corollary 1.4. 1. (Woodin) Assume AD++V = L(P(R)). Then for any
x ∈ ωω, HODx = HOD[x]. Furthermore, suppose for some set of ordinals
S, V = L(S,R), then for any such x, HODS,x = HODS [x].

2. Assume AD++V = L(P(R)). Additionally, assume either Θ = θ0 or
ADR, then for any set of ordinals S, for any κ < Θ, for any x ∈ κω,
HODS,x = HODS [x].

The proof of Corollary 1.4 gives a bit more than what’s stated. See Re-
mark 5.6. We will prove these theorems and use them to prove the following
improvement. Theorem 1.5, partially answers (ii), is the main theorem of the
paper.

Theorem 1.5. Assume AD+ and ω1 is R-supercompact. Suppose κ < Θ,
X = P(κ) and A ⊆ X, then A has an ∞-Borel code. Furthermore, assume
additionally V = L(P(R)) |= ADR, suppose A ⊆ X is ODS for some set of
ordinals S, then A has an OD(S) ∞-Borel codes.

Theorem 1.5 has the following corollary.

1The authors of [IT18] did not state the theorem this way. Furthermore, to prove the first
clause of [IT18, Therem 5], one does not need the supercompactness of ω1, strong compactness
suffices.
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Corollary 1.6. Assume AD+ + ADR+V = L(P(R)). For any set of ordinals
S, for any κ < Θ, for any x ⊆ κ, HODS,x = HODS [x].

It is known that Woodin’s theorem (Theorem 1.1) cannot be extended be-
yond ω in the situation where ADR fails. Woodin (unpublished) shows that if
AD++¬ADR+V = L(P(R)) holds , then there is an uncountable κ (e.g. κ = ω1)
and a t ⊆ κ such that HODt ̸= HOD[t]. Inspecting the proof of Corollary 1.6,
one sees that this implies there is an OD set A ⊆ P(κ) that has no OD ∞-Borel
codes.

[CJ] also used Theorem 1.1 to prove an analog of a result of Harrington-
Slaman-Shore [HSS17] concerning the pointclass Σ1

1: Assuming AD+ and V =
L(P(R)), if H ⊆ R has the property that there is a nonempty OD set K ⊆ R
so that H is ODz for all z ∈ K, then H is OD.

We propose the following principle that strengthens AD+.

Definition 1.1 (AD++). AD++ is the theory AD+ + “for every κ < Θ, for
every A ⊆ P(κ), A has an ∞-Borel code”.

Theorem 1.5 shows that AD+ + ADR implies AD++. In general, it is not
known that AD+ implies AD++. AD++ seems to yield structural properties not
known to follow from AD+.

One such type of structural properties concerns distinguishing cardinalities
of infinite sets under AD+. This is a fundamental problem in set theory. Let
X,Y be two sets. Cantor’s original formulation of cardinalities states that X,Y
have the same cardinality (denoted |X| = |Y |) if and only if there is a bijection
f : X → Y . |X| ≤ |Y | if and only if there is an injection of X into Y . And
|X| < |Y | if and only if |X| ≤ |Y | but ¬(|Y | ≤ |X|). The Axiom of Choice
(AC) implies that every set is well orderable, and hence the class of cardinalities
forms a wellordered class under the injection relation. Under AD, the class
of cardinalities is not wellorderable; in fact, ¬(|R ≤ |ω1|) and ¬(|ω1| ≤ |R|).
The following conjecture gives a sufficient and necessary condition for when the
cardinalities of two sets of the form αβ , γδ for infinite cardinals α, β, γ, δ are
comparable.

Conjecture 1.7 (The ABCD Conjecture). Assume ZF. Let α, β, γ, δ < Θ be
infinite cardinals. Suppose β ≤ α, δ ≤ γ. Then

|αβ | ≤ |γδ| if and only if β ≤ δ and α ≤ γ.

Some remarks are in order about the conjecture. First, the conjecture implies
in particular that if δ < β or if γ < α, then αβ cannot inject into γδ. One
easily sees that ZFC implies the failure of the ABCD Conjecture; one can see
that by, for instance, noticing that ZFC implies |ωω| ≥ |ωω

1 |2; in this case,
γ = ω < α = ω1, yet ω

ω
1 injects into ωω. The conjecture deals with the case

β ≤ α, δ ≤ γ being infinite cardinals, but the other cases either have been known
to follow from AD+ or can simply be reduced to the cases the conjecture deals

2If ZFC holds, Θ is the successor of the continuum and ω1 < Θ.
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with. For instance, if β > α and δ > γ, then |αβ | = |P(β)| and |γδ| = |P(δ)|.
AD+ implies that |P(β)| ≤ |P(δ)| if and only if β ≤ δ < Θ. If β > α and δ ≤ γ,
then we really compare |ββ | and |γδ|. It is important here that the cardinals
in the conjecture are infinite and are < Θ. For instance, when β = 1, α is an
infinite cardinal > γ ≥ δ, then |αβ | = |α| and AD+ implies that α cannot inject
into P(γ) and therefore cannot inject into γδ if α < Θ. On the other hand,
α = 3 can inject into P(γ) for γ = 2, or for example, α = γ+ and γ ≥ Θ, then α
does inject into P(γ) if AD++V = L(P(R)) holds. Also, if AD++V = L(P(R))
holds, it is easy to see that (Θ+)ω injects into ΘΘ; this shows the failure of the
conjecture for α = Θ+, β = ω, δ = γ = Θ.

The first author has recently shown that AD++ implies the ABCD Conjec-
ture. This result will appear in an upcoming paper. The result of this paper and
the first author’s aforementioned work show that the ABCD Conjecture is a
consequence of AD++ADR. It is not known that AD+ implies the ABCD Con-
jecture, though many specific instances of this conjecture have been established.
See for example [CJT24, CJT22, CJT23, Woo06].

In Section 2, we review basic facts about AD+ and∞-Borel codes. In Section
3, we review homogeneous and weakly homogeneous sets in AD+. In Section 4,
we review Vopěnka algebras, which is a key tool in producing ∞-Borel codes in
the AD+ context. We prove 1.1–1.6 in Section 5. Some conjectures and open
questions are presented in Section 6.

The first author is partially supported by NSF grants DMS-1945592 and
DMS-1800323 and FWF grants I6087 and Y1498. The second author is partially
supported by NSF grant DMS-1800323. The third author is partially supported
by NSF grant DMS-1945592.

2 AD+ and ∞-Borel codes

We now review basic notions on determinacy axioms. For a nonempty set X,
the Axiom of Determinacy in Xω (ADX) states that for any subset A of
Xω, in the Gale-Stewart game with the payoff set A, one of the players must
have a winning strategy. We write AD for ADω. The ordinal Θ is defined as the
supremum of ordinals which are surjective images of R. Under ZF+AD, Θ is
very big, e.g., it is a limit of measurable cardinals while under ZFC, Θ is equal
to the successor cardinal of the continuum |R|. Ordinal Determinacy states
that for any λ < Θ, any continuous function π : λω → ωω, and any A ⊆ ωω,
in the Gale-Stewart game with the payoff set π−1(A), one of the players must
have a winning strategy. In particular, Ordinal Determinacy implies AD while
it is still open whether the converse holds under ZF+DC.

For λ < Θ, we write Pλ(R) for the set of A ⊆ R such that the Wadge rank
of A is < λ. For any set X, we write ℘ω1(X) for the set of countable subsets of
X. We write D for the set of Turing degrees. For x, y ∈ ωω, we write x ≤T y,
x ≡T y for x is Turing reducible to y and x is Turing equivalent to y respectively.
A Turing degree has the form [x]T = {y ∈ ωω : x ≡T y}.

We will introduce the notion of ∞-Borel codes. Before that, we review some
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terminology on trees. Given a set X, a tree on X is a collection of finite
sequences of elements of X closed under initial segments. Given an element t
of X<ω, lh(t) denotes its length, i.e., the domain or the cardinality of t. Given
a tree T on X and elements s and t of T , s is an immediate successor of t
in T if s is an extension of t and lh(s) = lh(t) + 1. Given a tree T on X and
an element t of T , SuccT (t) denotes the collection of all immediate successors
of t in T . An element t of a tree T on X is terminal if SuccT (t) = ∅. For
an element t of a tree T on X, term(T ) denotes the collection of all terminal
elements of T . Given a tree T on X, [T ] denotes the collection of all x ∈ Xω

such that for all natural numbers n, x ↾ n is in T . A tree T on X is well-
founded if [T ] = ∅. We often identify a tree T on X × Y with a subset of the
set {(s, t) ∈ X<ω × Y <ω | lh(s) = lh(t)}, and p[T ] denotes the collection of all
x ∈ Xω such that there is a y ∈ Y ω with (x, y) ∈ [T ].

Definition 2.1. Let λ, κ be non-zero ordinals.

1. An ∞-Borel code in λκ is a pair (T, ρ) where T is a well-founded tree
on some ordinal γ, and ρ is a function from term(T ) to κ× λ.

2. Given an ∞-Borel code c = (T, ρ) in λκ, to each element t of T , we assign
a subset Bc,t of λκ by induction on t using the well-foundedness of the
tree T as follows:

(a) If t is a terminal element of T , let Bc,t be the basic open set Oρ(t) in
λκ. Here ρ(t) is a pair of ordinals (α, β) ∈ κ × λ and Oρ(t) has the
form {f ∈ λκ : ρ(t) ∈ f}.

(b) If SuccT (t) is a singleton of the form {s}, let Bc,t be the complement
of Bc,s in the space λκ.

(c) If SuccT (t) has more than one element, then let Bc,t be the union of
all sets of the form Bc,s where s is in SuccT (t).

We write Bc for Bc,∅.

3. A subset A of λκ is ∞-Borel if there is an ∞-Borel code c in λκ such that
A = Bc.

We will identify P(λ) with 2λ. So an ∞-Borel code for A ⊆ P(λ) is an
∞-Borel code for a subset of 2λ. We can generalize the above definitions of ∞-
Borel codes in a number of ways. One way is we can replace λ in Definition 2.1
by a set of ordinals S. The definition of an ∞-Borel code for a set A ∈ P(Sκ)
is modified in an obvious way from Definition 2.1. We can also generalize the
definition of ∞-Borel codes in λκ1

1 ×· · ·×λκn
n for some n ∈ ω (with the product

topology) in an obvious way. We leave the details to the reader.
We will also use the following characterization of ∞-Borelness:

Fact 2.1. Let λ, κ be a non-zero ordinals and A be a subset of λκ. Then the
following are equivalent:

1. A is ∞-Borel, and
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2. for some formula ϕ and some set S of ordinals, for all elements x of λκ,
x is in A if and only if L[S, x] ⊨ “ϕ(S, x)”.

Proof. For the case λ = 2, one can refer to [Lar, Theorem 8.7]. The general
case can be proved in the same way.

Remark 2.2. In fact, the second item of Fact 2.1 is equivalent to the following
using Lévy’s Reflection Principle:

� for some γ > λ, κ, some formula ϕ, and some set S of ordinals, for all
elements x of λκ, x is in A if and only if Lγ [S, x] ⊨ “ϕ(S, x)”.

Throughout this paper, we will freely use either of the equivalent conditions
of ∞-Borelness.

We now introduce the axiom AD+, and review some notions on Suslin sets.
The axiom AD+ states that (a) DCR holds, (b) Ordinal Determinacy holds, and
(c) every subset of ωω is ∞-Borel. A subset A of ωω is Suslin if there are
some ordinal λ and a tree T on ω×λ such that A = p[T ]. A is co-Suslin if the
complement of A is Suslin. An infinite cardinal λ is a Suslin cardinal if there is
a subset A of ωω such that there is a tree on ω×λ such that A = p[T ] while there
are no γ < λ and a tree S on ω×λ such that A = p[S]. Under ZF+DCR, AD

+ is
equivalent to the assertion that Suslin cardinals are closed below Θ in the order
topology of (Θ, <). Another equivalence that is often useful in applications is
the statement that AD + V = L(P(R)) holds and every Σ1 statement with
Suslin co-Suslin sets as parameters true in V is true in a transitive model M
of ZF− + DCR coded by a Suslin co-Suslin set of reals A. We call this Σ1-
reflection into the Suslin co-Suslin sets (or sometimes just Σ1-reflection).
Another form of Σ1-reflection that is also useful is Σ1-reflection into the ∆2

1˜sets, which says that AD+ V = L(P(R)) holds and every Σ1 statement with
∆2

1˜ sets as parameters true in V is true in a transitive model M of ZF− + DCR

coded by a ∆2
1˜ set of reals A.

The sequence (θα : α ≤ Ω) is called the Solovay sequence and is defined
as follows. θ0 is the supremum of ordinals α such that there is an OD surjection
π : R → α. For limit α ≤ Ω, θα = supβ<αθβ . Suppose θα has been defined for
α < Ω, letting A ⊆ R be of Wadge rank θα, θα+1 is the supremum of α such
that there is an OD(A) surjection π : R → α. Θ = θΩ.

The following fundamental facts about AD+ are due to Woodin.

Theorem 2.3 (Woodin). Assume AD++V = L(P(R)). The following hold.

1. V = L(J,R) for some set of ordinals J if and only if ADR fails.

2. For any real x, HODx = L[Z] for some Z ⊆ Θ.

We will not prove Theorem 2.3. Instead, we will discuss some key ingredients
that go into the proof. The proof of part (2) can be found in [Tra14b]. The
set Z basically codes a Vopěnka algebra, to be discussed in the next section.
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For part (1), let κ be the largest Suslin cardinal and S(κ) be the class of all
κ-Suslin sets. If ADR fails, κ < Θ. In that case, let T be a tree projecting to a
universal κ-Suslin set and define the equivalence relation ≡T on R as: x ≡T y
iff L[T, x] = L[T, y]. We also define x ≤T y iff x ∈ L[T, y]. The measure µT on
R/ ≡T is defined as: A ∈ µT iff ∃x {y : x ≤T y} ⊆ A. µT is non-principal and
countably complete. Let J = [x 7→ T ]µT

. One can show V = L(J,R).
We end this section by proving a basic fact concerning supercompact mea-

sures on ℘ω1
(X) for some set X. Assume AD++ADR. Let X be a set such that

there is a surjection π : R → X. Let µ be the Solovay measure. By a theorem of
Solovay, cf. [Sol06], ADR implies µ exists and is the club filter on ℘ω1

(R). Let
µX be the measure on ℘ω1

(X) induced by µ and π. This means µX is defined
as: for any A ⊆ ℘ω1(X),

A ∈ µX ⇔ π−1[A] ∈ µ.

By a theorem of Woodin (cf. [Woo83]), µX is the unique normal, fine, countably
complete measure on ℘ω1

(X). In fact, µX is just the club filter on ℘ω1
(X).

Fact 2.4. Assume V = L(P(R)) + AD+ + ADR. The ultrapower Ult(V, µX) is
well-founded.

Proof. Suppose not. By Σ1-reflection, there is a transitive model N of the form
Lα(Pβ(R)) for α, β < Θ that satisfies ZF− + ADR, R ∪ ℘ω1

(X) ⊂ N , and N |=
“the ultrapower M = Ult(V, µX) is ill-founded”. Now since µX is the club
measure on ℘ω1

(X),
µN
X = µX ∩N.

Since DCR holds and that there is a surjection from R onto N , we can find a
sequence (fn : n < ω) such that ([fn]µ∩N : n < ω) witnesses the ill-foundedness
of the ultraproduct in N . Let An = {σ : fn+1(σ) ∈ fn(σ)} for each n. Then
An ∈ µ ∩ N for each n. By countable completeness of µ,

⋂
nAn ̸= ∅. Let

σ ∈
⋂

nAn. Then the sequence (fn(σ) : n < ω) is a ϵ-descending sequence.
Contradiction.

3 Homogeneously Suslin sets and applications

We summarize basic facts about (weakly) homogeneously Suslin sets. For a
more detailed discussion, the reader should consult for example [Ste09]. Recall
we identify the set of reals R with the Baire space ωω.

Given an uncountable cardinal κ, and a set Z, measκ(Z) denotes the set of
all κ-additive measures on Z<ω. If µ ∈ measκ(Z), then there is a unique n < ω
such that Zn ∈ µ by κ-additivity; we let this n = dim(µ). If µ, ν ∈ measκ(Z),
we say that µ projects to ν if dim(ν) = m ≤ dim(µ) = n and for all A ⊆ Zm,

A ∈ ν ⇔ {u : u ↾ m ∈ A} ∈ µ.

For each µ ∈ measκ(Z), let jµ : V → Ult(V, µ) be the canonical ultrapower
map by µ. In this case, there is a natural embedding from the ultrapower of V
by ν into the ultrapower of V by µ:
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πν,µ : Ult(V, ν) → Ult(V, µ)

defined by πν,µ([f ]ν) = [f∗]µ where f∗(u) = f(u ↾ m) for all u ∈ Zn. A tower
of measures on Z is a sequence ⟨µn : n < k⟩ for some k ≤ ω such that for all
m ≤ n < k, dim(µn) = n and µn projects to µm. A tower ⟨µn : n < ω⟩ is
countably complete if the direct limit of {Ult(V, µn), πµm,µn

: m ≤ n < ω} is
well-founded. We will also say that the tower ⟨µn : n < ω⟩ is well-founded.

Definition 3.1. Given a tree T on ω × κ, a homogeneity system for T is a
system ⟨µs : s ∈ ω<ω⟩ of countably complete measures on κ<ω such that for all
s, t ∈ ω<ω and x ∈ ωω, the following hold:

� µs(Ts) = 1, here Ts = {t ∈ κ|s| : (s, t) ∈ T},

� s ⊆ t⇒ µt projects to µs, and

� x ∈ p[T ] ⇒ ⟨µx↾n : n < ω⟩ is wellfounded.

If such a system exists for T , we say that T is homogeneous.
A = p[T ] is κ-homogeneous if the measures ⟨µs : s ∈ ω<ω⟩ are κ-complete.

A is < γ-homogeneous if it is κ-homogeneous for all κ < γ.

Definition 3.2. The tree T on ω×κ isweakly homogeneous if there is a weak
homogeneity system µ̄ associated with T , i.e. there is a system ⟨Ms : s ∈ ω<ω⟩
such that the following hold:

� for each s, Ms is a countable set of countably complete measures on κ<ω

such that for each µ ∈Ms, µ(Ts) = 1, and

� x ∈ p[T ] ⇒ there is a wellfounded tower ⟨µn : n < ω⟩ such that ∀n µn ∈
Mx↾n.

A = p[T ] ⊆ R is κ-weakly homogeneous iff the measures in the weak
homogeneity system µ̄ associated with T are κ-complete. A is < γ-weakly
homogeneous if it is κ-weakly homogeneous for all κ < γ.

Here are some facts about homogeneous sets and weakly homogeneous sets
under AD and AD+. Part (iii) of the theorem is an improvement of part (ii).
We will only need part (i) of the theorem in this paper; but we state parts (ii)
and (iii) for completeness.

Theorem 3.1. (i) (Martin, [MS08]) Assume AD and suppose A ⊆ R is
Suslin co-Suslin, then A is < Θ-homogeneously Suslin.

(ii) (Martin-Woodin, [MW08]) Assume ADR. Then every tree is < Θ-weakly
homogeneous.

(iii) (Woodin, [Lar23]) Assume AD+. Then every tree T on ω × κ for κ less
than the largest Suslin cardinal is < Θ-weakly homogeneous and hence
every Suslin co-Suslin set of reals is < Θ-weakly homogeneous.
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Theorem 3.1 allows us to prove the following facts.

Lemma 3.2. Assume ZF + AD++V = L(P(R)). Then for any set C of reals
that is Suslin co-Suslin, there is an s ∈

⋃
γ<Θ γ

ω such that C is OD from s and
that C is in HOD{s}(R). If in addition ADR holds, then any set of reals C is
OD from some s ∈

⋃
γ<Θ γ

ω and that C ∈ HOD{s}(R).

Proof. See [IT23, Lemma 2.11].

We also have the following variation, in fact a refinement, of the above lemma
that will be useful in Section 5.

Lemma 3.3. Assume ZF+AD++V = L(P(R)). Let C = HOD(
⋃

γ<Θ γ
ω). Let

A be Suslin co-Suslin, then A ∈ C.

Proof. Let A be Suslin co-Suslin. By Theorem 3.1, A = p[T ] where T is ho-
mogeneously Suslin witnessed by the sequence (µu | u ∈ ω<ω) of measures on
κ<ω for some κ < Θ. By a theorem of Kunen, all countably complete measures
on κ<ω are OD; in fact, there is an OD injection f : measω1(κ

<ω) → ON .
We let s ∈ ONω enumerate the parameters defining (µu | u ∈ ω<ω), that is
s = f [{µu : u ∈ ω<ω}]. Now the set

R = {(u, α, β) : u ∈ ω<ω ∧ jµu
(α) = β}

is well-orderable, and R ∈ HOD[s]. Now we can compute the Martin-Solovay
tree T ′ of T inside of HOD[s] using R, where

(t, α⃗) ∈ T ′ ⇔ ∀i < |t| jµt↾i+1(α⃗(i)) > α⃗(i+ 1).

Now for any x ∈ R,

x /∈ A⇔ x ∈ p[T ′] ⇔ the tower (µx↾n : n < ω) is ill-founded.

The illfoundedness of the tower (µx↾n : n < ω) can be computed in HOD[s][x]
using T ′, R. So HOD[s][x] can decide whether x /∈ A, equivalently whether
x ∈ A.

The above sketch shows that A,¬A ∈ HOD[s](R) and hence A ∈ C.

4 Vopěnka algebras

We next introduce Vopěnka algebras and their variants we will use in this paper.
In this section, all definitions assume the hypothesis AD++ V = L(P(R)). The
results of this section are all essentially due to W. H. Woodin. Recall the
definition of forcing projection maps σ : Q → P between posets Q and P as
defined in [Cha19, Section 7]. As a matter of notation, we write 1P for the
weakest condition in P.

Definition 4.1. Let γ be a non-zero ordinal < Θ and T be a set of ordinals.
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1. Let n be a natural number with n ≥ 1 and OT
γ,n be the collection of all

nonempty subsets of (γω)n which are OD from T . Fix a bijection πn : η →
OT

γ,n which is OD from T , where η is some ordinal. Let QT
γ,n be the poset

on η such that for each p, q in QT
γ,n, we have p ≤ q if πn(p) ⊆ πn(q). We

call QT
γ,n theVopěnka algebra for adding an element of (γω)n in HOD{T}.

2. For all natural numbers ℓ and m with 1 ≤ ℓ ≤ m, let σm,ℓ : QT
γ,m →

QT
γ,ℓ be the natural map induced from πℓ and πm, i.e., for all p ∈ QT

γ,m,

πl
(
σm,ℓ(p)

)
= {x | ∃y ∈ πm(p) y ↾ ℓ = x}. Then each σm,ℓ is a projection

between posets. Let
(
QT

γ,ω, (σn : QT
γ,ω → QT

γ,n | n < ω)
)
be the inverse

limit of the system (σm,ℓ : QT
γ,m → QT

γ,ℓ | 1 ≤ ℓ ≤ m < ω). We call QT
γ,ω

the inverse limit of Vopěnka algebras for adding an element of (γω)ω in
HOD{T}.

3. When T = ∅ or T is OD, then we omit it from our notation. Similarly,
when γ = 2, we omit it from our notation. In particular, we denote Qn

the Vopěnka algebra for adding an element of (2ω)n in HOD.

Definition 4.2. Let γ be a non-zero ordinal < Θ and T be a set of ordinals.

1. Let n be a natural number with n ≥ 1 and let BCT,∗
γ,n be the poset consisting

of OD(T ) ∞-Borel codes for subsets of (γω)n with the ordering p ≤ q if
Bp ⊆ Bq. We define the equivalence relation ∼ on BCT,∗

γ,n as follows: p ∼ q

iff Bp = Bq. We let BCT
γ,n = BCT,∗

γ,n/ ∼.

2. For all natural numbers ℓ andm with 1 ≤ ℓ ≤ m, let σm,ℓ : BCT
γ,m → BCT

γ,ℓ

be the natural map, i.e., for all p ∈ BCT
γ,m, σm,ℓ(p) is the equivalent class

of Borel codes that code the set {x ∈ (γω)l | ∃y ∈ Bp y ↾ ℓ = x}. Assume
each σm,ℓ is a well-defined projection between posets (see Remark 4.1).

Let
(
BCT

γ,ω, (σn : BC
T
γ,n → BCT

γ,ω | n < ω)
)
be the inverse limit of the

system (σm,ℓ : BCT
γ,m → BCT

γ,ℓ | 1 ≤ ℓ ≤ m < ω). We call BCT
γ,ω the

inverse limit of Vopěnka algebras of ∞-Borel codes for adding an element
of (γω)ω in HOD{T}.

3. When T = ∅ or T is OD, then we omit it from our notation. Similarly,
when γ = 2, we omit it from our notation as before.

Remark 4.1. For each m < ω, we can regard BCT
γ,m as a sub-algebra of QT

γ,m.
In Definition 4.1, it is clear that the maps σm,ℓ are projections. However, in
Definition 4.2, proving σm,ℓ is a well-defined forcing projection is non-trivial
and uses

(∗): if p ∈ BCT
γ,m+1 then {t : ∃s ∈ Bp s ↾ m = t} has an ODT ∞-Borel code.

If (∗) fails, then there is some m and some p ∈ BCT
γ,m+1 such that σm+1,m(p)

is not even defined. If (∗) holds, then all σm,l are well-defined total functions.
It is easy to check then they are all forcing projection maps (see [Cha19, Fact
7.14]).
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The reader can see [Cha19, Section 7] for a more detailed discussion of these
facts in the case γ = ω. For γ > ω, it is not clear to us if (∗) holds in general.
We will prove some version of (∗) in the last section of the paper. The same
remarks apply to the maps σm,ℓ in Definition 4.4.

The following lemmas will be useful in Section 5:

Lemma 4.2. Assume ZF+ AD+ + “V = L(T,R)” for some set T of ordinals.

1. QT
n is of size at most Θ and QT

n has the Θ-c.c. in HOD{T} for all n ≤ ω.

A similar statement holds for BCT
n for all n ≤ ω.

2. For any condition p ∈ QT
ω , there is a QT

ω -generic filter H over HOD{T}
such that p ∈ H, and V = L(T,R) ⊆ HOD{T}[H] and the set RV is
countable in HOD{T}[H] and moreover, RV is the symmetric reals of
HOD{T}[H].

3. Items (1) and (2) hold for BCT
ω,ω if BCT

ω,ω is well-defined (see Corollary
4.5).

Lemma 4.3. Assume ZF+ ADR + V = L(P(R)). Let γ < Θ.

1. The posets Qγ,n for n ≤ ω are of size less than Θ in HOD.

2. Let s ∈ (γω)n for n < ω, and hs = {p ∈ Qγ,n | s ∈ πn(p)}, where
πn : Qγ,n → Oγ,n is as in Definition 4.1. Then the set hs is a Qγ,n-
generic filter over HOD such that HOD[hs] = HOD{s}.

3. (Woodin) For any condition p ∈ Qγ,ω, there is a Qγ,ω-generic filter H
over HOD such that p ∈ H and the set (γω)V is countable in HOD[H]
and HOD(γω) is a symmetric extension.

4. Items (1) – (3) hold for BCT
γ,ω if BCT

γ,ω is well-defined (see Corollary 4.5).

The proofs are standard; the reader can consult for instance [Ste08, Tra21].
The following generalization of the previous lemmas also holds. For more details,
see [Tra21]. We first recall the definitions of the Vopěnka algebras for adding
elements of

⋃
γ<Θ γ

ω.

Definition 4.3. Let T be a set of ordinals.

1. Let n be a natural number with n ≥ 1 and OT
∞,n be the collection of

all nonempty subsets of γω1 × · · · × γωn which are OD from T for some
γ1, . . . , γn < Θ. The order on OT

∞,n is defined as: for p, q ∈ OT
∞,n, we say

p ≤ q if for some γ1, . . . , γn < Θ, p, q ⊆ γω1 × · · · × γωn and p ⊆ q. Fix
a bijection πn : η → OT

∞,n which is OD from T , where η is some ordinal.

Let QT
∞,n be the poset on η such that for each p, q in QT

∞,n, we have p ≤ q

if πn(p) ⊆ πn(q). We call QT
∞,n theVopěnka algebra for adding an element

of (
⋃

γ<Θ γ
ω)n in HOD{T}.
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2. For all natural numbers ℓ and m with 1 ≤ ℓ ≤ m, let σm,ℓ : QT
∞,m → QT

∞,ℓ

be the natural map induced from πℓ and πm, i.e., for all p ∈ QT
∞,m,

πl
(
σm,ℓ(p)

)
= {x | ∃y ∈ πm(p) y ↾ ℓ = x}. Then each σm,ℓ is a projection

between posets. Let
(
QT

∞,ω, (σn : QT
∞,ω → QT

∞,n | n < ω)
)
be the inverse

limit of the system (σm,ℓ : QT
∞,m → QT

∞,ℓ | 1 ≤ ℓ ≤ m < ω). We call QT
∞,ω

the inverse limit of Vopěnka algebras for adding an element of (
⋃

γ<Θ γ
ω)ω

in HOD{T}.

3. When T = ∅ or T is OD, then we omit it from our notation. In particular,
we denote Q∞,n the Vopěnka algebra for adding an element of (

⋃
γ<Θ γ

ω)n

in HOD.

Definition 4.4. Let T be a set of ordinals.

1. Let n be a natural number with n ≥ 1 and let BCT,∗
∞,n be the poset con-

sisting of OD(T ) ∞-Borel codes for subsets of γω1 × · · · × γωn for some
γ1, . . . , γn < Θ with the ordering p ≤ q if Bp ⊆ Bq. We define the

equivalence relation ∼ on BCT,∗
∞,n as follows: p ∼ q iff Bp = Bq. We let

BCT
∞,n = BCT,∗

∞,n/ ∼.

2. For all natural numbers ℓ and m with 1 ≤ ℓ ≤ m, let σm,ℓ : BCT
∞,m →

BCT
∞,ℓ be the natural map, i.e., for all p ∈ BCT

∞,m, σm,ℓ(p) is the equivalent

class of Borel codes that code the set {x ∈ (
⋃

γ<Θ γ
ω)l | ∃y ∈ Bp y ↾ ℓ =

y}. Suppose each σm,ℓ is a well-defined projection between posets (see

Remark 4.1). Let
(
BCT

∞,ω, (σn : BC
T
∞,ω → BCT

∞,n | n < ω)
)
be the inverse

limit of the system (σm,ℓ : BCT
∞,m → BCT

∞,ℓ | 1 ≤ ℓ ≤ m < ω). We call

BCT
∞,ω the inverse limit of Vopěnka algebras of ∞-Borel codes for adding

an element of (
⋃

γ<Θ γ
ω)ω in HOD{T}.

3. When T = ∅ or T is OD, then we omit it from our notation. Similarly,
when γ = 2, we omit it from our notation as before.

Definition 4.5. Let γ be a non-zero ordinal < Θ and T be a set of ordinals.

1. Let n be a natural number with n ≥ 1 and QT
γ,n be the collection of all

nonempty subsets of P(γ)n which are OD from T . Fix a bijection πn : η →
QT

γ,n which is OD from T , where η is some ordinal. Let PT
γ,n be the poset

on η such that for each p, q in PT
γ,n, we have p ≤ q if πn(p) ⊆ πn(q). We

call PT
γ,n theVopěnka algebra for adding an element of P(γ)n in HOD{T}.

2. For all natural numbers ℓ and m with 1 ≤ ℓ ≤ m, let σm,ℓ : PT
γ,m →

PT
γ,ℓ be the natural map induced from πℓ and πm, i.e., for all p ∈ PT

γ,m,

πl
(
σm,ℓ(p)

)
= {x | ∃y ∈ πm(p) y ↾ ℓ = x}. Then each σm,ℓ is a projection

between posets. Let
(
PT
γ,ω, (σn : QT

γ,ω → QT
γ,n | n < ω)

)
be the inverse

limit of the system (σm,ℓ : PT
γ,m → PT

γ,ℓ | 1 ≤ ℓ ≤ m < ω). We call PT
γ,ω

the inverse limit of Vopěnka algebras for adding an element of P(γ)ω in
HOD{T}.
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3. When T = ∅ or T is OD, then we omit it from our notation.

4. For n ≤ ω, we define BCT

γ,n be the “∞-Borel” version of PT
γ,n the same

way BCT
γ,n is defined from QT

γ,n in Definition 4.2.

Definition 4.6. Let T be a set of ordinals.

1. Let n be a natural number with n ≥ 1 and QT
∞,n be the collection of all

nonempty OD(T ) subsets of P(γ1)×· · ·×P(γn) for some γ1, . . . , γn < Θ.
The order on QT

∞,n is defined as: for p, q ∈ QT
∞,n, we say p ≤ q if for

some γ1, . . . , γn < Θ, p, q ⊆ P(γ1) × · · · × P(γn) and p ⊆ q. Fix a
bijection πn : η → QT

∞,n which is OD from T , where η is some ordinal.

Let PT
∞,n be the poset on η such that for each p, q in PT

∞,n, we have p ≤ q

if πn(p) ⊆ πn(q). We call PT
∞,n theVopěnka algebra for adding an element

of (
⋃

γ<Θ P(γ))n in HOD{T}.

2. For all natural numbers ℓ and m with 1 ≤ ℓ ≤ m, let σm,ℓ : PT
∞,m → PT

∞,ℓ

be the natural map induced from πℓ and πm, i.e., for all p ∈ PT
∞,m,

πl
(
σm,ℓ(p)

)
= {x | ∃y ∈ πm(p) y ↾ ℓ = x}. Then each σm,ℓ is a pro-

jection between posets. Let
(
PT
∞,ω, (σn : PT

∞,ω → PT
∞,n | n < ω)

)
be the

inverse limit of the system (σm,ℓ : PT
∞,m → PT

∞,ℓ | 1 ≤ ℓ ≤ m < ω). We

call PT
∞,ω the inverse limit of Vopěnka algebras for adding an element of

(
⋃

γ<Θ P(γ))ω in HOD{T}.

3. When T = ∅ or T is OD, then we omit it from our notation. In particular,
we denote P∞,n the Vopěnka algebra for adding an element of (

⋃
γ<Θ γ

ω)n

in HOD.

4. For n ≤ ω, we define BCT

∞,n be the “∞-Borel” version of PT
∞,n the same

way BCT
∞,n is defined from QT

∞,n in Definition 4.4.

For a given γ and T , if all OD(T ) subsets of γω have OD(T ) ∞-Borel codes,
then the posets QT

γ,1 and BCT
γ,1 are isomorphic. In general, we do not know if

this follows from AD+. Let t ∈ γω, ht = {p ∈ QT
γ,1 | t ∈ π1(p)} ⊆ QT

γ,1 be the

HODT -generic for adding t, and gt = {p ∈ BCT
γ,1 | t ∈ Bp} ⊆ BCT

γ,1 be the
HODT -generic for adding t. Clearly,

� ht ∈ HODT,t,

� t ∈ HODT,ht .

We do not know in general that ht ∈ HODT [t]. However, it is easy to see that
(see [Cha19, Fact 7.6] for a proof)

� t ∈ HODT [gt], and

� gt ∈ HODT [t].
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Therefore,
HODT [t] = HODT [gt] ⊆ HODT,ht = HODT,t. (4.1)

A similar conclusion holds for PT
γ,1 and BCT

γ,1.
A similar conclusion also holds for the forcings Q∞,1.P∞,1 and their ∞-Borel

versions BC∞,1,BC∞,1 (respectively). Let t ∈ γω (t ∈ P(γ) respectively) for
some γ < Θ, ht ⊆ Q∞,1 (ht ⊆ P∞,1 respectively) be the generic over HOD for
adding t, and gt ⊆ BC∞,1 (gt ⊆ BC∞,1 respectively) be the generic over HOD
for adding t. Then

HOD[t] = HOD[gt] ⊆ HODht
= HODt. (4.2)

Equations 4.1 and 4.2 also hold for t ∈ (γω)n or t ∈ P(γn) for n > 1.
Also note that the first equality of 4.1 and 4.2 also holds for any ZFC model
containing the forcing. For instance, L[BC∞,1][t] = L[BC∞,1][gt]. Some im-
provements of these will be presented in Section 5. The reader is advised to
consult [Tra21, Cha19] for more detailed treatments of Vopěnka forcing and the
variations discussed above.

We now address the extent to which the inverse limit BCT
γ,ω is well-defined

and topics related to the forcings BCT
γ,n.

Lemma 4.4. ZF + AD+. Suppose γ < Θ, n < ω, and A ⊆ (γω)n+1 has an
∞-Borel code (S, φ), then the set B = {g ∈ (γω)n : ∃f(f, g) ∈ A} has an
OD(S, µ) ∞-Borel code for any fine, countably complete measure µ on ℘ω1

(γω).
If additionally either ADR holds or γ = ω, then B has an OD(S) ∞-Borel code.

Proof. The first part of the lemma is proved in [IT18, Claim 2]. For the second
part, if ADR holds then there exists a unique normal, fine, and countably com-
plete measure µ on ℘ω1

(γω) by results of Solovay [Sol06] and Woodin [Woo83].
Therefore, µ is OD and OD(S, µ) = OD(S). If γ = ω, then there is an OD fine,
countably complete measure µ on ℘ω1(ω

ω) is induced from the Martin measure
as follows. First let ν be the Martin measure on D and π : D → ℘ω1(ω

ω) be de-
fined as: π([x]T ) = {y ∈ ωω : y ≤T x}. Clearly, π is an OD map. The measure
µ is defined as: A ∈ µ iff π−1[A] ∈ ν. It is easy to verify that µ is an OD fine,
countably complete measure on ℘ω1

(ωω). Therefore, OD(S, µ) = OD(S).

Corollary 4.5. Suppose ZF + AD+ + V = L(J,R) for some set of ordinals J .
The following hold.

(i) The inverse limit BCJ
ω,ω is well-defined. In fact, BCJ

ω,ω is isomorphic to

QJ
ω,ω.

(ii) For any x ∈ R, any OD(J, x) set A ⊆ (ωω)n, A has an OD(J, x) ∞-Borel
code.

(iii) HODJ = L[J,BCJ
ω,ω].
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Proof. Part (i) is a consequence of Lemma 4.4 and [Cha19, Fact 7.14]. Lemma
4.4 implies (∗) for BCJ

ω,n+1 holds all n < ω. The calculations in [Cha19, Fact

7.14] show that the inverse limit BCJ
ω,ω is well-defined because the maps σm,l are

all well-defined forcing projection maps. For part (ii), without loss of generality,
let us fix an OD(J, x) set A ⊆ ωω. The general case just involves more notations.
Say z ∈ A iff L(J,R) |= φ[J, x, s, z] for some finite sequence of ordinals s.
The following calculations produce an OD(J, x) ∞-Borel code for A (see cf
[Cha19, Corollary 7.20] for a similar calculation with more details). Work over
L[J,BCJ

ω,ω], for any z ∈ R, we let gx,z ⊆ BCJ
ω,2 be the generic adding x, z. Let

Ṙ be the symmetric reals added by a generic g ⊂ BCJ
ω,ω.

z ∈ A⇔ L[J,BCJ
ω,ω][gx,z] ⊨ “1BJ

ω,ω/gx,z
⊩BJ

ω,ω/gx,z
L(J, Ṙ) |= φ[J, x, s, z]”

⇔ L[J,BCJ
ω,ω, x, z] ⊨ “1BJ

ω,ω/gx,z
⊩BCJ

ω,ω/gx,z
L(J, Ṙ) |= φ[J, x, s, z]”.

The fact that L[J,BCJ
ω,ω][gx,z] = L[J,BCJ

ω,ω, x, z] follows from the remark after
4.2. The equivalences above follow from standard properties of the inverse limit
of projections BCJ

ω,ω and calculations as in [Cha19, Theorems 7.18, 7.19]. The

∞-Borel code for A is the set of ordinals S ∈ HODJ,x coding (J,BCJ
ω,ω, x). Part

(ii) immediately gives BCJ
ω,ω is isomorphic to QJ

ω,ω. Part (iii) now follows from
calculations in [Cha19, Corollary 7.20, 7.21].

Lemma 4.6. Assume ZF+ AD+ + ADR + V = L(P(R)).

1. The posets Q∞,n,P∞,n for n ≤ ω are Θ-cc in HOD.

2. Let s ∈ (
⋃

γ<Θ γ
ω)n for n < ω and hs = {p ∈ Q∞,n | s ∈ πn(p)}. Then the

set hs is a Q∞,n-generic filter over HOD such that HOD[hs] = HOD{s}.
A similar statement can be made for s ∈ (

⋃
γ<Θ P(γ))n with regard to the

forcing P∞,n.

3. For any condition p ∈ Q∞,ω, there is a Q∞,ω-generic filter H over HOD
such that p ∈ H and the set (

⋃
γ<Θ γ

ω)V is countable in HOD[H]. Fur-

thermore, V = HOD((
⋃

γ<Θ γ
ω)V ) is the symmetric part of HOD[H].

Similarly, for any condition p ∈ P∞,ω, there is a P∞,ω-generic filter H
over HOD such that p ∈ H and the set (

⋃
γ<Θ P(γ))V is countable in

HOD[H]. Furthermore, V = HOD((
⋃

γ<Θ P(γ))V ) is the symmetric part
of HOD[H].

4. (1) – (3) above also hold for the posets BC∞,n (BC∞,n respectively) and
for BC∞,ω (BC∞,ω ) if these forcings are well-defined. In fact, BC∞,ω is
a well-defined inverse limit and is isomorphic to Q∞,ω.

Proof sketch. We will not prove the lemma; instead, we sketch the main ideas
here. (1) – (3) are standard calculations. The “Furthermore” clause of part (3)
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can be seen to follow from Lemma 3.3 and the fact that every set of reals is
Suslin co-Suslin under AD+ + ADR. For (4), first note that Lemma 4.4 implies
BC∞,ω is a well-defined inverse limit because the maps σm,l are all well-defined
forcing projection maps. To see BC∞,ω is isomorphic to Q∞,ω, it suffices to
show if γ < Θ, n < ω and A ⊆ (γω)n is OD, then A has an OD ∞-Borel
code. For ease of notation, we assume n = 1. For f ∈ γω, suppose f ∈ A
iff V |= φ[s, f ] for some finite set of ordinals s. As in the previous corollary,
we can produce an OD ∞-Borel code for A as follows. Let Z be a set of
ordinals such that HOD = L[Z]3 and gf ⊆ BC∞,1 be the generic adding f . Let
C = HOD((

⋃
γ<Θ γ

ω)V ). We note that by Theorem 3.3, C = V . Then

f ∈ A⇔ HOD[gf ] ⊨ “1B∞,ω/gf ⊩B∞,ω/gf C |= φ[s, f ]”

⇔ L[Z, f ] ⊨ “1B∞,ω/gf ⊩BC∞,ω/gf C |= φ[s, f ]”.

The above calculations easily yield and OD ∞-Borel code for A.

We will prove in Section 5 a version of Lemma 4.4 for A ⊆ P(γ)n+1 under
AD+ + ADR and use this to show that the inverse limit BC∞,ω is well-defined
and is isomorphic to P∞,ω.

5 The existence of ∞-Borel codes

In this section, we prove Theorems 1.1, 1.3, 1.5 and their corollaries.

Proof of Theorem 1.1. Without loss of generality, we let A ⊆ P(ω) and assume
A is OD. First we assume ADR holds. Since ADR holds, V = C by Lemma 3.3.
We show A has an OD ∞-Borel code. Suppose

x ∈ A⇔ C ⊨ φ[x, s]

for some formula φ and some finite sequence of ordinals s.
We note that for any f ∈

⋃
γ<Θ γ

ω, letting gf ⊆ BC∞,1 be generic over HOD
that adds f , then

HOD[f ] = HOD[gf ]

by (4.2). Here is a brief sketch. First note that f ∈ HOD[gf ] so HOD[f ] ⊆
HOD[gf ]; for the converse, we have that gf = {c : f ∈ Bc} and this calculation
of gf can be done over HOD[f ]. Here we use essentially here that conditions of
the forcing are ∞-Borel codes.

Let Z ⊆ Θ be such that HOD = L[Z]. Then we can produce an OD ∞-
Borel code for A as follows, recall the definition of BC∞,ω and related objects
in Section 4.

x ∈ A⇔ HOD[gx] ⊨ “1B∞,ω/gx ⊩B∞,ω/gx C |= φ[x, s]”

⇔ L[Z][x] ⊨ “1B∞,ω/gx ⊩B∞,ω/gx C |= φ[x, s]”.

3One can show Z can be taken to the the set of ordinals that canonically codes BC∞,ω .
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Again, the main point is by Lemma 4.6, the inverse limit BC∞,ω is well-defined.
The above equivalence shows that ((Z, s), ψ) where ψ(x, (Z, s)) is the formula
“1B∞,ω/gx ⊩B∞,ω/gx C |= φ[x, s]”, is an OD ∞-Borel code for A.

Now assume ADR fails. By Theorem 2.3, V = L(J,R) for some set of or-
dinals J . In fact, we can take J = [d 7→ T ]µT

where T is a tree projecting to
a universal S(κ) set, where κ is the largest Suslin cardinal, S(κ) is the largest
Suslin pointclass, and µT is the T -degree measure defined in Section 2. Now
there are two cases.

Case 1: Θ = θ0
We start with a claim.

Claim 5.1. The largest Suslin pointclass is Σ2
1˜.

Proof. Σ2
1˜ has the scale property by AD+ (cf. [ST10]). By the fact that Θ = θ0 is

regular, we have that Σ2
1˜ = Σ1(R)∩P(R). To see this note that the ⊆-direction

is clear. To see the converse, let A ⊆ R be Σ1(x) for some real x; so let φ be a
Σ1-formula such that for any y ∈ R, y ∈ A ⇔ φ[y, x]. Since Θ is regular, it is
easy to see that there is a transitive M = Lα(Pβ(R)) for some α, β < Θ such
that for y ∈ R,

y ∈ A⇔M |= φ[y, x].

So we can define y ∈ A iff “there is a set of reals B coding a transitive structure
M containing all reals such that M |= φ[y, x]”. This is easily seen to be Σ2

1(x).
So A ∈ Σ2

1˜ .

Now we finish proving the claim by noting that the set C = {(x, y) ∈ R2 :
y /∈ OD(x)} is a Π1-set that has no uniformization. This is a result by Martin,
cf. [Ste83]. By the above, C is Π2

1 and cannot be uniformized. This gives Σ2
1˜ is

the largest pointclass with the scale property as claimed.

Therefore, we can take T and hence J = [d 7→ T ]µT
to be OD, where

T ∈ HOD is a tree projecting to a universal Σ2
1 set. Hence for some Z ⊆ Θ with

Z ∈ OD,
HOD = HODJ = L[Z].

We can produce an OD ∞-Borel code for A by the following calculations. Sup-
pose

x ∈ A⇔ V |= φ[x, s]

for some finite sequence of ordinals s. Letting gx ⊆ BCω,1 be HOD-generic that
adds x, then HOD[gx] = HOD[x]. We note that by Corollary 4.5, the inverse
limit BCω,ω is well-defined. We have

x ∈ A⇔ HOD[gx] ⊨ “1Bω,ω/gx ⊩Bω,ω/gx L(J,R) |= φ[x, s]”

⇔ L[Z][x] ⊨ “1Bω,ω/gx ⊩BCω,ω/gx L(J,R) |= φ[x, s]”.

17



The above equivalence easily gives an OD ∞-Borel code for A.

Case 2: Θ > θ0

Let M0 = L(Pθ0(R)).

Claim 5.2. Let Γ = Σ2
1. The following hold.

(i) For any real x, Env(Γ(x)) = EnvM0(Γ(x)).4

(ii) M0 |= Θ = θ0.

Proof. The proof of Claim 5.1 shows that Σ2
1˜ is the largest Suslin pointclass

below θ0 in V . The fact that for each x ∈ R, Env(Γ(x)) ⊂ M0 follows from
results in [Jac09]; see for instance Lemma 3.14. A set A is in Env(Γ)(x) iff for
each countable σ ⊆ R, there is a OD<Γ(x) set B such that A ∩ σ = B ∩ σ (cf.
[Wil12]). This calculation is absolute between V and M0. Part (i) follows. In
M0, Σ

2
1˜ is the largest Suslin pointclass and Env(Γ)

˜
=def

⋃
x∈REnv(Γ(x)) =

P(R); the last equality holds because the set {(x, y) : y /∈ ODx} has no scale in
M0. This easily implies that in M0, every set of reals A is OD from some real
x. This means M0 |= Θ = θ0. This proves part (ii).

Claim 5.3. Let A ⊆ R be OD. Then A is OD in M0.

Proof. Suppose A is OD, say x ∈ A iff φ[x, s] holds for some finite sequence of
ordinals s. For each countable σ ⊂ R, there is a transitive modelM of ZF−+DC
of the form Lα(Pβ(R)) that ordinal defines A ∩ σ via φ and {s, σ}, i.e.

∀x ∈ σ x ∈ A⇔M |= φ[x, s, σ].

By Σ1-reflection into ∆˜ 2
1, for each σ, there are ασ, βσ,max(sσ) < δ21˜ such that

∀x ∈ σ x ∈ A⇔ Lασ
(Pβσ

(R)) |= φ[x, sσ, σ].

Note the Wadge rank of A is < θ0 and therefore, A ∈ M0. Working in
M0, let µ be the fine, countably complete measure on ℘ω1

(R) induced by the
Turing measure via the canonical surjection π : D → ℘ω1(R), where π(d) =
{x ∈ R : x ≤T d}. µ is OD. Let α = [σ 7→ ασ]µ, β = [σ 7→ βσ]µ, and
s∗ = [σ 7→ sσ]µ. We claim that A is definable in M0 from (α, β, s∗). This
is because for any x ∈ R, x ∈ A iff for any function Fα, Fβ , Fs∗ such that
[Fα]µ = α, [Fβ ]µ = β, [Fs∗ ]µ = s∗,∀∗µσ LFα(σ)(PFβ(σ)(R)) |= φ[x, Fs∗(σ), σ].
The above calculation finishes the proof of the claim.

4Recall that that Γ = Σ2
1 so δ21˜ = o(Γ) is the Wadge ordinals of Γ. A set A is in Env(Γ(x))

iff for any countable σ ⊂ R, A ∩ σ = B ∩ σ for some B ∈ OD<Γ(x). Here B is OD<Γ(x)
iff there are Γ(x) sets U,W ⊆ R × R and a Γ(x)-norm φ, and an ordinal α < δ21˜ such that

A = Uy = ¬Wy for every y ∈ dom(φ) with φ(y) = α. [Wil12] shows that this notion of
envelopes generalizes Martin’s notion of envelopes Λ˜(Γ˜, δ21˜ ) (cf [Jac09]), as it can be applied

in situations where AD may not hold. Under AD these two notions are equivalent.
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Using Claim 5.3 and Claim 5.2, we can quote the result of the Θ = θ0 case
to get that A has an OD ∞-Borel code.

This completes the proof of the first clause of Theorem 1.1. As mentioned in
Remark 1.2, the ”Furthermore” clause has a similar proof to the proof of Case
1, so we leave it to the kind reader.

Remark 5.4. We do not know if AD++V = L(P(R)) implies that for an
arbitrary set of ordinals S, every OD(S) subset of P(ω) has an OD(S) ∞-Borel
code.

Proof of Theorem 1.3. The proof of [IT18, Claim 2] shows the following.

Lemma 5.5. Assume AD+. Suppose κ < Θ, n < ω, and A∗ ⊆ (κω)n+1 has ∞-
Borel code S∗. Let µ be a fine, countably complete measure on ℘ω1

(κω). Then
A = {f : ∃x ∈ κω (x, f) ∈ A∗} has an ∞-Borel code S that is OD(S∗, µ).

Let κ < Θ and A ⊆ κω. Then by basic AD+ theory, there is a set of ordinals
T such that A ∈ L(T,R). To see this, first fix a pre-wellordering ≤ of R of
order type κ and let S0 be an ∞-Borel code for ≤. Using ≤ and the fact that
one can canonically code an ω-sequence of reals by a real, one sees that κω can
be simply coded by ≤ and R. Therefore, using ≤, one can code A by a subset
B ⊆ R. Let S1 be an ∞-Borel code for B and let T = (S0, S1). It is clear that
κω, A ∈ L(T,R).

Suppose V = L(P(R)) |= AD++Θ = θ0, then V = L(T,R) for some OD set
of ordinals T . Then for any κ < Θ = θ0, there is an OD surjection π : R → κω.
Let µ be the OD fine, countably complete measure on ℘ω1(R) in Claim 5.3. π, µ
induce an OD fine, countably complete measure ν on ℘ω1

(κω) by a standard
procedure:

A ∈ ν ⇔ {π−1[σ] : σ ∈ A} ∈ µ.

By the above discussion, every OD = OD(T ) subset of κω has OD(T, µ) = OD
∞-Borel code. A similar argument also gives every OD(S) subset of κω has an
OD(S) ∞-Borel code for any set of ordinals S.

Suppose V = L(P(R))+ADR |= AD++ADR. By [Woo83] and ADR, there is
a unique normal, fine measure µκ on ℘ω1(κ

ω) for each κ < Θ. So µκ is OD for
each κ < Θ. Let S be a set of ordinals and A ⊆ κω be OD(S). By Lemma 5.5
applied to the µκ’s, we have that (*) holds and therefore BCS

∞,ω is a well-defined
limit. Let κ < Θ and A ⊆ κω be OD(S), so there is a formula φ and some finite

set of ordinals β⃗ such that

f ∈ A⇔ V |= φ[f, β⃗, S].

Let Z be an OD(S) set of ordinals such that HODS = L[Z] and gf ⊆ BCS
∞,1

be the generic for adding f , we then have
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f ∈ A⇔ HODS [gf ] ⊨ “1BC∞,ω/gf ⊩BC∞,ω/gf HOD(
⋃
γ<Θ

γω) |= φ[f, β⃗, S]”

⇔ L[Z][f ] ⊨ “1BC∞,ω/gf ⊩BC∞,ω/gs HOD(
⋃
γ<Θ

γω) |= φ[f, β⃗, S]”.

The above calculations easily imply that A has an OD(S) ∞-Borel code.

Proof of Corollary 1.4. For each x ⊆ ω, let gx ⊆ BCω,1 be the generic for adding
x. Thus we have as before

HOD[x] = HOD[gx].

Clearly HOD[x] ⊆ HODx. To see the converse, let X ⊆ ON be OD(x); say
X ⊆ γ. Let φ be a formula defining X from x and some s ∈ ON<ω. So

∀β < γ β ∈ X ⇔ φ(β, s, x)

and for each β < γ, let
T ∗
β = {a : φ(β, s, a)}.

Note that T ∗
β is OD for each β.

Fix an OD injection π∗ : OD∩P(ω) → HOD as in the definition of the usual
Vopěnka forcing Qω,1, where π

∗ maps the algebra Oω,1 of OD subsets of P(ω)
into its isomorphic copy Qω,1 in HOD. We can assume that π∗[Oω,1] = BCω,1

because we have shown every OD subset of P(ω) has an OD ∞-Borel code. We
have that

Z = {(β, π∗(T ∗
β )) : β < γ} ∈ HOD

and that for β < γ,

β ∈ X ⇔ (β, π∗(T ∗
β )) ∈ Z ∧ π∗(T ∗

β ) ∈ gx.

The above equivalence implies

X ∈ HOD[gx] = HOD[x].

So we have shown
HODx = HOD[x].

For the “furthermore” clause of part (1), we use the “furthermore” clause of
Theorem 1.1, which states that if A ⊆ P(ω) is ODS for some set of ordinals S
then A has an ODS ∞-Borel code when V = L(S,R). By an argument similar
to the above, we get for each real x,

HODS,x = HODS [x].

This completes the proof of part (1).
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The proof of part (1) can be adapted to prove part (2). But we will give
here a different proof of part (2) that cannot be used to prove part (1). We
assume ADR and use the forcing BC∞,ω and related objects as in Section 4 to
prove part (2) holds for any s ∈ γω for γ < Θ. Again, we have that for any
s ∈ γω for some γ < Θ, letting gs ⊆ BC∞,1 be the generic adding s,

HOD[s] = HOD[gs].

Furthermore, by Lemma 4.6, V = HOD(
⋃

γ<Θ γ
ω) is the symmetric extension of

HOD induced by a generic H ⊆ BC∞,ω. Note here that by Theorem 1.3, BC∞,ω

is well-defined. Let X ∈ HODs be a set of ordinals. So there is a formula φ and
a finite sequence of ordinals t such that

α ∈ X ⇔ V |= φ[α, s, t].

Now we have:

α ∈ X ⇔ HOD[gs] ⊨ “1BC∞,ω/gs ⊩BC∞,ω/gs HOD(
⋃
γ<Θ

γω) |= φ[α, s, t]”

⇔ HOD[s] ⊨ “1BC∞,ω/gs ⊩BC∞,ω/gs HOD(
⋃
γ<Θ

γω) |= φ[α, s, t]”.

The above calculations show that X ∈ HOD[s]. So HOD[s] = HODs. The
argument above can be easily adapted to work for an arbitrary set of ordinals
S by running the argument above over HODS using BCS

∞,ω.
Suppose now Θ = θ0. Then since ADR fails, by Theorem 2.3, there is a set

of ordinals T such that V = L(T,R). Since Θ = θ0, we can in fact take T to be
OD. Therefore, HODT = HOD. Furthermore, for any γ < Θ, V = HOD(γω)
is a symmetric extension of HOD induced by a generic H ⊆ BCγ,ω. The fact
that BCγ,ω is well-defined follows from Theorem 1.3. The rest of the proof is
the same as in the ADR case with BCγ,ω used in place of BC∞,ω.

Remark 5.6. (i) The main reason we need a different proof for part (1) of
Corollary 1.4 is because we do not have an analogue of Lemma 4.6 in the
situation of part (1), where ADR may fail.

(ii) One can easily modify the proof above and [IT18, Claims 2 and 3] to show
that if V = L(T,R) |= AD+ for some set of ordinals T , and f ∈ ℘ω1(κ)
for some uncountable cardinal κ < Θ, then

HODT,f = HODT [f ] = HODT [gf ]

where gf is HODT generic for the variation of the Vopenka algebra in
HODT consisting of OD(T ) subsets of ℘ω1(κ) with OD(T ) ∞-Borel codes.
The main point is that there is an OD(T ) fine, countably complete measure
on ℘ω1

(℘ω1
(κ)).

21



Proof of Theorem 1.5. We assume AD+ and let ν witness ω1 is R-supercompact.
Let κ < Θ and A ⊆ P(κ). Let ≤ be a prewellordering of the reals of length κ
and let

Â = {x ∈ R : x codes Cx ∈ A}.5

Let
A∗ = {(x,Cx) : x ∈ Â}.

In other words, (x, f) ∈ A∗ iff x ∈ Â and f = Cx. We claim that A∗ has
an ∞-Borel code. Note that Â ⊆ R and hence by AD+, Â has an ∞-Borel
code; similarly, ≤ has an ∞-Borel code. We fix ∞-Borel codes S1, S2 for ≤, Â
respectively. If κ < θ0 and A ⊆ P(κ) is OD, then we can in fact assume ≤ is
OD and hence can take S1, S2 ∈ HOD by Theorem 1.1.

Let T = (S1, S2). We work in L(T,R). Let Ṙ ∈ HOD be the canonical
BCT

ω,ω-name for the symmetric reals added by a BCT
ω,ω-generic over HODT and

Z ⊆ ON be such that HODT = L[Z]. We note that the system (BCT
ω,ω, (BC

T
ω,n, σn,m :

n ≥ m)) is a well-defined inverse limit system and satisfies Lemma 4.2 in L(T,R)
(see Remark 4.1 and Theorem 1.1). We then have the following equivalence,
where gx ⊆ BCT

ω,1 is the generic adding x:

(x, f) ∈ A∗ ⇔ HODT [x, f ] ⊨ “x ∈ BS2
∧ ∀α < κ

α ∈ f ⇔ “HODT [x] |= 1BCT
ω,ω/gx

⊩BCT
ω,ω/gx

L(S1, S2, Ṙ) ⊨

∃y(|y|≤ = α ∧ y ∈ Cx)””

⇔ L[Z][x, f ] ⊨ “x ∈ BS2
∧ ∀α < κ

α ∈ f ⇔ “L[Z][x] |= 1BCT
ω,ω/gx

⊩BCT
ω,ω/gx L(S1, S2, Ṙ) ⊨

“∃y(|y|≤ = α ∧ y ∈ Cx)””.

The above calculations easily produce an OD(S1, S2, µ) ∞-Borel code for A∗,
noting that the clause “|y|≤ = α ∧ y ∈ Cx” can easily be written as a formula
φ(S1, S2, µ, y, α).

Next, we want to produce an ∞-Borel code for A from an ∞-Borel code for
A∗. This is accomplished by proving the following lemma.

Lemma 5.7. Assume AD+ and suppose there is a supercompact measure on
℘ω1

(R). Suppose A∗ ⊆ P(ω)×P(κ) is ∞-Borel for some κ < Θ. Then ∃RA∗ =
{f : ∃x (x, f) ∈ A∗} is ∞-Borel.

Proof. Let c = (T, ρ) be an∞-Borel code for A∗ and A = ∃RA∗. We may assume
c is coded as a subset of λ < ΘV . We sketch an argument here. Suppose
c = (T, ρ) be an ∞-Borel code for A∗ and suppose sup(c) ≥ ΘV . Work in
L(c,R); we want to find an ∞-Borel code c∗ for A∗ such that sup(c∗) < Θ. We
may assume c codes a prewellordering ≤ of R of order type κ. So in L(c,R),
κ < Θ; furthermore, L(c,R) |= “Θ is regular”. Let ξ >> sup(c) be a regular

5The coding x 7→ Cx is via the Coding Lemma relative to ≤.
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cardinal andX be the Skolem hull of Lξ(c,R) from parameters R∪{A,A∗, c} and
let π :M → X be the uncollapse map. ThenM has the form Lγ(c

∗,R), there is
a surjection from R onto M , and π is an elementary embedding. Furthermore,
A,A∗ ∈ M , γ. Since there is a surjection from R onto M , sup(c∗) < Θ. Since
π is elementary,

M |= “c∗ is an ∞-Borel code for A∗”.

It is clear that c∗ is indeed an ∞-Borel code for A∗ since P(ω)×P(κ) ⊂M . c∗

is the desired ∞-Borel code for A∗.
Let ν be a supercompact measure on ℘ω1

(R). Let µ be the supercompact
measure on ℘ω1

(P(κ)∪λ) induced by ν and some surjection π : R → P(κ)∪λ.6
By coding (S1, S2) into c, we may assume κ < ΘL(c,R).

In the following, for a σ ∈ ℘ω1(P(κ)∪λ) the tree Tσ is defined as T ∩σ and
the assignment ρσ is defined as: for a terminal element t of Tσ, ρσ(t) = ρ(t)∩σ.
The code cσ = (Tσ, ρσ) will yield the set Bcσ by induction as follows:

� if t is a terminal element of Tσ, let Bcσ,t be the basic open set Oρσ(t) in
the space 2ω × 2σ∩κ. In the case ρσ(t) = ∅, then we let Bcσ,t = 2ω × 2σ∩κ.

� If SuccTσ (t) is a singleton of the form {s}, let Bcσ,t be the complement of
Bcσ,s in the space 2ω × 2σ∩κ.

� If SuccTσ (t) has more than one element, then let Bcσ,t be the union of all
sets of the form Bcσ,s where s is in SuccTσ (t).

� Bcσ = Bcσ,∅.

Claim 5.8. For any (x, f) ∈ P(ω)× P(κ),

(x, f) ∈ A∗ ⇔ ∀∗µσ (x, f ∩ σ) ∈ Bcσ .

Proof. The proof is by induction on the ranks of the nodes in T . If t is a terminal
node of T , it is easy to see that (x, f) ∈ Oρ(t) iff ∀∗µσ (x, f ∩ σ) ∈ Oρσ(t). Here
note that by fineness, ∀∗µσ x, f ∈ σ. The case SuccT (t) is a singleton {s} is
easy and we leave it to the reader. We verify the case SuccT (t) has more than
one element and hence Bc,t =

⋃
s∈SuccT (t)Bc,s. If (x, f) ∈ Bc,t, then there is

an s ∈ SuccT (t) such that (x, f) ∈ Bc,s; since ∀∗µσ s ∈ SuccTσ (t) by fineness,
by the inductive hypothesis, ∀∗µσ (x, f ∩ σ) ∈ Bcσ,s. So ∀∗µσ (x, f ∩ σ) ∈ Bcσ,t.
Conversely, suppose ∀∗µσ (x, f ∩ σ) ∈ Bcσ,t. Then for each such σ, there is
sσ ∈ SuccTσ (t) such that (x, f ∩σ) ∈ Bcσ,sσ . By normality of µ, there is a fixed
s such that

∀∗µσ s ∈ SuccTσ (t) ∧ (x, f ∩ σ) ∈ Bcσ,s.

This implies s ∈ SuccT (t) and (x, f) ∈ Bc,t as desired.

6A ∈ µ iff {π−1[σ] : σ ∈ A} ∈ ν.
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Let f ⊆ κ, then

f ∈ A⇔ ∃x (x, f) ∈ A∗

⇔ ∃x ∀∗µσ (x, f ∩ σ) ∈ Bcσ

⇔ ∀∗µσ ∃x ∈ σ (x, f ∩ σ) ∈ Bcσ .

The last equality uses the normality of µ when restricted to the non-wellordered
part, i.e. the normality of the measure induced by µ on ℘ω1

(P(κ)). The proof
of Claim 5.8 also uses the normality of µ, but only on the ordinal part.

Claim 5.9. Let jµ be the ultrapower embedding induced by µ. Letting Mσ =
L[c](σ)7 for each σ ∈ ℘ω1

(P(κ) ∪ λ) and M =
∏

σMσ/µ be the ultraproduct of
the Mσ’s by µ, then:

(a) Los’s theorem holds for the ultraproduct M .

(b) R ⊆M and M |= AD+. Therefore, by (a), ∀∗µσ Mσ |= AD+.

(c) The ultraproduct M is well-founded.

(d) If f ⊂ κ then ∀∗µσ f ∩ σ ∈Mσ. In particular, ∀∗µσ cσ ∈Mσ.

(e) For any f ⊆ κ, [σ 7→ f ∩ σ]µ = jµ[f ]. In particular, if x ⊆ ω, then
x = [σ 7→ x]µ.

(f) ∀∗µσ R ∩Mσ = R ∩ σ.

Proof. Part (a) is a standard argument using the normality of µ. The reader
can see for example [Tra14a, Lemma 2.4] for a proof. For part (b), let x ∈ R,
then by fineness of µ, ∀∗µσ x ∈ σ. So ∀∗µσ x ∈ Mσ. Furthermore, x = [σ 7→ x]µ
by countable completeness of σ, so x ∈M . ThatM |= AD+ follows immediately
from the fact that R ⊂ M . The proof of part (c) is the same as that of Fact
2.4. Part (d) is clear since for each σ, f, σ ∈Mσ and Mσ is a model of ZF. For
part (e), let f ⊆ κ. For α ∈ κ, jµ(α) = [σ 7→ α]µ. Therefore, if α ∈ f , then
by fineness, ∀∗µσ α ∈ σ ∩ f . We have shown jµ[f ] ⊆ [σ 7→ f ∩ σ]µ. Suppose
g is such that ∀∗µσ g(σ) ∈ f ∩ σ. By normality of µ, there is an α such that
∀∗µσ g(σ) = α. So [g]µ = jµ(α) ∈ jµ[f ]. If x ⊆ ω, then ∀∗µσ x ∩ σ = x and
since j[ω] = ω, x = [σ 7→ x]µ. This completes the proof of (e). To see (f), first
note that R ∩ σ ⊆ R ∩Mσ by part (b) and Los’ theorem. For the converse, it
suffices to see that [σ 7→ σ ∩ R]µ = RV ; this is because by part (b), RV = RM

and by Los’ theorem, RM = [σ 7→Mσ ∩R]µ. But this follows from (e). Indeed,
for any x ∈ R, x = [σ 7→ x]µ and ∀∗µσ x ∈ σ, therefore, x ∈ [σ 7→ σ ∩ R]µ. So

[σ 7→ σ ∩ R]µ = [σ 7→Mσ ∩ R]µ = RV ; by Los’ theorem, ∀∗µ R ∩Mσ = R ∩ σ as
desired.

7L[c](σ) is the minimal model of ZF containing ON ∪ {c} ∪ {A ∩ σ : A ∈ σ}.
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Remark 5.10. We note that part (f) generally cannot be improved for subsets
f of κ for κ > ω. In general, if f ⊆ κ, ∀∗µσ f ∩ σ ∈Mσ follows from (d), but it
is not true that ∀∗µσ f ∩ σ ∈ σ.

For each σ ∈ ℘ω1(P(κ) ∪ λ) and f ⊆ κ, let

Hσ,f = HOD
L(c,R)
c,{σ},f∩σ and Kσ,f = HODMσ

c,{σ},f∩σ.

LetQσ,f be the Vopenka algebra for adding a real whose conditions areODMσ (c, {σ}, f∩
σ)-∞ Borel codes for subsets of R ∩Mσ. The following is the key claim.

Claim 5.11. Let f ⊆ κ.

(i) ∀∗µσ Hσ,f = HOD
L(c,R)
c,{σ} [f ∩ σ].

(ii) ∀∗µσ Kσ,f is uniformly definable in Hσ,f from parameters {σ}, f ∩ σ, c.

(iii) f ∈ A iff ∀∗µσ Hσ,f |= “Kσ,f |= ∃p ∈ Qσ,f p ⊩Qσ,f
∃x (x, f ∩ σ) ∈ Ḃcσ .”

Proof. Part (i) follows from the proof of Corollary 1.4 and Remark 5.6. For part
(ii), first note that ∀∗µσ f ∩σ ∈Mσ by Claim 5.9. Letting Wσ,f be the Vopenka

algebra BCc,{σ},f∩σ
ω,ω defined in Mσ, then by Corollary 4.5,

Kσ,f = L[Wσ,f , c, f ∩ σ]

is definable over L(c,R) uniformly from parameters {σ}, c, f ∩ σ. Let Xσ,f be
a set of ordinals that canonically codes Wσ,f , c, f ∩ σ. Then there is a fixed
formula ψ such that

x = Xσ,f ⇔ L(c,R) |= ψ[x, f ∩ σ, {σ}, c].

ψ induces a formula ψ∗ with the property that: Hσ,f |= ψ∗[x, c, {σ}, f∩σ] if and
only if x = Xσ,f . Here letting Pσ,f = BCc,{σ},f∩σ

ω,ω defined in L(c,R) and Ṙ the
symmetric name for the symmetric reals added by Pσ,f , then ψ

∗[x, c, {σ}, f ∩σ]
is the statement “1 ⊩Pσ,f

L(č, Ṙ) ⊨ ψ[x, f ∩ σ, {σ}, c]”.
Now we prove (iii). First we note that by (ii), the statement “Kσ,f |=

∃p ∈ Qσ,f p ⊩Qσ,f
∃x (x, f ∩ σ) ∈ Ḃcσ” is absolute between V and Hσ,f .

Furthermore, there is a fixed formula φ such that Hσ,f |= φ[σ, f ∩ σ, c] if and
only ifKσ,f |= ∃p ∈ Qσ,f p ⊩Qσ,f

∃x (x, f∩σ) ∈ Ḃcσ . Now suppose f ∈ A. Then
∀∗µσ∃x ∈ σ(x, f ∩σ) ∈ Bcσ . So for each such σ, Mσ |= “∃x ∈ σ(x, f ∩σ) ∈ Bcσ”.
Fix such a σ and let x ∈ σ be a witness and gx ⊆ Qσ,f be the corresponding
generic adding x over Kσ,f , then Kσ,f [x] = Kσ,f [gx] |= (x, f ∩ σ) ∈ Bcσ . By

the forcing theorem, we get that Kσ,f |= ∃p ∈ Qσ,f p ⊩Qσ,f
∃x (x, f ∩ σ) ∈ Ḃcσ ,

so we have obtained the right hand side of the equivalence. For the converse,
assume

∀∗µσ Hσ,f |= “Kσ,f |= ∃p ∈ Qσ,f p ⊩Qσ,f
∃x (x, f ∩ σ) ∈ Ḃcσ .”
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So
∀∗µσ Kσ,f |= ∃p ∈ Qσ,f p ⊩Qσ,f

∃x (x, f ∩ σ) ∈ Ḃcσ .

For each such σ, let pσ be the Kσ,f -least condition in Qσ,f such that pσ ⊩Qσ,f

∃x(x, f ∩ σ) ∈ Ḃcσ . Let g ⊆ Qσ,f g ∈ Mσ be any generic over Kσ,f and
pσ ∈ g, then Kσ,f [g] |= ∃x(x, f ∩ σ) ∈ Bcσ . Since ∀∗µσ, Kσ,f [g] ⊆ Mσ and
R∩Mσ = R∩ σ, we have that ∀∗µσ ∃x ∈ σ (x, f ∩ σ) ∈ Bcσ . By normality, fix x
such that ∀∗µσ (x, f ∩σ) ∈ Bcσ . By Claim 5.8, (x, f) ∈ Bc and therefore, f ∈ A.

Using Claim 5.11, we produce an ∞-Borel code for A by the following cal-

culations. First let Zσ be a set of ordinals such that HOD
L(c,R)
c,{σ} = L[Zσ]. Let

K∞ = [σ 7→ Kσ,f ]µ, Q∞ = [σ 7→ Qσ,f ]µ, and Z∞ = [σ 7→ Zσ]µ. LetW = jµ ↾ κ.

f ∈ A⇔ ∀∗µσ Hσ,f |= “Kσ,f |= ∃p ∈ Qσ,f p ⊩Qσ,f
∃x (x, f ∩ σ) ∈ Ḃcσ”

⇔ ∀∗µσ L[Zσ][f ∩ σ] |= “Kσ,f |= ∃p ∈ Qσ,f p ⊩Qσ,f
∃x (x, f ∩ σ) ∈ Ḃcσ”

⇔ L[Z∞][jµ[f ]] |= “K∞ |= ∃p ∈ Q∞ p ⊩Q∞ ∃x (x, jµ[f ]) ∈ Ḃjµ[c]”

⇔ L[Z∞,W ][f ] |= “L[Z∞][jµ[f ]] |= “K∞ |= ∃p ∈ Q∞ p ⊩Q∞ ∃x (x, jµ[f ]) ∈ Ḃjµ[c]””.

The first two equivalences are from Claim 5.11. The third equivalence follows
from Claim 5.9. The last equivalence follows from the fact that one can easily
compute jµ[f ] from W and f for any f ⊆ κ. We note here that by Claim
5.11(ii), there is a fixed formula φ such that Hσ,f |= φ[σ, f ∩ σ, c] if and only if

Kσ,f |= ∃p ∈ Qσ,f p ⊩Qσ,f
∃x (x, f ∩ σ) ∈ Ḃcσ .

Lemma 5.7 and the discussion above show that an ∞-Borel code S for A
can be found and furthermore, S is OD(µ, c), where c is an ∞-Borel code for
A∗.

We now prove the “Furthermore” clause. We first start with the following
key lemma.

Lemma 5.12. Assume AD+. Suppose n ≥ 1 and A∗ ⊆ P(κ)n+1 is ∞-Borel for
some κ < Θ. Suppose c ⊆ λ is an ∞-Borel code for A∗ and µ is a supercompact
measure on ℘ω1

(P(κ) ∪ λ), then an OD(µ, c) ∞-Borel code for ∃P(κ)A∗ can be
found.

Proof. Without loss of generality, we assume n = 1. Let c = (T, ρ) be an ∞-
Borel code for A∗ and A = ∃P(κ)A∗. As in Lemma 5.7, we may assume T is
coded as a subset of λ < Θ.

Let µ be a supercompact measure on ℘ω1
(P(κ) ∪ λ).8 Let j = jµ be the ul-

trapower embedding associated with µ. Let us define the objectsMσ, Hσ,f ,Kσ,f

as above.

8If ADR holds, then such a µ exists and is unique. The existence (and uniqueness) of µ
follows from ADR by the discussion in Section 2.
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In the following, for a σ ∈ ℘ω1(P(κ)∪λ) the tree Tσ is defined as T ∩σ and
the assignment ρσ is defined as: for a terminal element t of Tσ, ρσ(t) = ρ(t)∩σ.
The code cσ = (Tσ, ρσ) will yield the set Bcσ by induction as follows:

� if t is a terminal element of Tσ, let Bcσ,t be the basic open set Oρσ(t) in the
space 2σ∩κ×2σ∩κ. In the case ρσ(t) = ∅, then we let Bcσ,t = 2σ∩κ×2σ∩κ.

� If SuccTσ (t) is a singleton of the form {s}, let Bcσ,t be the complement of
Bcσ,s in the space 2σ∩κ × 2σ∩κ.

� If SuccTσ (t) has more than one element, then let Bcσ,t be the union of all
sets of the form Bcσ,s where s is in SuccTσ (t).

� Bcσ = Bcσ,∅.

The following claim mirrors Claim 5.8. The difference is in Claim 5.13, x ⊆ κ
and as mentioned above, ∀∗µσ x ∩ σ ∈ Mσ but x ∩ σ is not necessarily in σ.
Fortunately, we do not care whether x ∩ σ ∈ σ in the following arguments, but
we do use the fact that x ∩ σ ∈Mσ.

Claim 5.13. For any (x, f) ∈ P(κ)n+1,

(x, f) ∈ A∗ ⇔ ∀∗µσ (x ∩ σ, f ∩ σ) ∈ Bcσ ⇔ (j[x], j[f ]) ∈ Bj[c].

Proof. Again, we assume n = 1 here. We prove the first equivalence. The proof
is by induction on the ranks of the nodes in T just like in Claim 5.8. If t is a
terminal node of T , it is easy to see that (x, f) ∈ Oρ(t) iff ∀∗µσ (x ∩ σ, f ∩ σ) ∈
Oρσ(t). Here note that by fineness, ∀∗µσ x, f ∈ σ. The case SuccT (t) is a singleton
{s} is easy and we leave it to the reader. We verify the case SuccT (t) has more
than one element and hence Bc,t =

⋃
s∈SuccT (t)Bc,s. If (x, f) ∈ Bc,t, then there

is an s ∈ SuccT (t) such that (x, f) ∈ Bc,s; since ∀∗µσ s ∈ SuccTσ (t) by fineness,
by the inductive hypothesis, ∀∗µσ (x∩ σ, f ∩ σ) ∈ Bcσ,s. So ∀∗µσ (x∩ σ, f ∩ σ) ∈
Bcσ,t. Conversely, suppose ∀∗µσ (x ∩ σ, f ∩ σ) ∈ Bcσ,t. Then for each such σ,
there is sσ ∈ SuccTσ (t) such that (x ∩ σ, f ∩ σ) ∈ Bcσ,sσ . By normality of µ,
there is a fixed s such that

∀∗µσ s ∈ SuccTσ (t) ∧ (x ∩ σ, f ∩ σ) ∈ Bcσ,s.

This implies s ∈ SuccT (t) and (x, f) ∈ Bc,t as desired.
The second equivalence follows from Los’ Theorem and the fact that: [σ 7→

σ ∩ f ]µ = j[f ], [σ 7→ σ ∩ x]µ = j[x], [σ 7→ σ ∩ cσ]µ = j[c]. See Claim 5.9.

Claim 5.14. Let f ⊆ κ, then

f ∈ A⇔ ∀∗µσ ∃x ∈ σ (x ∩ σ, f ∩ σ) ∈ Bcσ .

Proof. Fix f ⊆ κ. We have the following equivalences.

f ∈ A⇔ ∃x (x, f) ∈ A∗

⇔ ∃x ∀∗µσ (x ∩ σ, f ∩ σ) ∈ Bcσ

⇔ ∀∗µσ ∃x ∈ σ (x ∩ σ, f ∩ σ) ∈ Bcσ .
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The first equivalence is by definition. The second equivalence follows from Claim
5.13. The last equality uses the normality of µ when restricted to the non-
wellordered part, i.e. the normality of the measure induced by µ on ℘ω1

(P(κ)).
The proof of Claim 5.13 also uses the normality of µ, but only on the ordinal
part.

For each σ and f , let Pn
σ,f ∈ Kσ,f be the poset isomorphic to the algebra

of OD(c, {σ}, f ∩ σ)Mσ subsets of σn in Mσ for each n < ω and P∞
σ,f be the

inverse limit of the Pn
σ,f via the canonical projection maps (see Definition 4.5).

Let σ̇ be the P∞
σ,f -symmetric name that whenever G ⊆ Col(ω, σ) is generic over

Mσ, letting g ⊆ P∞
σ,f be the Kσ,f -generic induced by G, then σ̇g = σ and Mσ is

the corresponding symmetric extension of Kσ,f . Note that P∞
σ,f is countable in

L(c,R). By the previous claim, we now have the following equivalence:9

(†) f ∈ A⇔ ∀∗µσ Hσ,f |= “Kσ,f |= 1P∞
σ,f

⊩P∞
σ,f

“∃x ∈ σ̇ (x∩ σ̇, ˇf ∩ σ) ∈ Ḃcσ””.

To see the equivalence, first suppose f ∈ A. By Claim 5.14,

∀∗µσ ∃x ∈ σ Mσ |= “(x ∩ σ, f ∩ σ) ∈ Ḃcσ”.

By the forcing theorem and homogeneity of P∞
σ,f , we have ∀∗µσ,

Kσ,f |= 1P∞
σ,f

⊩P∞
σ,f

“∃x ∈ σ̇ (x ∩ σ̇, ˇf ∩ σ) ∈ Ḃcσ”.

But then the right hand side of the equivalence follows from Claim 5.11.
For the converse, assume the right hand side. For each such σ, there is a

g ∈ V such that g ⊆ P∞
σ,f is generic over Kσ,f and σ̇g = σ, then

∃x ∈ σ (x ∩ σ, f ∩ σ) ∈ Bcσ .

By normality of µ, there is an x such that ∀∗µσ x ∈ σ ∧ (x∩ σ, f ∩ σ) ∈ Bcσ . By
Claim 5.14. we get f ∈ A. (†) has been verified.

Now we produce an ∞-Borel code for A by similar calculations as before,

using (†). First let Zσ be a set of ordinals such that HOD
L(c,R)
c,{σ} = L[Zσ]. Let

K∞ = [σ 7→ Kσ,f ]µ, P∞ = [σ 7→ P∞
σ,f ]µ, c∞ = [σ 7→ c]µ, σ̇∞ = [σ 7→ σ̇]µ, and

Z∞ = [σ 7→ Zσ]µ. Let W = jµ ↾ κ.

f ∈ A⇔ ∀∗µσ Hσ,f |= “Kσ,f |= 1P∞
σ,f

⊩P∞
σ,f

“∃x ∈ σ̇ (x ∩ σ̇, ˇf ∩ σ) ∈ Ḃcσ””

⇔ ∀∗µσ L[Zσ][f ∩ σ] |= “Kσ,f |= 1P∞
σ,f

⊩P∞
σ,f

“∃x ∈ σ̇ (x ∩ σ̇, ˇf ∩ σ) ∈ Ḃcσ””

⇔ L[Z∞][j[f ]] |= “K∞ |= 1P∞ ⊩P∞

“∃x ∈ σ̇∞ (x ∩ σ̇∞, ˇj[f ]) ∈ Ḃj[c]””

⇔ L[Z∞,W ][f ] |= “L[Z∞][j[f ]] |= “K∞ |= 1P∞ ⊩P∞

“∃x ∈ σ̇∞ (x ∩ σ̇∞, ˇj[f ]) ∈ Ḃj[c]”””.

9We use the canonical name ˇf ∩ σ for f ∩ σ.
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As before, the above calculations show that A is ∞-Borel and an OD(c, µ)
∞-Borel code for A can be found.

We now assume V = L(P(R)) and ADR. As mentioned above, we have a
unique supercompact measure µ on ℘ω1

(X) for any set X that is a surjective
image of R. Lemma 5.12 applied to the unique, hence OD measures µ, shows
that the inverse limit BC∞,ω is well-defined. Let X = P(κ) and A ⊆ X be
arbitrary. We give an alternative proof that A has an ∞-Borel code. Let φ, f
define A where f ∈ γω for some γ < Θ, i.e. for any x ⊂ κ,

x ∈ A⇔ V |= φ[x, f ].

We can construe f as a countable subset of γ. As in the argument of [Cha19,
Corollary 7.20] but now using Lemmata 5.12 and 4.6, we have, letting Z be such
that HOD = L[Z] and gf,x ⊆ BC∞,2 be the generic adding the pair (f, x),

x ∈ A⇔ HOD[gf,x] |= 1BC∞,ω/gf,x
⊩BC∞,ω/gf,x

HOD(
⋃
β<Θ

P(β)) |= φ[x, f ]

⇔ L[Z, f, x] |= 1BC∞,ω/gf,x
⊩BC∞,ω/gf,x

HOD(
⋃
β<Θ

P(β)) |= φ[x, f ]

The second equivalence, as mentioned before, follows from 4.2. The above easily
yields an OD(f) ∞-Borel code for A. In particular, if A is OD, then A has an
OD ∞-Borel code. The argument given easily generalizes to show that for any
set of ordinals S, for any κ < Θ, if a set A ⊆ P(κ) is OD(S), then A has an
OD(S) ∞-Borel code. This completes the proof of the theorem.

Remark 5.15. Theorem 1.5 shows that BC∞,ω is isomorphic to P∞,ω if AD++
ADR+V = L(P(R)) holds.

Proof of Corollary 1.6. Using BCS

∞,ω, one can show as in the proof of Corollary
1.4 that for any set of ordinals S, any x ⊆ κ for any κ < Θ, we have

HODS [x] = HODS,x.

The key points are that the limit BCS

∞,ω is well-defined by Theorem 1.5 and
that V = HODS(

⋃
γ<Θ P(γ)) is a symmetric extension of HODS induced by a

generic H ⊆ BCS

∞,ω.

6 Questions

We collect a few questions left open from the above analysis.

Question 6.1. (i) Assume AD+. Suppose µ is an arbitrary countably com-
plete measure on some set X. Must Ult(V, µ) be well-founded?
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(ii) Assume AD+. Suppose µ is an arbitrary supercompact measure on ℘ω1(X)
for some set X. Suppose (Mσ : σ ∈ ℘ω1(X)) is such that for each σ, Mσ is
a transitive model of ZF−. Must Los’s theorem holds for the ultraproduct∏

σMσ/µ?

(iii) Does AD+ and ω1 is R-supercompact imply there must be a unique normal,
fine measure on ℘ω1(R)?

Regarding 6.1(i), Solovay [Sol06] shows that cof(Θ) > ω + DCR + ¬DCP(R)
implies there is a countably complete measure µ on cof(Θ) such that Ult(V, µ)
is ill-founded. We do not know if a model of AD+ satisfying the hypothesis
Solovay’s proof requires can exist. Regarding (iii), by results of Solovay and
Woodin, ADR + DCR implies that there is a unique normal, fine measure on
℘ω1(R). The minimal model of the theory “AD+ and ω1 is R-supercompact”
also satisfies the uniqueness of such a measure (cf [Tra15] and [RT18]). It is
known that the conclusion of (iii) is false in the absence of AD+.

Question 6.2. Does AD+ imply AD++?

By Theorem 1.5, Question 6.2 has a positive answer if we additionally assume
ADR. We do not know even in L(R), every subset of P(ω1) has an ∞-Borel
code. However, it is known that Question 6.2 has a positive answer in various
AD++¬ADR models not of the form V = L(P(R)). For instance, in the model of
the form L(R, µ) that satisfies AD+ + “µ is a normal fine measure on ℘ω1

(R)”,
for every κ < Θ, every A ⊆ P(κ) has an ∞-Borel code. Even if AD++ is not a
consequence of AD+, one can still conjecture.

Conjecture 6.3 (AD+). The ABCD Conjecture holds.
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