∞ -Borel codes in natural models of AD^+

William Chan^{*}, Stephen Jackson[†], Nam Trang[‡]

January 2024

Abstract

The paper studies the existence and non-existence of ∞-Borel codes for subsets of $\mathcal{P}(\kappa)$ for $\omega < \kappa < \Theta$ under AD^+ . We show that for $\kappa < \Theta$, all subsets of κ^{ω} and $\mathcal{P}_{\omega_1}(\kappa)$ are ∞ -Borel; however, there is a subset of $\mathcal{P}(\omega_1)$ that has no ∞ -Borel codes. The latter is due to Woodin. We define a topology τ on $\mathcal{P}(\kappa)$ and show that every τ -Borel set is ∞ -Borel; this gives a sufficient condition for ∞ -Borelness for subsets of $\mathcal{P}(\kappa)$. As an application, we use these ideas to show in $L(\mathbb{R})$, the ABCD Conjecture holds; this is a special case of a more general theorem due to the first author.

1 Introduction

This paper deals with the topic of ∞ -Borel codes, which are generalizations of Borel codes for Borel sets. Borel codes are reals that canonically code a Borel set of reals. ∞-Borel codes are sets of ordinals that canonically code (often times) much more complicated sets of reals or elements of the space λ^{κ} for some ordinals κ, λ . ZFC implies that every set of reals is Suslin and therefore, has an ∞ -Borel code; however, it is not known that the theory $ZF + AD$ implies this. The axiom AD^+ , due to W. H. Woodin, is a strengthening of AD. Part of AD^+ stipulates that every set of reals has an ∞ -Borel code. It is not known AD implies AD^+ , but every known model of AD satisfies AD^+ .

 ∞ -Borel codes have a number of applications within the general AD⁺ theory. For example, under ZF, suppose there are no uncountable sequences of distinct reals and every subset of $\mathcal{P}(\omega)$ has an ∞ -Borel code, then every set of reals has the Ramsey property. In particular, AD^+ implies this regularity property for sets of reals. It is not known if AD implies this.

This paper gives partial answers to the following two questions about ∞ -Borel codes under AD⁺.

^{*}Technical University of Vienna

University of North Texas

University of North Texas

- (i) Given a set A, can one construct an ∞ -Borel code that is relatively simple (in definability) compared to the complexity of A?
- (ii) For a cardinal $\kappa > \omega$, are subsets of $\mathcal{P}(\kappa) \infty$ -Borel?

Regarding (i), Woodin has shown the following unpublished theorem, concerning the definability of ∞ -Borel codes under AD⁺.

Theorem 1.1 (Woodin). Assume $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$. Suppose $X = \mathcal{P}(\omega)$ or ω_{ω} and $A \subseteq X$ is OD. Then A has an OD ∞ -Borel code. Suppose furthermore that $V = L(S, \mathbb{R})$ for some set $S \subseteq ON$, then every $OD(S)$ $A \subseteq X$ has an $OD(S) \infty$ -Borel code.

Remark 1.2. The proof of the "furthermore" clause of Theorem [1.1](#page-1-0) can be easily adapted from a proof of a special case when $V = L(\mathbb{R})$ given in [\[Cha19\]](#page-27-0) or the proof of the first part of the theorem. The main challenge is the proof of the first part of the theorem.

[\[CJ\]](#page-27-1) also used Theorem [1.1](#page-1-0) to prove an analog of a result of Harrington-Slaman-Shore [\[HSS17\]](#page-27-2) concerning the pointclass Σ_1^1 : Assuming AD^+ and $V =$ $L(\mathcal{P}(\mathbb{R}))$, if $H \subseteq \mathbb{R}$ has the property that there is a nonempty OD set $K \subseteq \mathbb{R}$ so that H is OD_z for all $z \in K$, then H is OD.

In [\[IT18,](#page-27-3) Therem 5], Ikegami and the third author prove the following the-orem.^{[1](#page-1-1)} We will outline a proof here. In the following, Θ is the supremum of ordinals α such that there is a surjection from R onto α and θ_0 is the supremum of ordinals α such that there is an OD surjection from R onto α

Theorem 1.3. Assume AD^+ . Suppose $\kappa < \Theta$, $X = \omega_{\kappa}$ and $A \subseteq X$, then A has an ∞ -Borel code. Additionally, suppose $V = L(\mathcal{P}(\mathbb{R}))$ and either $\Theta = \theta_0$ or AD_R, then for any set of ordinals S, for every $OD(S)$ $A \subseteq X$, A has an $OD(S)$ ∞-Borel code.

The above theorems have the following corollary.

- **Corollary 1.4.** 1. (Woodin) Assume $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$. Then for any $x \in \omega^{\omega}$, $\text{HOD}_x = \text{HOD}[x]$. Furthermore, suppose for some set of ordinals $S, V = L(S, \mathbb{R}),$ then for any such x, $HOD_{S,x} = HOD_S[x].$
	- 2. Assume $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$. Additionally, assume either $\Theta = \theta_0$ or $AD_{\mathbb{R}}$, then for any set of ordinals S, for any $\kappa < \Theta$, for any $x \in \kappa^{\omega}$, $HOD_{S,x} = HOD_S[x].$

The following theorem of Woodin, Theorem [1.5,](#page-1-2) answers (ii) negatively. We include its proof here with Woodin's permission.

Theorem 1.5 (Woodin). Assume AD^+ . There is a set $A \subseteq \mathcal{P}(\omega_1)$ that has no ∞-Borel code.

¹The authors of $[T18]$ did not state the theorem this way. Furthermore, to prove the first clause of $[T118,$ Therem 5, one does not need the supercompactness of ω_1 , strong compactness suffices.

Part of the proof of Theorem [1.5](#page-1-2) is Lemma [6.1,](#page-20-0) which shows Corollary [1.4](#page-1-3) cannot be generalized to uncountable sequences. Inspecting the proof of Theorem [1.5,](#page-1-2) one sees that this implies there is an OD set $A \subseteq \mathcal{P}(\kappa)$ that has no OD ∞-Borel codes. However, we can prove

Theorem 1.6. Assume AD^+ . Let $\kappa < \Theta$ and $A \subseteq \mathcal{P}(\kappa)$. There is a set $A^* \subseteq \mathbb{R} \times \mathcal{P}(\kappa)$ such that $A = \{f \subseteq \kappa : \exists x \in \mathbb{R} \ (x, f) \in A^*\}$ and A^* is ∞ -Borel.

The last two theorems imply that in general, ∞ -Borel subsets of $\mathcal{P}(\kappa)^n$ (for $n > 1$) are not closed under projections. We give a sufficient condition for a set $A \subseteq \mathcal{P}(\kappa)$ to be ∞ -Borel for $\kappa > \omega$.

Definition 1.1. Let $\kappa > \omega$ and $F \subseteq \kappa$. Let $\sigma \in \mathcal{P}_{\omega_1}(\kappa)$ and define $N_{\sigma}(F)$ to be the set of $F' \subseteq \kappa$ such that

$$
\forall \alpha \in \sigma \ (\alpha \in F' \Leftrightarrow \alpha \in F).
$$

Let τ be the topology on $\mathcal{P}(\kappa)$ generated by the sets $N_{\sigma}(F)$ as basic open sets.

Theorem 1.7. Assume AD^+ . Let $\kappa < \Theta$ and $A \subseteq \mathcal{P}(\kappa)$. Suppose A is τ -Borel. Then A is ∞ -Borel.

The problem of distinguishing cardinalities of infinite sets under AD^+ is an fundamental problem concerning structural properties of $AD⁺$ models and is notoriously difficult. Cantor's original formulation of cardinalities states that X, Y have the same cardinality (denoted $|X| = |Y|$) if and only if there is a bijection $f: X \to Y$. $|X| \leq |Y|$ if and only if there is an injection of X into Y. And $|X| < |Y|$ if and only if $|X| \leq |Y|$ but $\neg(|Y| \leq |X|)$. The Axiom of Choice (AC) implies that every set is well orderable, and hence the class of cardinalities forms a wellordered class under the injection relation. Under AD, the class of cardinalities is not wellorderable; in fact, $\neg(|\mathbb{R} \leq |\omega_1|)$ and $\neg(|\omega_1| \leq |\mathbb{R}|)$. The following conjecture gives a sufficient and necessary condition for when the cardinalities of two sets of the form α^{β} , γ^{δ} for infinite cardinals $\alpha, \beta, \gamma, \delta$ are comparable.

Conjecture 1.8 (The ABCD Conjecture). Assume ZF. Let $\alpha, \beta, \gamma, \delta < \Theta$ be infinite cardinals. Suppose $\beta \leq \alpha, \delta \leq \gamma$. Then

$$
|\alpha^{\beta}| \le |\gamma^{\delta}| \text{ if and only if } \beta \le \delta \text{ and } \alpha \le \gamma.
$$

Some remarks are in order about the conjecture. First, the conjecture implies in particular that if $\delta < \beta$ or if $\gamma < \alpha$, then α^{β} cannot inject into γ^{δ} . One easily sees that ZFC implies the failure of the ABCD Conjecture; one can see that by, for instance, noticing that ZFC implies $|\omega^{\omega}| \geq |\omega_1^{\omega}|^2$ $|\omega^{\omega}| \geq |\omega_1^{\omega}|^2$; in this case, $\gamma = \omega < \alpha = \omega_1$, yet ω_1^{ω} injects into ω^{ω} . The conjecture deals with the case $\beta \leq \alpha, \delta \leq \gamma$ being infinite cardinals, but the other cases either have been known to follow from AD^+ or can simply be reduced to the cases the conjecture deals with. For instance, if $\beta > \alpha$ and $\delta > \gamma$, then $|\alpha^{\beta}| = |\mathcal{P}(\beta)|$ and $|\gamma^{\delta}| = |\mathcal{P}(\delta)|$.

²If ZFC holds, Θ is the successor of the continuum and $\omega_1 < \Theta$.

AD⁺ implies that $|\mathcal{P}(\beta)| \leq |\mathcal{P}(\delta)|$ if and only if $\beta \leq \delta < \Theta$. If $\beta > \alpha$ and $\delta \leq \gamma$, then we really compare $|\beta^{\beta}|$ and $|\gamma^{\delta}|$. It is important here that the cardinals in the conjecture are infinite and are $\langle \Theta$. For instance, when $\beta = 1$, α is an infinite cardinal $>\gamma\geq\delta$, then $|\alpha^{\beta}|=|\alpha|$ and AD^+ implies that α cannot inject into $\mathcal{P}(\gamma)$ and therefore cannot inject into γ^{δ} if $\alpha < \Theta$. On the other hand, $\alpha = 3$ can inject into $\mathcal{P}(\gamma)$ for $\gamma = 2$, or for example, $\alpha = \gamma^+$ and $\gamma \geq \Theta$, then α does inject into $\mathcal{P}(\gamma)$ if $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$ holds. Also, if $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$ holds, it is easy to see that $(\Theta^+)^{\omega}$ injects into Θ^{Θ} ; this shows the failure of the conjecture for $\alpha = \Theta^+, \beta = \omega, \delta = \gamma = \Theta$.

The first author has recently shown that AD^+ implies the $ABCD$ Conjecture. This result will appear in an upcoming paper (cf. [\[Cha24\]](#page-27-4)). Partial results concerning this conjecture had been established in [\[CJT24,](#page-27-5) [CJT22,](#page-27-6) [CJT23,](#page-27-7) [Woo06\]](#page-29-0). In this paper, we outline how the ABCD Conjecture can be shown to hold in $L(\mathbb{R})$ using Theorem [1.7.](#page-2-1)

In Section [2,](#page-3-0) we review basic facts about AD^+ and ∞ -Borel codes. In Section [3,](#page-6-0) we review homogeneous and weakly homogeneous sets in AD^+ . In Section [4,](#page-8-0) we review Vopěnka algebras, which is a key tool in producing ∞ -Borel codes in the AD^+ context. We prove [1.1](#page-1-0)[,1.3,](#page-1-4) [1.4,](#page-1-3) [1.6](#page-2-2) in Section [5.](#page-14-0) Section [6](#page-20-1) proves Theorem [1.5.](#page-1-2) Section [7](#page-24-0) discusses the topology τ and outlines the proof that the ABCD conjecture holds in $L(\mathbb{R})$. Some conjectures and open questions are presented in Section [8.](#page-26-0)

The first author is partially supported by NSF grants DMS-1945592 and DMS-1800323 and FWF grants I6087 and Y1498. The second author is partially supported by NSF grant DMS-1800323. The third author is partially supported by NSF grant DMS-1945592.

2 $\,$ AD⁺ and ∞ -Borel codes

We now review basic notions on determinacy axioms. For a nonempty set X , the **Axiom of Determinacy in** X^{ω} (AD_X) states that for any subset A of X^{ω} , in the Gale-Stewart game with the payoff set A, one of the players must have a winning strategy. We write AD for AD_{ω} . The ordinal Θ is defined as the supremum of ordinals which are surjective images of \mathbb{R} . Under **ZF**+AD, Θ is very big, e.g., it is a limit of measurable cardinals while under $\mathsf{ZFC}\xspace$, Θ is equal to the successor cardinal of the continuum $|\mathbb{R}|$. Ordinal Determinacy states that for any $\lambda < \Theta$, any continuous function $\pi \colon \lambda^{\omega} \to \omega^{\omega}$, and any $A \subseteq \omega^{\omega}$, in the Gale-Stewart game with the payoff set $\pi^{-1}(A)$, one of the players must have a winning strategy. In particular, Ordinal Determinacy implies AD while it is still open whether the converse holds under ZF+DC.

For $\lambda < \Theta$, we write $\mathcal{P}_{\lambda}(\mathbb{R})$ for the set of $A \subseteq \mathbb{R}$ such that the Wadge rank of A is $\langle \lambda \rangle$. For any set X, we write $\varphi_{\omega_1}(X)$ for the set of countable subsets of X. We write D for the set of Turing degrees. For $x, y \in \omega^{\omega}$, we write $x \leq_T y$, $x \equiv_T y$ for x is Turing reducible to y and x is Turing equivalent to y respectively. A Turing degree has the form $[x]_T = \{y \in \omega^\omega : x \equiv_T y\}.$

We will introduce the notion of ∞ -Borel codes. Before that, we review some

terminology on trees. Given a set X , a **tree on** X is a collection of finite sequences of elements of X closed under initial segments. Given an element t of $X^{\leq \omega}$, lh(t) denotes its length, i.e., the domain or the cardinality of t. Given a tree T on X and elements s and t of T , s is an **immediate successor of** t in T if s is an extension of t and $lh(s) = lh(t) + 1$. Given a tree T on X and an element t of T, $Succ_T(t)$ denotes the collection of all immediate successors of t in T. An element t of a tree T on X is **terminal** if $Succ_T(t) = \emptyset$. For an element t of a tree T on X, term (T) denotes the collection of all terminal elements of T. Given a tree T on X, [T] denotes the collection of all $x \in X^{\omega}$ such that for all natural numbers $n, x \restriction n$ is in T. A tree T on X is well**founded** if $[T] = \emptyset$. We often identify a tree T on $X \times Y$ with a subset of the set $\{(s,t) \in X^{\leq \omega} \times Y^{\leq \omega} \mid \mathrm{lh}(s) = \mathrm{lh}(t)\}\)$, and $p[T]$ denotes the collection of all $x \in X^{\omega}$ such that there is a $y \in Y^{\omega}$ with $(x, y) \in [T]$.

Definition 2.1. Let λ, κ be non-zero ordinals.

- 1. An ∞ -Borel code in λ^{κ} is a pair (T, ρ) where T is a well-founded tree on some ordinal γ , and ρ is a function from term(T) to $\kappa \times \lambda$.
- 2. Given an ∞ -Borel code $c = (T, \rho)$ in λ^{κ} , to each element t of T, we assign a subset $B_{c,t}$ of λ^{κ} by induction on t using the well-foundedness of the tree T as follows:
	- (a) If t is a terminal element of T, let $B_{c,t}$ be the basic open set $O_{\rho(t)}$ in λ^{κ} . Here $\rho(t)$ is a pair of ordinals $(\alpha, \beta) \in \kappa \times \lambda$ and $O_{\rho(t)}$ has the form $\{f \in \lambda^{\kappa} : \rho(t) \in f\}.$
	- (b) If $\text{Succ}_T(t)$ is a singleton of the form $\{s\}$, let $B_{c,t}$ be the complement of $B_{c,s}$ in the space λ^{κ} .
	- (c) If $Succ_T(t)$ has more than one element, then let $B_{c,t}$ be the union of all sets of the form $B_{c,s}$ where s is in $\text{Succ}_T(t)$.

We write B_c for $B_{c,\emptyset}$.

3. A subset A of λ^{κ} is ∞ -**Borel** if there is an ∞ -Borel code c in λ^{κ} such that $A = B_c$.

We will identify $\mathcal{P}(\lambda)$ with 2^{λ} . So an ∞ -Borel code for $A \subseteq \mathcal{P}(\lambda)$ is an ∞ -Borel code for a subset of 2^{λ} . We can generalize the above definitions of ∞ -Borel codes in a number of ways. One way is we can replace λ in Definition [2.1](#page-4-0) by a set of ordinals S. The definition of an ∞ -Borel code for a set $A \in \mathcal{P}(S^{\kappa})$ is modified in an obvious way from Definition [2.1.](#page-4-0) We can also generalize the definition of ∞ -Borel codes in $\lambda_1^{\kappa_1} \times \cdots \times \lambda_n^{\kappa_n}$ for some $n \in \omega$ (with the product topology) in an obvious way. We leave the details to the reader.

We will also use the following characterization of ∞ -Borelness:

Fact 2.1. Let λ, κ be a non-zero ordinals and A be a subset of λ^{κ} . Then the following are equivalent:

1. A is ∞ -Borel, and

2. for some formula ϕ and some set S of ordinals, for all elements x of λ^{κ} , x is in A if and only if $L[S, x] \models ``\phi(S, x)"$.

Proof. For the case $\lambda = 2$, one can refer to [\[Lar,](#page-28-0) Theorem 8.7]. The general case can be proved in the same way. П \Box

Remark 2.2. In fact, the second item of Fact [2.1](#page-4-1) is equivalent to the following using Lévy's Reflection Principle:

• for some $\gamma > \lambda, \kappa$, some formula ϕ , and some set S of ordinals, for all elements x of λ^{κ} , x is in A if and only if $L_{\gamma}[S, x] \models \text{``}\phi(S, x)\text{''}.$

Throughout this paper, we will freely use either of the equivalent conditions of ∞-Borelness.

We now introduce the axiom AD^+ , and review some notions on Suslin sets. The axiom AD^+ states that (a) $DC_{\mathbb{R}}$ holds, (b) Ordinal Determinacy holds, and (c) every subset of ω^{ω} is ∞ -Borel. A subset A of ω^{ω} is **Suslin** if there are some ordinal λ and a tree T on $\omega \times \lambda$ such that $A = p[T]$. A is **co-Suslin** if the complement of A is Suslin. An infinite cardinal λ is a **Suslin cardinal** if there is a subset A of ω^{ω} such that there is a tree on $\omega \times \lambda$ such that $A = p[T]$ while there are no $\gamma < \lambda$ and a tree S on $\omega \times \lambda$ such that $A = p[S]$. Under ZF+DC_R, AD⁺ is equivalent to the assertion that Suslin cardinals are closed below Θ in the order topology of $(\Theta, <)$. Another equivalence that is often useful in applications is the statement that $AD + V = L(\mathcal{P}(\mathbb{R}))$ holds and every Σ_1 statement with Suslin co-Suslin sets as parameters true in V is true in a transitive model M of ZF^- + DC_R coded by a Suslin co-Suslin set of reals A. We call this Σ_1 reflection into the Suslin co-Suslin sets (or sometimes just Σ_1 -reflection). Another form of Σ_1 -reflection that is also useful is Σ_1 -reflection into the Δ_1^2 sets, which says that $AD+ V = L(\mathcal{P}(\mathbb{R}))$ holds and every Σ_1 statement with Δ_1^2 sets as parameters true in V is true in a transitive model M of ZF⁻ + DC_R coded by a Δ_1^2 set of reals A.

The sequence $(\theta_{\alpha} : \alpha \leq \Omega)$ is called the **Solovay sequence** and is defined as follows. θ_0 is the supremum of ordinals α such that there is an OD surjection $\pi : \mathbb{R} \to \alpha$. For limit $\alpha \leq \Omega$, $\theta_{\alpha} = \sup_{\beta < \alpha} \theta_{\beta}$. Suppose θ_{α} has been defined for $\alpha < \Omega$, letting $A \subseteq \mathbb{R}$ be of Wadge rank $\theta_{\alpha}, \theta_{\alpha+1}$ is the supremum of α such that there is an $OD(A)$ surjection $\pi : \mathbb{R} \to \alpha$. $\Theta = \theta_{\Omega}$.

The following fundamental facts about AD^+ are due to Woodin.

Theorem 2.3 (Woodin). Assume $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$. The following hold.

- 1. $V = L(J, \mathbb{R})$ for some set of ordinals J if and only if $AD_{\mathbb{R}}$ fails.
- 2. For any real x, $HOD_x = L[Z]$ for some $Z \subseteq \Theta$.

We will not prove Theorem [2.3.](#page-5-0) Instead, we will discuss some key ingredients that go into the proof. The proof of part (2) can be found in [\[Tra14\]](#page-29-1). The set Z basically codes a Vopěnka algebra, to be discussed in the next section. For part (1), let κ be the largest Suslin cardinal and $S(\kappa)$ be the class of all κ -Suslin sets. If $AD_{\mathbb{R}}$ fails, $\kappa < \Theta$. In that case, let T be a tree projecting to a universal κ -Suslin set and define the equivalence relation \equiv_T on R as: $x \equiv_T y$ iff $L[T, x] = L[T, y]$. We also define $x \leq_T y$ iff $x \in L[T, y]$. The measure μ_T on \mathbb{R}/\equiv_T is defined as: $A \in \mu_T$ iff $\exists x \{y : x \leq_T y\} \subseteq A$. μ_T is non-principal and countably complete. Let $J = [x \mapsto T]_{\mu_T}$. One can show $V = L(J, \mathbb{R})$.

We end this section by proving a basic fact concerning supercompact measures on $\wp_{\omega_1}(X)$ for some set X. Assume AD^+ + $AD_{\mathbb{R}}$. Let X be a set such that there is a surjection $\pi : \mathbb{R} \to X$. Let μ be the Solovay measure. By a theorem of Solovay, cf. [\[Sol06\]](#page-28-1), $AD_{\mathbb{R}}$ implies μ exists and is the club filter on $\wp_{\omega_1}(\mathbb{R})$. Let μ_X be the measure on $\wp_{\omega_1}(X)$ induced by μ and π . This means μ_X is defined as: for any $A \subseteq \wp_{\omega_1}(X)$,

$$
A \in \mu_X \Leftrightarrow \pi^{-1}[A] \in \mu.
$$

By a theorem of Woodin (cf. [\[Woo83\]](#page-29-2)), μ_X is the unique normal, fine, countably complete measure on $\wp_{\omega_1}(X)$. In fact, μ_X is just the club filter on $\wp_{\omega_1}(X)$.

Fact 2.4. Assume $V = L(\mathcal{P}(\mathbb{R})) + AD^+ + AD_{\mathbb{R}}$. The ultrapower $Ult(V, \mu_X)$ is well-founded.

Proof. Suppose not. By Σ_1 -reflection, there is a transitive model N of the form $L_{\alpha}(\mathcal{P}_{\beta}(\mathbb{R}))$ for $\alpha, \beta < \Theta$ that satisfies $\mathsf{ZF}^- + \mathsf{AD}_{\mathbb{R}}$, $\mathbb{R} \cup \wp_{\omega_1}(X) \subseteq N$, and $N \models$ "the ultrapower $M = \text{Ult}(V,\mu_X)$ is ill-founded". Now since μ_X is the club measure on $\wp_{\omega_1}(X)$,

$$
\mu_X^N = \mu_X \cap N.
$$

Since $DC_{\mathbb{R}}$ holds and that there is a surjection from \mathbb{R} onto N, we can find a sequence $(f_n : n < \omega)$ such that $([f_n]_{\mu \cap N} : n < \omega)$ witnesses the ill-foundedness of the ultraproduct in N. Let $A_n = \{ \sigma : f_{n+1}(\sigma) \in f_n(\sigma) \}$ for each n. Then $A_n \in \mu \cap N$ for each *n*. By countable completeness of μ , $\bigcap_n A_n \neq \emptyset$. Let $\sigma \in \bigcap_n A_n$. Then the sequence $(f_n(\sigma) : n < \omega)$ is a ϵ -descending sequence. Contradiction.

3 Homogeneously Suslin sets and applications

We summarize basic facts about (weakly) homogeneously Suslin sets. For a more detailed discussion, the reader should consult for example [\[Ste09\]](#page-28-2). Recall we identify the set of reals R with the Baire space ω_{ω} .

Given an uncountable cardinal κ , and a set Z, $meas_{\kappa}(Z)$ denotes the set of all κ -additive measures on $Z^{\lt \omega}$. If $\mu \in meas_{\kappa}(Z)$, then there is a unique $n < \omega$ such that $Z^n \in \mu$ by κ -additivity; we let this $n = dim(\mu)$. If $\mu, \nu \in meas_{\kappa}(Z)$, we say that μ projects to ν if $dim(\nu) = m \le dim(\mu) = n$ and for all $A \subseteq Z^m$,

$$
A \in \nu \Leftrightarrow \{u : u \restriction m \in A\} \in \mu.
$$

For each $\mu \in meas_{\kappa}(Z)$, let $j_{\mu}: V \to Ult(V, \mu)$ be the canonical ultrapower map by μ . In this case, there is a natural embedding from the ultrapower of V by ν into the ultrapower of V by μ :

 $\pi_{\nu,\mu}: Ult(V,\nu) \rightarrow Ult(V,\mu)$

defined by $\pi_{\nu,\mu}([f]_{\nu}) = [f^*]_{\mu}$ where $f^*(u) = f(u \restriction m)$ for all $u \in Z^n$. A tower of measures on Z is a sequence $\langle \mu_n : n \langle k \rangle$ for some $k \leq \omega$ such that for all $m \leq n < k$, $\dim(\mu_n) = n$ and μ_n projects to μ_m . A tower $\langle \mu_n : n < \omega \rangle$ is *countably complete* if the direct limit of $\{Ult(V,\mu_n), \pi_{\mu_m,\mu_n} : m \leq n < \omega\}$ is well-founded. We will also say that the tower $\langle \mu_n : n < \omega \rangle$ is well-founded.

Definition 3.1. Given a tree T on $\omega \times \kappa$, a homogeneity system for T is a system $\langle \mu_s : s \in \omega^{\langle \omega \rangle}$ of countably complete measures on $\kappa^{\langle \omega \rangle}$ such that for all $s, t \in \omega^{\leq \omega}$ and $x \in \omega^{\omega}$, the following hold:

- $\mu_s(T_s) = 1$, here $T_s = \{ t \in \kappa^{|s|} : (s, t) \in T \},$
- $s \subseteq t \Rightarrow \mu_t$ projects to μ_s , and
- $x \in p[T] \Rightarrow \langle \mu_{x \upharpoonright n} : n \langle \omega \rangle$ is wellfounded.

If such a system exists for T , we say that T is **homogeneous**.

 $A = p[T]$ is κ -homogeneous if the measures $\langle \mu_s : s \in \omega^{\langle \omega \rangle} \rangle$ are κ -complete. A is $\langle \gamma \rangle$ -homogeneous if it is κ -homogeneous for all $\kappa \langle \gamma \rangle$.

Definition 3.2. The tree T on $\omega \times \kappa$ is **weakly homogeneous** if there is a weak homogeneity system $\bar{\mu}$ associated with T, i.e., there is a system $\langle M_s : s \in \omega^{\langle \omega \rangle} \rangle$ such that the following hold:

- for each s, M_s is a countable set of countably complete measures on $\kappa^{\lt \omega}$ such that for each $\mu \in M_s$, $\mu(T_s) = 1$, and
- $x \in p[T] \Rightarrow$ there is a wellfounded tower $\langle \mu_n : n \langle \omega \rangle$ such that $\forall n \mu_n \in$ $M_{x\upharpoonright n}$.

 $A = p[T] \subseteq \mathbb{R}$ is κ -weakly homogeneous iff the measures in the weak homogeneity system $\bar{\mu}$ associated with T are κ -complete. A is $\lt \gamma$ -weakly homogeneous if it is κ -weakly homogeneous for all $\kappa < \gamma$.

Here are some facts about homogeneous sets and weakly homogeneous sets under AD and AD^+ . Part (iii) of the theorem is an improvement of part (ii). We will only need part (i) of the theorem in this paper; but we state parts (ii) and (iii) for completeness.

- **Theorem 3.1.** (i) (Martin, [\[MS08\]](#page-28-3)) Assume AD and suppose $A \subseteq \mathbb{R}$ is Suslin co-Suslin, then A is $\lt \Theta$ -homogeneously Suslin.
- (ii) (Martin-Woodin, [\[MW08\]](#page-28-4)) Assume $AD_{\mathbb{R}}$. Then every tree is $\lt \Theta$ -weakly homogeneous.
- (iii) (Woodin, [\[Lar23\]](#page-28-5)) Assume AD^+ . Then every tree T on $\omega \times \kappa$ for κ less than the largest Suslin cardinal is $\langle \Theta$ -weakly homogeneous and hence every Suslin co-Suslin set of reals is $< \Theta$ -weakly homogeneous.

Theorem [3.1](#page-7-0) allows us to prove the following facts.

Lemma 3.2. Assume $ZF + AD^+ + V = L(\mathcal{P}(\mathbb{R}))$. Then for any set C of reals that is Suslin co-Suslin, there is an $s \in \bigcup_{\gamma < \Theta} \gamma^{\omega}$ such that C is OD from s and that C is in $\text{HOD}_{\{s\}}(\mathbb{R})$. If in addition $\overline{AD}_{\mathbb{R}}$ holds, then any set of reals C is OD from some $s \in \bigcup_{\gamma < \Theta} \gamma^{\omega}$ and that $C \in \text{HOD}_{\{s\}}(\mathbb{R})$.

Proof. See [\[IT23,](#page-27-8) Lemma 2.11].

 \Box

We also have the following variation, in fact a refinement, of the above lemma that will be useful in Section [5.](#page-14-0)

Lemma 3.3. Assume $ZF + AD^+ + V = L(P(\mathbb{R}))$. Let $\mathbb{C} = \text{HOD}(\bigcup_{\gamma < \Theta} \gamma^{\omega})$. Let A be Suslin co-Suslin, then $A \in \mathbb{C}$.

Proof. Let A be Suslin co-Suslin. By Theorem [3.1,](#page-7-0) $A = p[T]$ where T is homogeneously Suslin witnessed by the sequence $(\mu_u \mid u \in \omega^{\langle \omega \rangle})$ of measures on $\kappa^{\leq \omega}$ for some $\kappa < \Theta$. By a theorem of Kunen, all countably complete measures on $\kappa^{\langle\omega\rangle}$ are *OD*; in fact, there is an *OD* injection $f : meas_{\omega_1}(\kappa^{\langle\omega\rangle}) \to ON$. We let $s \in ON^{\omega}$ enumerate the parameters defining $(\mu_u \mid u \in \omega^{\langle \omega \rangle})$, that is $s = f\left[\left\{\mu_u : u \in \omega^{\langle \omega \rangle}\right\}\right]$. Now the set

$$
R = \{(u, \alpha, \beta) : u \in \omega^{\leq \omega} \land j_{\mu_u}(\alpha) = \beta\}
$$

is well-orderable, and $R \in \text{HOD}[s]$. Now we can compute the Martin-Solovay tree T' of T inside of HOD[s] using R, where

$$
(t, \vec{\alpha}) \in T' \Leftrightarrow \forall i < |t| \ j_{\mu_{t+i+1}}(\vec{\alpha}(i)) > \vec{\alpha}(i+1).
$$

Now for any $x \in \mathbb{R}$,

$$
x \notin A \Leftrightarrow x \in p[T'] \Leftrightarrow
$$
 the tower $(\mu_{x\upharpoonright n} : n < \omega)$ is ill-founded.

The illfoundedness of the tower $(\mu_{x\upharpoonright n} : n < \omega)$ can be computed in HOD[s][x] using T', R. So HOD[s][x] can decide whether $x \notin A$, equivalently whether $x \in A$.

The above sketch shows that $A, \neg A \in HOD[s](\mathbb{R})$ and hence $A \in \mathbb{C}$. \Box

4 Vopěnka algebras

We next introduce Vopěnka algebras and their variants we will use in this paper. In this section, all definitions assume the hypothesis $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$. The results of this section are all essentially due to W. H. Woodin. Recall the definition of forcing projection maps $\sigma : \mathbb{Q} \to \mathbb{P}$ between posets $\mathbb Q$ and $\mathbb P$ as defined in [\[Cha19,](#page-27-0) Section 7]. As a matter of notation, we write $1_{\mathbb{P}}$ for the weakest condition in P.

Definition 4.1. Let γ be a non-zero ordinal $\langle \Theta \rangle$ and T be a set of ordinals.

- 1. Let *n* be a natural number with $n \geq 1$ and $\mathcal{O}_{\gamma,n}^T$ be the collection of all nonempty subsets of $(\gamma^{\omega})^n$ which are OD from T. Fix a bijection $\pi_n : \eta \to$ $\mathcal{O}_{\gamma,n}^T$ which is OD from T, where η is some ordinal. Let $\mathbb{Q}_{\gamma,n}^T$ be the poset on η such that for each p, q in $\mathbb{Q}_{\gamma,n}^T$, we have $p \leq q$ if $\pi_n(p) \subseteq \pi_n(q)$. We call $\mathbb{Q}_{\gamma,n}^T$ the Vopěnka algebra for adding an element of $(\gamma^{\omega})^n$ in $\text{HOD}_{\lbrace T \rbrace}$.
- 2. For all natural numbers ℓ and m with $1 \leq \ell \leq m$, let $\sigma_{m,\ell} : \mathbb{Q}_{\gamma,m}^T \to$ $\mathbb{Q}_{\gamma,\ell}^T$ be the natural map induced from π_{ℓ} and π_m , i.e., for all $p \in \mathbb{Q}_{\gamma,m}^T$, $\pi_l(\sigma_{m,\ell}(p)) = \{x \mid \exists y \in \pi_m(p) \ y \restriction \ell = x\}.$ Then each $\sigma_{m,\ell}$ is a projection between posets. Let $(Q_{\gamma,\omega}^T, (\sigma_n: Q_{\gamma,\omega}^T \to Q_{\gamma,n}^T \mid n < \omega))$ be the inverse limit of the system $(\sigma_{m,\ell}: \mathbb Q_{\gamma,m}^T \to \mathbb Q_{\gamma,\ell}^T \mid 1 \leq \ell \leq m < \omega)$. We call $\mathbb Q_{\gamma,\omega}^T$ the inverse limit of Vopěnka algebras for adding an element of $(\gamma^{\omega})^{\omega}$ in $HOD_{\{T\}}$.
- 3. When $T = \emptyset$ or T is OD, then we omit it from our notation. Similarly, when $\gamma = 2$, we omit it from our notation. In particular, we denote \mathbb{Q}_n the Vopěnka algebra for adding an element of $(2^{\omega})^n$ in HOD .

Definition 4.2. Let γ be a non-zero ordinal $\leq \Theta$ and T be a set of ordinals.

- 1. Let n be a natural number with $n \geq 1$ and let $\mathbb{BC}_{\gamma,n}^{T,*}$ be the poset consisting of $OD(T)$ ∞ -Borel codes for subsets of $(\gamma^{\omega})^n$ with the ordering $p \leq q$ if $B_p \subseteq B_q$. We define the equivalence relation \sim on $\mathbb{BC}_{\gamma,n}^{T,*}$ as follows: $p \sim q$ iff $B_p = B_q$. We let $\mathbb{BC}_{\gamma,n}^T = \mathbb{BC}_{\gamma,n}^{T,*}/\sim$.
- 2. For all natural numbers ℓ and m with $1 \leq \ell \leq m$, let $\sigma_{m,\ell} : \mathbb{BC}^T_{\gamma,m} \to \mathbb{BC}^T_{\gamma,\ell}$
be the natural map, i.e., for all $p \in \mathbb{BC}^T_{\gamma,m}$, $\sigma_{m,\ell}(p)$ is the equivalent class of Borel codes that code the set $\{x \in (\gamma^{\omega})^l \mid \exists y \in B_p \ y \restriction \ell = x\}.$ Assume each $\sigma_{m,\ell}$ is a well-defined projection between posets (see Remark [4.1\)](#page-9-0). Let $(\mathbb{BC}_{\gamma,\omega}^T, (\sigma_n : \mathbb{BC}_{\gamma,n}^T \to \mathbb{BC}_{\gamma,\omega}^T \mid n < \omega))$ be the inverse limit of the system $(\sigma_{m,\ell} : \mathbb{BC}_{\gamma,m}^T \to \mathbb{BC}_{\gamma,\ell}^T \mid 1 \leq \ell \leq m < \omega)$. We call $\mathbb{BC}_{\gamma,\omega}^T$ the inverse limit of Vopěnka algebras of ∞ -Borel codes for adding an element of $(\gamma^{\omega})^{\omega}$ in $\text{HOD}_{\{T\}}$.
- 3. When $T = \emptyset$ or T is OD, then we omit it from our notation. Similarly, when $\gamma = 2$, we omit it from our notation as before.

Remark 4.1. For each $m < \omega$, we can regard $\mathbb{BC}_{\gamma,m}^T$ as a sub-algebra of $\mathbb{Q}_{\gamma,m}^T$. In Definition [4.1,](#page-8-1) it is clear that the maps $\sigma_{m,\ell}$ are projections. However, in Definition [4.2,](#page-9-1) proving $\sigma_{m,\ell}$ is a well-defined forcing projection is non-trivial and uses

(*): if $p \in \mathbb{BC}_{\gamma,m+1}^T$ then $\{t : \exists s \in B_p \mid s \restriction m = t\}$ has an $OD_T \infty$ -Borel code.

If (*) fails, then there is some m and some $p \in \mathbb{BC}_{\gamma,m+1}^T$ such that $\sigma_{m+1,m}(p)$ is not even defined. If (*) holds, then all $\sigma_{m,l}$ are well-defined total functions. It is easy to check then they are all forcing projection maps (see $[Cha19, Fact]$ $[Cha19, Fact]$ (7.14) .

The reader can see $[Cha19, Section 7]$ $[Cha19, Section 7]$ for a more detailed discussion of these facts in the case $\gamma = \omega$. For $\gamma > \omega$, it is not clear to us if $(*)$ holds in general. We will prove some version of $(*)$ in the last section of the paper. The same remarks apply to the maps $\sigma_{m,\ell}$ in Definition [4.4.](#page-11-0)

The following lemmas will be useful in Section [5:](#page-14-0)

Lemma 4.2. Assume $ZF + AD^+ + "V = L(T, \mathbb{R})"$ for some set T of ordinals.

- 1. \mathbb{Q}_n^T is of size at most Θ and \mathbb{Q}_n^T has the Θ -c.c. in $\text{HOD}_{\{T\}}$ for all $n \leq \omega$. A similar statement holds for \mathbb{BC}_n^T for all $n \leq \omega$.
- 2. For any condition $p \in \mathbb{Q}_{\omega}^T$, there is a \mathbb{Q}_{ω}^T -generic filter H over $\text{HOD}_{\{T\}}$ such that $p \in H$, and $\tilde{V} = L(T, \mathbb{R}) \subseteq \text{HOD}_{\{T\}}[H]$ and the set \mathbb{R}^{V} is countable in $\text{HOD}_{\{T\}}[H]$ and moreover, \mathbb{R}^V is the symmetric reals of $HOD_{\{T\}}[H].$
- 3. Items (1) and (2) hold for $\mathbb{BC}_{\omega,\omega}^T$ if $\mathbb{BC}_{\omega,\omega}^T$ is well-defined (see Corollary [4.5\)](#page-12-0).

Lemma 4.3. Assume $ZF + AD_{\mathbb{R}} + V = L(\mathcal{P}(\mathbb{R}))$. Let $\gamma < \Theta$.

- 1. The posets $\mathbb{Q}_{\gamma,n}$ for $n \leq \omega$ are of size less than Θ in HOD.
- 2. Let $s \in (\gamma^{\omega})^n$ for $n < \omega$, and $h_s = \{p \in \mathbb{Q}_{\gamma,n} \mid s \in \pi_n(p)\},\$ where $\pi_n: \mathbb{Q}_{\gamma,n} \to \mathcal{O}_{\gamma,n}$ is as in Definition [4.1.](#page-8-1) Then the set h_s is a $\mathbb{Q}_{\gamma,n}$ generic filter over HOD such that $HOD[h_s] = HOD_{s}$.
- 3. (Woodin) For any condition $p \in \mathbb{Q}_{\gamma,\omega}$, there is a $\mathbb{Q}_{\gamma,\omega}$ -generic filter H over HOD such that $p \in H$ and the set $(\gamma^{\omega})^V$ is countable in HOD[H] and $HOD(\gamma^{\omega})$ is a symmetric extension.
- 4. Items (1) (3) hold for $\mathbb{BC}_{\gamma,\omega}^T$ if $\mathbb{BC}_{\gamma,\omega}^T$ is well-defined (see Corollary [4.5\)](#page-12-0).

The proofs are standard; the reader can consult for instance [\[Ste08,](#page-28-6) [Tra21\]](#page-29-3). The following generalization of the previous lemmas also holds. For more details, see $[{\text{Tra}21}]$. We first recall the definitions of the Vopěnka algebras for adding elements of $\bigcup_{\gamma<\Theta}\gamma^{\omega}$.

Definition 4.3. Let T be a set of ordinals.

1. Let *n* be a natural number with $n \geq 1$ and $\mathcal{O}_{\infty,n}^T$ be the collection of all nonempty subsets of $\gamma_1^{\omega} \times \cdots \times \gamma_n^{\omega}$ which are OD from T for some $\gamma_1,\ldots,\gamma_n<\Theta$. The order on $\mathcal{O}_{\infty,n}^T$ is defined as: for $p,q\in\mathcal{O}_{\infty,n}^T$, we say $p \leq q$ if for some $\gamma_1, \ldots, \gamma_n < \Theta, p, q \subseteq \gamma_1^{\omega} \times \cdots \times \gamma_n^{\omega}$ and $p \subseteq q$. Fix a bijection $\pi_n: \eta \to \mathcal{O}^T_{\infty,n}$ which is OD from T, where η is some ordinal. Let $\mathbb{Q}_{\infty,n}^T$ be the poset on η such that for each p, q in $\mathbb{Q}_{\infty,n}^T$, we have $p \leq q$ if $\pi_n(p) \subseteq \pi_n(q)$. We call $\mathbb{Q}^T_{\infty,n}$ the Vopěnka algebra for adding an element of $(\bigcup_{\gamma<\Theta}\gamma^{\omega})^n$ in $\text{HOD}_{\{T\}}$.

- 2. For all natural numbers ℓ and m with $1 \leq \ell \leq m$, let $\sigma_{m,\ell} : \mathbb{Q}_{\infty,m}^T \to \mathbb{Q}_{\infty,\ell}^T$ be the natural map induced from π_{ℓ} and π_m , i.e., for all $p \in \mathbb{Q}_{\infty,m}^T$, $\pi_l(\sigma_{m,\ell}(p)) = \{x \mid \exists y \in \pi_m(p) \ y \restriction \ell = x\}.$ Then each $\sigma_{m,\ell}$ is a projection between posets. Let $(Q_{\infty,\omega}^T, (\sigma_n : Q_{\infty,\omega}^T \to Q_{\infty,n}^T \mid n < \omega))$ be the inverse limit of the system $(\sigma_{m,\ell}: \mathbb{Q}_{\infty,m}^T \to \mathbb{Q}_{\infty,\ell}^T \mid 1 \leq \ell \leq m < \omega)$. We call $\mathbb{Q}_{\infty,\omega}^T$
the inverse limit of Vopěnka algebras for adding an element of $(\bigcup_{\gamma<\Theta} \gamma^{\omega})^{\omega}$ in $\text{HOD}_{\lbrace T \rbrace}$.
- 3. When $T = \emptyset$ or T is OD, then we omit it from our notation. In particular, we denote $\mathbb{Q}_{\infty,n}$ the Vopěnka algebra for adding an element of $(\bigcup_{\gamma<\Theta}\gamma^{\omega})^n$ in HOD.

Definition 4.4. Let T be a set of ordinals.

- 1. Let *n* be a natural number with $n \geq 1$ and let $\mathbb{BC}_{\infty,n}^{T,*}$ be the poset consisting of $OD(T)$ ∞ -Borel codes for subsets of $\gamma_1^{\omega} \times \cdots \times \gamma_n^{\omega}$ for some $\gamma_1, \ldots, \gamma_n \leq \Theta$ with the ordering $p \leq q$ if $B_p \subseteq B_q$. We define the equivalence relation \sim on $\mathbb{BC}_{\infty,n}^{T,*}$ as follows: $p \sim q$ iff $B_p = B_q$. We let $\mathbb{B}\mathbb{C}_{\infty,n}^T = \mathbb{B}\mathbb{C}_{\infty,n}^{T,*}/\sim$.
- 2. For all natural numbers ℓ and m with $1 \leq \ell \leq m$, let $\sigma_{m,\ell} : \mathbb{BC}^T_{\infty,m} \to$ $\mathbb{B}\mathbb{C}^T_{\infty,\ell}$ be the natural map, i.e., for all $p\in \mathbb{B}\mathbb{C}^T_{\infty,m}, \sigma_{m,\ell}(p)$ is the equivalent class of Borel codes that code the set $\{x \in (\bigcup_{\gamma<\Theta} \gamma^{\omega})^l \mid \exists y \in B_p \ y \restriction \ell =$ y}. Suppose each $\sigma_{m,\ell}$ is a well-defined projection between posets (see Remark [4.1\)](#page-9-0). Let $(\mathbb{BC}_{\infty,\omega}^T, (\sigma_n : \mathbb{BC}_{\infty,\omega}^T \to \mathbb{BC}_{\infty,n}^T \mid n < \omega))$ be the inverse limit of the system $(\sigma_{m,\ell} : \mathbb{B} \mathbb{C}^T_{\infty,m} \to \mathbb{B} \mathbb{C}^T_{\infty,\ell} \mid 1 \leq \ell \leq m < \omega)$. We call $\mathbb{B}\mathbb{C}_{\infty,\omega}^T$ the inverse limit of Vopěnka algebras of ∞ -Borel codes for adding an element of $(\bigcup_{\gamma<\Theta}\gamma^{\omega})^{\omega}$ in $\text{HOD}_{\{T\}}$.
- 3. When $T = \emptyset$ or T is OD, then we omit it from our notation. Similarly, when $\gamma = 2$, we omit it from our notation as before.

For a given γ and T, if all $OD(T)$ subsets of γ^{ω} have $OD(T)$ ∞ -Borel codes, then the posets $\mathbb{Q}_{\gamma,1}^T$ and $\mathbb{BC}_{\gamma,1}^T$ are isomorphic. In general, we do not know if this follows from AD^+ . Let $t \in \gamma^{\omega}$, $h_t = \{p \in \mathbb{Q}_{\gamma,1}^T \mid t \in \pi_1(p)\} \subseteq \mathbb{Q}_{\gamma,1}^T$ be the HOD_T-generic for adding t, and $g_t = \{p \in \mathbb{BC}_{\gamma,1}^T \mid t \in B_p\} \subseteq \mathbb{BC}_{\gamma,1}^T$ be the HOD_T -generic for adding t. Clearly,

- $h_t \in \text{HOD}_{T,t}$,
- $t \in \text{HOD}_{T,h_t}$.

We do not know in general that $h_t \in \text{HOD}_T[t]$. However, it is easy to see that (see [\[Cha19,](#page-27-0) Fact 7.6] for a proof)

- $t \in \text{HOD}_T[g_t]$, and
- $g_t \in \text{HOD}_T[t]$.

Therefore,

$$
HOD_T[t] = HOD_T[g_t] \subseteq HOD_{T,h_t} = HOD_{T,t}.
$$
\n(4.1)

A similar conclusion also holds for the forcings $\mathbb{Q}_{\infty,1}$ and $\mathbb{BC}_{\infty,1}$ respectively. Let $t \in \gamma^{\omega}$ for some $\gamma < \Theta$, $h_t \subseteq \mathbb{Q}_{\infty,1}$ be the generic over HOD for adding t, and $g_t \subseteq \mathbb{BC}_{\infty,1}$ be the generic over HOD for adding t. Then

$$
HOD[t] = HOD[g_t] \subseteq HOD_{h_t} = HOD_t.
$$
\n(4.2)

Equations [4.1](#page-12-1) and [4.2](#page-12-2) also hold for $t \in (\gamma^{\omega})^n$ for $n > 1$. Also note that the first equality of [4.1](#page-12-1) and [4.2](#page-12-2) also holds for any ZFC model containing the forcing. For instance, $L[\mathbb{BC}_{\infty,1}][t] = L[\mathbb{BC}_{\infty,1}][g_t]$. Some improvements of these will be presented in Section [5.](#page-14-0) The reader is advised to consult [\[Tra21,](#page-29-3) [Cha19\]](#page-27-0) for more detailed treatments of Vopěnka forcing and the variations discussed above.

We now address the extent to which the inverse limit $\mathbb{BC}_{\gamma,\omega}^T$ is well-defined and topics related to the forcings $\mathbb{B}\mathbb{C}^T_{\gamma,n}$.

Lemma 4.4. $ZF + AD^+$. Suppose $\gamma < \Theta$, $n < \omega$, and $A \subseteq (\gamma^{\omega})^{n+1}$ has an ∞ -Borel code (S, φ) , then the set $B = \{g \in (\gamma^{\omega})^n : \exists f(f, g) \in A\}$ has an $OD(S, \mu) \infty$ -Borel code for any fine, countably complete measure μ on $\wp_{\omega_1}(\gamma^{\omega})$. If additionally either AD_R holds or $\gamma = \omega$, then B has an $OD(S) \infty$ -Borel code.

Proof. The first part of the lemma is proved in $[T118, Claim 2]$. For the second part, if $AD_{\mathbb{R}}$ holds then there exists a unique normal, fine, and countably complete measure μ on $\wp_{\omega_1}(\gamma^{\omega})$ by results of Solovay [\[Sol06\]](#page-28-1) and Woodin [\[Woo83\]](#page-29-2). Therefore, μ is OD and $OD(S, \mu) = OD(S)$. If $\gamma = \omega$, then there is an OD fine, countably complete measure μ on $\wp_{\omega_1}(\omega^{\omega})$ is induced from the Martin measure as follows. First let ν be the Martin measure on $\mathcal D$ and $\pi: \mathcal D \to \wp_{\omega_1}(\omega^\omega)$ be defined as: $\pi([x]_T) = \{y \in \omega^\omega : y \leq_T x\}$. Clearly, π is an *OD* map. The measure μ is defined as: $A \in \mu$ iff $\pi^{-1}[A] \in \nu$. It is easy to verify that μ is an OD fine, countably complete measure on $\wp_{\omega_1}(\omega^{\omega})$. Therefore, $OD(S, \mu) = OD(S)$. \Box

Corollary 4.5. Suppose $ZF + AD^+ + V = L(J, \mathbb{R})$ for some set of ordinals J. The following hold.

- (i) The inverse limit $\mathbb{BC}_{\omega,\omega}^J$ is well-defined. In fact, $\mathbb{BC}_{\omega,\omega}^J$ is isomorphic to $\mathbb{Q}_{\omega,\omega}^J$.
- (ii) For any $x \in \mathbb{R}$, any $OD(J, x)$ set $A \subseteq (\omega^{\omega})^n$, A has an $OD(J, x) \infty$ -Borel code.
- (iii) $\text{HOD}_J = L[J, \mathbb{BC}^J_{\omega,\omega}].$

Proof. Part (i) is a consequence of Lemma [4.4](#page-12-3) and [\[Cha19,](#page-27-0) Fact 7.14]. Lemma [4.4](#page-12-3) implies (*) for $\mathbb{BC}_{\omega,n+1}^J$ holds all $n < \omega$. The calculations in [\[Cha19,](#page-27-0) Fact 7.14] show that the inverse limit $\mathbb{BC}_{\omega,\omega}^J$ is well-defined because the maps $\sigma_{m,l}$ are all well-defined forcing projection maps. For part (ii), without loss of generality, let us fix an $OD(J, x)$ set $A \subseteq \omega^{\omega}$. The general case just involves more notations. Say $z \in A$ iff $L(J, \mathbb{R}) \models \varphi[J, x, s, z]$ for some finite sequence of ordinals s. The following calculations produce an $OD(J, x) \infty$ -Borel code for A (see cf [\[Cha19,](#page-27-0) Corollary 7.20] for a similar calculation with more details). Work over $L[J, \mathbb{BC}_{\omega,\omega}^J]$, for any $z \in \mathbb{R}$, we let $g_{x,z} \subseteq \mathbb{BC}_{\omega,2}^J$ be the generic adding x, z . Let $\mathbb R$ be the symmetric reals added by a generic $g \subseteq \mathbb B \mathbb C^{J}_{\omega,\omega}$.

$$
\begin{split} z \in A & \Leftrightarrow L[J, \mathbb{B}\mathbb{C}^J_{\omega,\omega}][g_{x,z}] \vDash \text{``}1_{\mathbb{B}^J_{\omega,\omega}/g_{x,z}} \Vdash_{\mathbb{B}^J_{\omega,\omega}/g_{x,z}} L(J, \dot{\mathbb{R}}) \vDash \varphi[J, x, s, z] \text{''} \\ & \Leftrightarrow L[J, \mathbb{B}\mathbb{C}^J_{\omega,\omega}, x, z] \vDash \text{``}1_{\mathbb{B}^J_{\omega,\omega}/g_{x,z}} \Vdash_{\mathbb{B}\mathbb{C}^J_{\omega,\omega}/g_{x,z}} L(J, \dot{\mathbb{R}}) \vDash \varphi[J, x, s, z] \text{''}. \end{split}
$$

The fact that $L[J, \mathbb{BC}_{\omega,\omega}^J][g_{x,z}] = L[J, \mathbb{BC}_{\omega,\omega}^J, x, z]$ follows from the remark after [4.2.](#page-12-2) The equivalences above follow from standard properties of the inverse limit of projections $\mathbb{BC}^J_{\omega,\omega}$ and calculations as in [\[Cha19,](#page-27-0) Theorems 7.18, 7.19]. The ∞ -Borel code for A is the set of ordinals $S \in \text{HOD}_{J,x}$ coding $(J, \mathbb{BC}^J_{\omega,\omega}, x)$. Part (ii) immediately gives $\mathbb{BC}^J_{\omega,\omega}$ is isomorphic to $\mathbb{Q}^J_{\omega,\omega}$. Part (iii) now follows from calculations in [\[Cha19,](#page-27-0) Corollary 7.20, 7.21].

 \Box

Lemma 4.6. $Assume ZF + AD^{+} + AD_{\mathbb{R}} + V = L(\mathcal{P}(\mathbb{R}))$.

- 1. The posets $\mathbb{Q}_{\infty,n}$ for $n \leq \omega$ are Θ -cc in HOD.
- 2. Let $s \in (\bigcup_{\gamma < \Theta} \gamma^{\omega})^n$ for $n < \omega$ and $h_s = \{p \in \mathbb{Q}_{\infty,n} \mid s \in \pi_n(p)\}\$. Then the set h_s is a $\widetilde{\mathbb{Q}}_{\infty,n}$ -generic filter over HOD such that $HOD[h_s] = HOD_{\{s\}}$.
- 3. For any condition $p \in \mathbb{Q}_{\infty,\omega}$, there is a $\mathbb{Q}_{\infty,\omega}$ -generic filter H over HOD such that $p \in H$ and the set $\left(\bigcup_{\gamma < \Theta} \gamma^{\omega}\right)^{V}$ is countable in HOD[H]. Furthermore, $V = \text{HOD}((\bigcup_{\gamma < \Theta} \gamma^{\omega})^V)$ is the symmetric part of $\text{HOD}[H]$.
- 4. (1) (3) above also hold for the posets $\mathbb{BC}_{\infty,n}$ and for $\mathbb{BC}_{\infty,\omega}$. In fact, $\mathbb{BC}_{\infty,\omega}$ is a well-defined inverse limit and is isomorphic to $\mathbb{Q}_{\infty,\omega}$.

Proof sketch. We will not prove the lemma; instead, we sketch the main ideas here. $(1) - (3)$ are standard calculations. The "Furthermore" clause of part (3) can be seen to follow from Lemma [3.3](#page-8-2) and the fact that every set of reals is Suslin co-Suslin under AD^+ + AD_R . For (4), first note that Lemma [4.4](#page-12-3) implies $\mathbb{BC}_{\infty,\omega}$ is a well-defined inverse limit because the maps $\sigma_{m,l}$ are all well-defined forcing projection maps. To see $\mathbb{B}\mathbb{C}_{\infty,\omega}$ is isomorphic to $\mathbb{Q}_{\infty,\omega}$, it suffices to show if $\gamma < \Theta$, $n < \omega$ and $A \subseteq (\gamma^{\omega})^n$ is *OD*, then A has an *OD* ∞ -Borel code. For ease of notation, we assume $n = 1$. For $f \in \gamma^{\omega}$, suppose $f \in A$ iff $V \models \varphi[s, f]$ for some finite set of ordinals s. As in the previous corollary, we can produce an $OD \infty$ -Borel code for A as follows. Let Z be a set of ordinals such that $HOD = L[Z]^3$ $HOD = L[Z]^3$ and $g_f \subseteq \mathbb{BC}_{\infty,1}$ be the generic adding f. Let $\mathbb{C} = \text{HOD}((\bigcup_{\gamma < \Theta} \gamma^{\omega})^V)$. We note that by Theorem [3.3,](#page-8-2) $\mathbb{C} = V$. Then

$$
\begin{split} f \in A & \Leftrightarrow \mathrm{HOD}[g_f] \vDash \text{``} 1_{\mathbb{B}_{\infty,\omega}/g_f} \Vdash_{\mathbb{B}_{\infty,\omega}/g_f} \mathbb{C} \models \varphi[s,f] \text{''} \\ & \Leftrightarrow L[Z,f] \vDash \text{``} 1_{\mathbb{B}_{\infty,\omega}/g_f} \Vdash_{\mathbb{B}\mathbb{C}_{\infty,\omega}/g_f} \mathbb{C} \vDash \varphi[s,f] \text{''}. \end{split}
$$

The above calculations easily yield and $OD \infty$ -Borel code for A.

 \Box

³One can show Z can be taken to the the set of ordinals that canonically codes $\mathbb{BC}_{\infty,\omega}$.

5 The existence of ∞-Borel codes

In this section, we prove Theorems [1.1,](#page-1-0) [1.3,](#page-1-4) [1.5](#page-1-2) and their corollaries.

Proof of Theorem [1.1.](#page-1-0) Without loss of generality, we let $A \subseteq \mathcal{P}(\omega)$ and assume A is OD. First we assume $AD_{\mathbb{R}}$ holds. Since $AD_{\mathbb{R}}$ holds, $V = \mathbb{C}$ by Lemma [3.3.](#page-8-2) We show A has an $OD \infty$ -Borel code. Suppose

$$
x \in A \Leftrightarrow \mathbb{C} \models \varphi[x, s]
$$

for some formula φ and some finite sequence of ordinals s.

We note that for any $f \in \bigcup_{\gamma < \Theta} \gamma^{\omega}$, letting $g_f \subseteq \mathbb{BC}_{\infty,1}$ be generic over HOD that adds f , then

$$
\mathrm{HOD}[f] = \mathrm{HOD}[g_f]
$$

by [\(4.2\)](#page-12-2). Here is a brief sketch. First note that $f \in HOD[g_f]$ so $HOD[f] \subseteq$ HOD[g_f]; for the converse, we have that $g_f = \{c : f \in B_c\}$ and this calculation of g_f can be done over HOD[f]. Here we use essentially here that conditions of the forcing are ∞ -Borel codes.

Let $Z \subseteq \Theta$ be such that HOD = $L[Z]$. Then we can produce an OD ∞ -Borel code for A as follows, recall the definition of $\mathbb{BC}_{\infty,\omega}$ and related objects in Section [4.](#page-8-0)

$$
x \in A \Leftrightarrow \text{HOD}[g_x] \models \text{``1}_{\mathbb{B}_{\infty,\omega}/g_x} \Vdash_{\mathbb{B}_{\infty,\omega}/g_x} \mathbb{C} \models \varphi[x,s]
$$
"
$$
\Leftrightarrow L[Z][x] \models \text{``1}_{\mathbb{B}_{\infty,\omega}/g_x} \Vdash_{\mathbb{B}_{\infty,\omega}/g_x} \mathbb{C} \models \varphi[x,s]
$$
"

Again, the main point is by Lemma [4.6,](#page-13-1) the inverse limit $\mathbb{BC}_{\infty,\omega}$ is well-defined. The above equivalence shows that $((Z, s), \psi)$ where $\psi(x, (Z, s))$ is the formula ${}^{\omega_1}1_{\mathbb{B}_{\infty,\omega}/g_x} \Vdash_{\mathbb{B}_{\infty,\omega}/g_x} \mathbb{C} \models \varphi[x,s]^n$, is an $OD \infty$ -Borel code for A.

Now assume $AD_{\mathbb{R}}$ fails. By Theorem [2.3,](#page-5-0) $V = L(J, \mathbb{R})$ for some set of ordinals J. In fact, we can take $J = [d \mapsto T]_{\mu_T}$ where T is a tree projecting to a universal $S(\kappa)$ set, where κ is the largest Suslin cardinal, $S(\kappa)$ is the largest Suslin pointclass, and μ ^T is the T-degree measure defined in Section [2.](#page-3-0) Now there are two cases.

Case 1: $\Theta = \theta_0$ We start with a claim.

Claim 5.1. The largest Suslin pointclass is Σ_1^2 .

Proof. Σ_1^2 has the scale property by AD^+ (cf. [\[ST10\]](#page-28-7)). By the fact that $\Theta = \theta_0$ is regular, we have that $\Sigma^2_1 = \Sigma_1(\mathbb{R}) \cap \mathcal{P}(\mathbb{R})$. To see this note that the \subseteq -direction is clear. To see the converse, let $A \subseteq \mathbb{R}$ be $\Sigma_1(x)$ for some real x; so let φ be a Σ_1 -formula such that for any $y \in \mathbb{R}$, $y \in A \Leftrightarrow \varphi[y, x]$. Since Θ is regular, it is easy to see that there is a transitive $M = L_{\alpha}(\mathcal{P}_{\beta}(\mathbb{R}))$ for some $\alpha, \beta < \Theta$ such that for $y \in \mathbb{R}$,

$$
y \in A \Leftrightarrow M \models \varphi[y, x].
$$

So we can define $y \in A$ iff "there is a set of reals B coding a transitive structure M containing all reals such that $M \models \varphi[y, x]^n$. This is easily seen to be $\Sigma_1^2(x)$. So $A \in \Sigma_1^2$.

Now we finish proving the claim by noting that the set $C = \{(x, y) \in \mathbb{R}^2 :$ $y \notin OD(x)$ is a Π_1 -set that has no uniformization. This is a result by Martin, cf. [\[Ste83\]](#page-28-8). By the above, C is Π_1^2 and cannot be uniformized. This gives Σ_1^2 is the largest pointclass with the scale property as claimed. \Box

Therefore, we can take T and hence $J = [d \mapsto T]_{\mu_T}$ to be OD, where $T \in \text{HOD}$ is a tree projecting to a universal Σ_1^2 set. Hence for some $Z \subseteq \Theta$ with $Z \in OD$,

$$
HOD = HODJ = L[Z].
$$

We can produce an $OD \infty$ -Borel code for A by the following calculations. Suppose

$$
x \in A \Leftrightarrow V \models \varphi[x, s]
$$

for some finite sequence of ordinals s. Letting $g_x \subseteq \mathbb{BC}_{\omega,1}$ be HOD-generic that adds x, then $\text{HOD}[g_x] = \text{HOD}[x]$. We note that by Corollary [4.5,](#page-12-0) the inverse limit $\mathbb{B}\mathbb{C}_{\omega,\omega}$ is well-defined. We have

$$
x \in A \Leftrightarrow \text{HOD}[g_x] \vDash \text{``1}_{\mathbb{B}_{\omega,\omega}/g_x} \Vdash_{\mathbb{B}_{\omega,\omega}/g_x} L(J,\mathbb{R}) \vDash \varphi[x,s]
$$

$$
\Leftrightarrow L[Z][x] \vDash \text{``1}_{\mathbb{B}_{\omega,\omega}/g_x} \Vdash_{\mathbb{B}\mathbb{C}_{\omega,\omega}/g_x} L(J,\mathbb{R}) \vDash \varphi[x,s]
$$

The above equivalence easily gives an $OD \infty$ -Borel code for A.

Case 2: $\Theta > \theta_0$

Let $M_0 = L(\mathcal{P}_{\theta_0}(\mathbb{R}))$.

Claim 5.2. Let $\Gamma = \Sigma_1^2$. The following hold.

- (i) For any real x, $Env(\Gamma(x)) = Env^{M_0}(\Gamma(x))$.^{[4](#page-15-0)}
- (ii) $M_0 \models \Theta = \theta_0$.

Proof. The proof of Claim [5.1](#page-14-1) shows that Σ_1^2 is the largest Suslin pointclass below θ_0 in V. The fact that for each $x \in \mathbb{R}$, $Env(\Gamma(x)) \subseteq M_0$ follows from results in [\[Jac09\]](#page-28-9); see for instance Lemma 3.14. A set A is in $Env(\Gamma)(x)$ iff for each countable $\sigma \subseteq \mathbb{R}$, there is a $OD^T(x)$ set B such that $A \cap \sigma = B \cap \sigma$ (cf. [\[Wil12\]](#page-29-4)). This calculation is absolute between V and M_0 . Part (i) follows. In

⁴Recall that that $\Gamma = \Sigma_1^2$ so $\delta_1^2 = o(\Gamma)$ is the Wadge ordinals of Γ . A set A is in $Env(\Gamma(x))$ iff for any countable $\sigma \subset \mathbb{R}$, $A \cap \sigma = B \cap \sigma$ for some $B \in OD^{\leq \Gamma}(x)$. Here B is $OD^{\leq \Gamma}(x)$ iff there are $\Gamma(x)$ sets $U, W \subseteq \mathbb{R} \times \mathbb{R}$ and a $\Gamma(x)$ -norm φ , and an ordinal $\alpha < \delta_1^2$ such that $A = U_y = \neg W_y$ for every $y \in \text{dom}(\varphi)$ with $\varphi(y) = \alpha$. [Will2] shows that this notion of envelopes generalizes Martin's notion of envelopes $\Delta(\Gamma, \delta_1^2)$ (cf [\[Jac09\]](#page-28-9)), as it can be applied in situations where AD may not hold. Under AD these two notions are equivalent.

 M_0 , Σ_1^2 is the largest Suslin pointclass and $Env(\Gamma) =_{def} \bigcup_{x \in \mathbb{R}} Env(\Gamma(x)) =$ $\widetilde{\mathcal{P}(\mathbb{R})}$; the last equality holds because the set $\widetilde{\{(x, y) : y \notin OD_x\}}$ has no scale in M_0 . This easily implies that in M_0 , every set of reals A is OD from some real x. This means $M_0 \models \Theta = \theta_0$. This proves part (ii). \Box

Claim 5.3. Let $A \subseteq \mathbb{R}$ be OD. Then A is OD in M_0 .

Proof. Suppose A is OD, say $x \in A$ iff $\varphi[x, s]$ holds for some finite sequence of ordinals s. For each countable $\sigma \subset \mathbb{R}$, there is a transitive model M of ZF⁻ +DC of the form $L_{\alpha}(\mathcal{P}_{\beta}(\mathbb{R}))$ that ordinal defines $A \cap \sigma$ via φ and $\{s, \sigma\}$, i.e.

$$
\forall x \in \sigma \ x \in A \Leftrightarrow M \models \varphi[x, s, \sigma].
$$

By Σ_1 -reflection into Δ_1^2 , for each σ , there are α_{σ} , β_{σ} , $\max(s_{\sigma}) < \delta_1^2$ such that

$$
\forall x \in \sigma \ x \in A \Leftrightarrow L_{\alpha_{\sigma}}(\mathcal{P}_{\beta_{\sigma}}(\mathbb{R})) \models \varphi[x, s_{\sigma}, \sigma].
$$

Note the Wadge rank of A is $\lt \theta_0$ and therefore, $A \in M_0$. Working in M₀, let μ be the fine, countably complete measure on $\wp_{\omega_1}(\mathbb{R})$ induced by the Turing measure via the canonical surjection $\pi : \mathcal{D} \to \varphi_{\omega_1}(\mathbb{R})$, where $\pi(d) =$ ${x \in \mathbb{R} : x \leq_T d}$. μ is OD. Let $\alpha = [\sigma \mapsto \alpha_{\sigma}]_{\mu}, \beta = [\sigma \mapsto \beta_{\sigma}]_{\mu}$, and $s^* = [\sigma \mapsto s_{\sigma}]_{\mu}$. We claim that A is definable in M_0 from (α, β, s^*) . This is because for any $x \in \mathbb{R}$, $x \in A$ iff for any function $F_{\alpha}, F_{\beta}, F_{s^*}$ such that $[F_{\alpha}]_{\mu} = \alpha, [F_{\beta}]_{\mu} = \beta, [F_{s^*}]_{\mu} = s^*, \forall_{\mu}^* \sigma \ L_{F_{\alpha}(\sigma)}(\mathcal{P}_{F_{\beta}(\sigma)}(\mathbb{R})) \models \varphi[x, F_{s^*}(\sigma), \sigma].$ The above calculation finishes the proof of the claim.

 \Box

Using Claim [5.3](#page-16-0) and Claim [5.2,](#page-15-1) we can quote the result of the $\Theta = \theta_0$ case to get that A has an $OD \infty$ -Borel code.

This completes the proof of the first clause of Theorem [1.1.](#page-1-0) As mentioned in Remark [1.2,](#page-1-5) the "Furthermore" clause has a similar proof to the proof of Case 1, so we leave it to the kind reader.

 \Box

Proof of Theorem [1.3.](#page-1-4) The proof of $[T18, Claim 2]$ shows the following.

Lemma 5.4. Assume AD^+ . Suppose $\kappa < \Theta$, $n < \omega$, and $A^* \subseteq (\kappa^{\omega})^{n+1}$ has ∞ -Borel code S^* . Let μ be a fine, countably complete measure on $\wp_{\omega_1}(\kappa^{\omega})$. Then $A = \{f : \exists x \in \kappa^{\omega} \ (x, f) \in A^*\}\$ has an ∞ -Borel code S that is $OD(S^*, \mu)$.

Let $\kappa < \Theta$ and $A \subseteq \kappa^{\omega}$. Then by basic AD^+ theory, there is a set of ordinals T such that $A \in L(T,\mathbb{R})$. To see this, first fix a pre-wellordering \leq of $\mathbb R$ of order type κ and let S_0 be an ∞ -Borel code for \leq . Using \leq and the fact that one can canonically code an ω -sequence of reals by a real, one sees that κ^{ω} can be simply coded by \leq and \mathbb{R} . Therefore, using \leq , one can code A by a subset $B \subseteq \mathbb{R}$. Let S_1 be an ∞ -Borel code for B and let $T = (S_0, S_1)$. It is clear that $\kappa^{\omega}, A \in L(T, \mathbb{R}).$

Suppose $V = L(\mathcal{P}(\mathbb{R})) \models \mathsf{AD}^+ + \Theta = \theta_0$, then $V = L(T, \mathbb{R})$ for some OD set of ordinals T. Then for any $\kappa < \Theta = \theta_0$, there is an OD surjection $\pi : \mathbb{R} \to \kappa^\omega$. Let μ be the OD fine, countably complete measure on $\wp_{\omega_1}(\mathbb{R})$ in Claim [5.3.](#page-16-0) π, μ induce an OD fine, countably complete measure ν on $\varphi_{\omega_1}(\kappa^{\omega})$ by a standard procedure:

$$
A \in \nu \Leftrightarrow \{\pi^{-1}[\sigma] : \sigma \in A\} \in \mu.
$$

By the above discussion, every $OD = OD(T)$ subset of κ^{ω} has $OD(T, \mu) = OD$ ∞ -Borel code. A similar argument also gives every $OD(S)$ subset of κ^{ω} has an $OD(S)$ ∞-Borel code for any set of ordinals S.

Suppose $V = L(\mathcal{P}(\mathbb{R})) = AD^+ + AD_{\mathbb{R}}$. By [\[Woo83\]](#page-29-2) and $AD_{\mathbb{R}}$, there is a unique normal, fine measure μ_{κ} on $\varphi_{\omega_1}(\kappa^{\omega})$ for each $\kappa < \Theta$. So μ_{κ} is OD for each $\kappa < \Theta$. Let S be a set of ordinals and $A \subseteq \kappa^{\omega}$ be $OD(S)$. By Lemma [5.4](#page-16-1) applied to the μ_{κ} 's, we have that (*) holds and therefore $\mathbb{BC}_{\infty,\omega}^{S}$ is a well-defined limit. Let $\kappa < \Theta$ and $A \subseteq \kappa^{\omega}$ be $OD(S)$, so there is a formula φ and some finite set of ordinals $\vec{\beta}$ such that

$$
f \in A \Leftrightarrow V \models \varphi[f, \vec{\beta}, S].
$$

Let Z be an $OD(S)$ set of ordinals such that $HOD_S = L[Z]$ and $g_f \subseteq \mathbb{BC}^S_{\infty,1}$ be the generic for adding f , we then have

$$
f \in A \Leftrightarrow \text{HOD}_S[g_f] \models \text{``1}_{\mathbb{BC}_{\infty,\omega}/g_f} \Vdash_{\mathbb{BC}_{\infty,\omega}/g_f} \text{HOD}(\bigcup_{\gamma < \Theta} \gamma^{\omega}) \models \varphi[f, \vec{\beta}, S]
$$
\n
$$
\Leftrightarrow L[Z][f] \models \text{``1}_{\mathbb{BC}_{\infty,\omega}/g_f} \Vdash_{\mathbb{BC}_{\infty,\omega}/g_s} \text{HOD}(\bigcup_{\gamma < \Theta} \gamma^{\omega}) \models \varphi[f, \vec{\beta}, S]
$$
\n
$$
\text{''}
$$

The above calculations easily imply that A has an $OD(S) \infty$ -Borel code. \Box

Proof of Corollary [1.4.](#page-1-3) For each $x \subseteq \omega$, let $g_x \subseteq \mathbb{BC}_{\omega,1}$ be the generic for adding x. Thus we have as before

$$
HOD[x] = HOD[g_x].
$$

Clearly $HOD[x] \subseteq HOD_x$. To see the converse, let $X \subseteq ON$ be $OD(x)$; say $X \subseteq \gamma$. Let φ be a formula defining X from x and some $s \in ON^{\langle \omega \rangle}$. So

$$
\forall \beta < \gamma \ \beta \in X \Leftrightarrow \varphi(\beta, s, x)
$$

and for each $\beta < \gamma$, let

$$
T^*_{\beta} = \{a : \varphi(\beta, s, a)\}.
$$

Note that T^*_{β} is OD for each β .

Fix an \overline{OD} injection $\pi^*: \overline{OD} \cap \mathcal{P}(\omega) \to \text{HOD}$ as in the definition of the usual Vopěnka forcing $\mathbb{Q}_{\omega,1}$, where π^* maps the algebra $\mathcal{O}_{\omega,1}$ of OD subsets of $\mathcal{P}(\omega)$ into its isomorphic copy $\mathbb{Q}_{\omega,1}$ in HOD. We can assume that $\pi^*[\mathcal{O}_{\omega,1}] = \mathbb{BC}_{\omega,1}$

because we have shown every OD subset of $\mathcal{P}(\omega)$ has an OD ∞ -Borel code. We have that

$$
Z = \{ (\beta, \pi^*(T^*_\beta)) : \beta < \gamma \} \in \text{HOD}
$$

and that for $\beta < \gamma$,

$$
\beta \in X \Leftrightarrow (\beta, \pi^*(T_{\beta}^*)) \in Z \wedge \pi^*(T_{\beta}^*) \in g_x.
$$

The above equivalence implies

$$
X \in \text{HOD}[g_x] = \text{HOD}[x].
$$

So we have shown

$$
HOD_x = HOD[x].
$$

For the "furthermore" clause of part (1), we use the "furthermore" clause of Theorem [1.1,](#page-1-0) which states that if $A \subseteq \mathcal{P}(\omega)$ is OD_S for some set of ordinals S then A has an $OD_S \infty$ -Borel code when $V = L(S, \mathbb{R})$. By an argument similar to the above, we get for each real x ,

$$
\text{HOD}_{S,x} = \text{HOD}_S[x].
$$

This completes the proof of part (1).

The proof of part (1) can be adapted to prove part (2). But we will give here a different proof of part (2) that cannot be used to prove part (1). We assume $AD_{\mathbb{R}}$ and use the forcing $\mathbb{B}\mathbb{C}_{\infty,\omega}$ and related objects as in Section [4](#page-8-0) to prove part (2) holds for any $s \in \gamma^{\omega}$ for $\gamma < \Theta$. Again, we have that for any $s \in \gamma^{\omega}$ for some $\gamma < \Theta$, letting $g_s \subseteq \mathbb{BC}_{\infty,1}$ be the generic adding s,

$$
\text{HOD}[s] = \text{HOD}[g_s].
$$

Furthermore, by Lemma [4.6,](#page-13-1) $V = \text{HOD}(\bigcup_{\gamma < \Theta} \gamma^{\omega})$ is the symmetric extension of HOD induced by a generic $H \subseteq \mathbb{BC}_{\infty,\omega}$. Note here that by Theorem [1.3,](#page-1-4) $\mathbb{BC}_{\infty,\omega}$ is well-defined. Let $X \in \text{HOD}_s$ be a set of ordinals. So there is a formula φ and a finite sequence of ordinals t such that

$$
\alpha \in X \Leftrightarrow V \models \varphi[\alpha, s, t].
$$

Now we have:

$$
\alpha \in X \Leftrightarrow \text{HOD}[g_s] \models \text{``1}_{\mathbb{BC}_{\infty,\omega}/g_s} \Vdash_{\mathbb{BC}_{\infty,\omega}/g_s} \text{HOD}(\bigcup_{\gamma < \Theta} \gamma^{\omega}) \models \varphi[\alpha, s, t] \text{''}
$$
\n
$$
\Leftrightarrow \text{HOD}[s] \models \text{``1}_{\mathbb{BC}_{\infty,\omega}/g_s} \Vdash_{\mathbb{BC}_{\infty,\omega}/g_s} \text{HOD}(\bigcup_{\gamma < \Theta} \gamma^{\omega}) \models \varphi[\alpha, s, t] \text{''}.
$$

The above calculations show that $X \in \text{HOD}[s]$. So $\text{HOD}[s] = \text{HOD}_s$. The argument above can be easily adapted to work for an arbitrary set of ordinals S by running the argument above over HOD_S using $\mathbb{BC}_{\infty,\omega}^S$.

Suppose now $\Theta = \theta_0$. Then since $AD_{\mathbb{R}}$ fails, by Theorem [2.3,](#page-5-0) there is a set of ordinals T such that $V = L(T, \mathbb{R})$. Since $\Theta = \theta_0$, we can in fact take T to be *OD.* Therefore, $HOD_T = HOD$. Furthermore, for any $\gamma < \Theta$, $V = HOD(\gamma^{\omega})$ is a symmetric extension of HOD induced by a generic $H \subseteq \mathbb{BC}_{\gamma,\omega}$. The fact that $\mathbb{BC}_{\gamma,\omega}$ is well-defined follows from Theorem [1.3.](#page-1-4) The rest of the proof is the same as in the $AD_{\mathbb{R}}$ case with $\mathbb{BC}_{\gamma,\omega}$ used in place of $\mathbb{BC}_{\infty,\omega}$. \Box

- Remark 5.5. (i) The main reason we need a different proof for part (1) of Corollary [1.4](#page-1-3) is because we do not have an analogue of Lemma 4.6 in the situation of part (1), where $AD_{\mathbb{R}}$ may fail.
- (ii) One can easily modify the proof above and $\overline{IT18}$, Claims 2 and 3 to show that if $V = L(T, \mathbb{R}) \models AD^+$ for some set of ordinals T, and $f \in \wp_{\omega_1}(\kappa)$ for some uncountable cardinal $\kappa < \Theta$, then

$$
\text{HOD}_{T,f} = \text{HOD}_T[f] = \text{HOD}_T[g_f]
$$

where g_f is HOD_T generic for the variation of the Vopenka algebra in HOD_T consisting of $OD(T)$ subsets of $\wp_{\omega_1}(\kappa)$ with $OD(T) \infty$ -Borel codes. The main point is that there is an $OD(T)$ fine, countably complete measure on $\wp_{\omega_1}(\wp_{\omega_1}(\kappa)).$

(iii) More is true. Under the assumption of Corollary [1.4,](#page-1-3) $HOD_t = HOD[t]$ for any $t \in ON^{\omega}$. The proof of this uses different techniques due to Woodin and is beyond the scope of this paper.

Proof of Theorem [1.6.](#page-2-2) We assume AD^+ and let ν witness ω_1 is R-supercompact. Let $\kappa < \Theta$ and $A \subseteq \mathcal{P}(\kappa)$. Let \leq be a prewellordering of the reals of length κ and let

$$
\hat{A} = \{x \in \mathbb{R} : x \text{ codes } C_x \in A\}.
$$
⁵

Let

$$
A^* = \{ (x, C_x) : x \in \hat{A} \}.
$$

In other words, $(x, f) \in A^*$ iff $x \in \hat{A}$ and $f = C_x$. We claim that A^* has an ∞-Borel code. Note that $\hat{A} \subseteq \mathbb{R}$ and hence by AD^+ , \hat{A} has an ∞-Borel code; similarly, \leq has an ∞ -Borel code. We fix ∞ -Borel codes S_1, S_2 for \leq , A respectively. If $\kappa < \theta_0$ and $A \subseteq \mathcal{P}(\kappa)$ is OD, then we can in fact assume \leq is *OD* and hence can take $S_1, S_2 \in \text{HOD}$ by Theorem [1.1.](#page-1-0)

Let $T = (S_1, S_2)$. We work in $L(T, \mathbb{R})$. Let $R \in \text{HOD}$ be the canonical $\mathbb{B}\mathbb{C}^T_{\omega,\omega}$ -name for the symmetric reals added by a $\mathbb{B}\mathbb{C}^T_{\omega,\omega}$ -generic over HOD_T and $Z \subseteq ON$ be such that $\mathrm{HOD}_T = L[Z]$. We note that the system $(\mathbb{BC}^T_{\omega,\omega}, (\mathbb{BC}^T_{\omega,n}, \sigma_{n,m}$: $n \geq m$) is a well-defined inverse limit system and satisfies Lemma [4.2](#page-10-0) in $L(T, \mathbb{R})$ (see Remark [4.1](#page-9-0) and Theorem [1.1\)](#page-1-0). We then have the following equivalence, where $g_x \subseteq \mathbb{BC}_{\omega,1}^T$ is the generic adding x:

⁵The coding $x \mapsto C_x$ is via the Coding Lemma relative to \leq .

$$
(x, f) \in A^* \Leftrightarrow \text{HOD}_T[x, f] \models "x \in B_{S_2} \land \forall \alpha < \kappa
$$
\n
$$
\alpha \in f \Leftrightarrow \text{ "HOD}_T[x] \models 1_{\mathbb{B}\mathbb{C}_{\omega,\omega/g_x}^T} \Vdash_{\mathbb{B}\mathbb{C}_{\omega,\omega/g_x}^T} L(S_1, S_2, \dot{\mathbb{R}}) \models
$$
\n
$$
\exists y (|y| \leq x \land y \in C_x)\text{''''}
$$
\n
$$
\Leftrightarrow L[Z][x, f] \models "x \in B_{S_2} \land \forall \alpha < \kappa
$$
\n
$$
\alpha \in f \Leftrightarrow \text{``}L[Z][x] \models 1_{\mathbb{B}\mathbb{C}_{\omega,\omega/g_x}^T} \Vdash_{\mathbb{B}\mathbb{C}_{\omega,\omega/g_x}^T} L(S_1, S_2, \dot{\mathbb{R}}) \models
$$
\n
$$
\text{``} \exists y (|y| \leq x \land y \in C_x)\text{''''}.
$$

The above calculations easily produce an $OD(S_1, S_2, \mu) \infty$ -Borel code for A^* , noting that the clause " $|y| $\alpha \wedge y \in C_x$ " can easily be written as a formula$ $\varphi(S_1, S_2, \mu, y, \alpha)$.

6 The non-existence of ∞-Borel codes

Proof of Theorem [1.5.](#page-1-2) We first prove the following lemma.

Lemma 6.1. Assume $AD^+ + V = L(\mathcal{P}(\mathbb{R}))$. There is a set $g \subseteq \omega_1^V$ such that $\mathrm{HOD}[g] \models \text{``}\omega_1^V \text{ is not weakly compact''}.$

Proof. Let $\kappa = \omega_1^V$. To construct such a g, we will form a reverse Easton support iteration $\vec{P} = \langle (P_{\alpha} : \alpha \le \kappa + 1), (\dot{Q}_{\alpha} : \alpha \le \kappa) \rangle$. Our terminology concerning iterated forcings is from [\[Cum10\]](#page-27-9); the reader is advised to consult [\[Cum10\]](#page-27-9) for things we neglect to mention in this argument. In particular, we have the following:

- If α is not inaccessible, then $\dot{\mathbb{Q}}_{\alpha}$ is the canonical \mathbb{P}_{α} -name for the trivial forcing.
- If α is inaccessible, then $\dot{\mathbb{Q}}_{\alpha}$ is the canonical \mathbb{P}_{α} -name for $\text{Add}(\alpha, 1)$, the forcing that adds a generic subset of α whose conditions are of size $\lt \alpha$.
- At limit α that is an inaccessible cardinal, \mathbb{P}_{α} is the direct limit of $\vec{\mathbb{P}} \restriction \alpha$. In particular, conditions in \mathbb{P}_{α} are α -sequences p whose support, supp (p) , is bounded below α .
- At limit α that is not an inaccessible cardinal, \mathbb{P}_{α} is the inverse limit of $\tilde{\mathbb{P}} \restriction \alpha$. In particular, conditions in \mathbb{P}_{α} are α -sequences p whose support, $supp(p)$, is any subset of α .

The following are standard facts that we will use in the next argument:

- (a) (Steel, Woodin) $HOD \models GCH$.
- (b) (Becker) κ is the least measurable cardinal in HOD.
- (c) (Woodin) There is a mouse pair (M, Σ) such that letting κ^M be the least measurable cardinal of M. Let $(i_{\alpha,\beta}: M_{\alpha} \to M_{\beta}: \alpha < \beta < \omega_1$) be the iteration according to Σ such that $M_0 = M$, $i_{0,1}$ is the ultrapower map by μ_0 , a normal measure on κ^M in M, and for $\alpha < \kappa$, letting $(\kappa_\alpha, \mu_\alpha)$ $i_{0,\alpha}(\kappa^M,\mu)$, then $i_{\alpha,\alpha+1}$ is the ultrapower map of M_α by μ_α . Finally, let M_{∞} be the direct limit of the system $(i_{\alpha,\beta}:M_{\alpha}\to M_{\beta}:\alpha<\beta<\omega_1)$ and κ_{∞} be the image of κ^M under the direct limit maps, then $\kappa_{\infty} = \kappa$ and $M_{\infty}|(\kappa_{\infty}^{+})^{M_{\infty}} = \text{HOD}|(\kappa^{+})^{\text{HOD}}.$
- (d) (Kunen, [\[Kun78\]](#page-28-10)) For any inaccessible α , Add(α , 1) is forcing equivalent to $\mathbb{R}_0 \star \mathbb{R}_1$ where \mathbb{R}_0 is the forcing for adding an α -Suslin tree as defined in [\[Kun78\]](#page-28-10) and \mathbb{R}_1 names the forcing that adds a branch through the Suslin tree added by \mathbb{R}_0 .^{[6](#page-21-0)}
- (e) (Silver, [\[Kun78\]](#page-28-10)) κ remains measurable in $V^{\mathbb{P}_{\kappa+1}}$.
- (f) For any inaccessible $\alpha \leq \kappa$, \mathbb{P}_{α} is α -c.c. and for any V-generic $G \subseteq \mathbb{P}_{\alpha}$, then $(\mathbb{Q}_{\alpha})_G$ is of size α , is α -closed and α^+ -c.c. in $V[G]$. Furthermore, $V[G]$ satisfies GCH. See [\[Cum10\]](#page-27-9).

Regarding Fact (e), we can say more. By standard forcing facts, letting $G \subseteq \mathbb{P}_{\kappa+1}$ be HOD-generic and $U \in \text{HOD}$ be a normal measure witnessing κ is measurable. Let $j = j_U : \text{HOD} \to N$ be the ultrapower map by U. Then there is a generic $H \in V[G]$ for the tail $j(\vec{\mathbb{P}}) \restriction (\kappa+1, j(\kappa)+1]$ and that j lifts to j^+ : HOD[G] $\rightarrow M[G \star H]$; see [\[Cum10,](#page-27-9) Section 12] for a similar argument.^{[7](#page-21-1)} Since $H \in \text{HOD}[G], j^+$ induces a measure U^+ on κ in $V[G],$ i.e. $A \in U^+$ iff $\kappa \in j^+(A)$. U^+ extends U and witnesses κ is measurable in HOD[G].

Claim 6.2. There is a HOD-generic $G \subseteq \mathbb{P}_{\kappa+1}$ in V.

Proof. Let $(M, \Sigma, \kappa^M, \mu_0)$ and $(i_{\alpha, \beta}: M_\alpha \to M_\beta : \alpha < \beta < \kappa)$ be as in Fact (c). Let $\vec{\mathbb{P}}_0 = \vec{\mathbb{P}}^M$ be the forcing iteration $\vec{\mathbb{P}}$ described in above but defined in $M = M_0$. $G_0 \subseteq \mathbb{P}_{\kappa^{M}+1}^{M}$ be M-generic; such a G_0 exists in V because M is countable. By the remark after Fact (e), we can find a generic $H_0 \in M_0[G_0]$ for the tail forcing $i_{0,1}(\vec{\mathbb{P}}_0) \restriction (\kappa_0+1,\kappa_1+1]$ and a measure μ_0^+ extending $\mu_0 = \mu$. Let $G_1 = G_0 \star H_0$. The lift map $i_{0,1}^+ : M_0[G_0] \to M_1[H_1]$ is the ultrapower map of $M_0[G_0]$ by μ_0^+ ; let $\mu_1^+ = i_{0,1}^+(\mu_0^+)$.

This process easily extends to every M_α for successor ordinals $\alpha,$ in other words, we have for each successor $\alpha \leq \kappa$, say $\alpha = \beta + 1$, suppose G_{β} is defined, then we define G_{α} , μ_{β}^+ , μ_{α}^+ from G_{β} , μ_{β} , $i_{\beta,\alpha}$ the same way G_1 , μ_0^+ , μ_1^+ is defined from $G_0, \mu_0, i_{0,1}$. For α limit, we let G_α be the limit of the G_β 's under the natural maps $i_{\beta,\beta^*}^+ : M_\beta[G_\beta] \to M_{\beta^*}[G_\beta^*]$ for $\beta < \beta^* < \alpha$. Since $M_\infty = M_\kappa$, G_κ is defined and exists in V .

⁶R₀ adds no new β-sequences for $\beta < \alpha$ and letting $g \subseteq \mathbb{R}_0$ be V-generic and T be the tree added by g, in $V[g]$, \mathbb{R}_1 is simply the forcing whose conditions are elements of T ordered by end-extension.

⁷The argument showing the existence of $H \in \text{HOD}[G]$ uses Fact (a) and (f).

By Fact (c) and Fact (a), and the fact that $\dot{\mathbb{Q}}_{\kappa}$ can be coded by a subset of $\kappa, \vec{\mathbb{P}}^{M_{\infty}} = \vec{\mathbb{P}}$ and G_{κ} is HOD-generic for $\mathbb{P}_{\kappa+1}$. This completes the proof of the claim. \Box

Let $G \subseteq \mathbb{P}_{\kappa+1}$ be HOD -generic and $G \in V$. The existence of G follows from Claim [6.2.](#page-21-2) We finish the proof of the lemma as follows. By Fact (e), κ is measurable in HOD[G]. Let $G = G_{\kappa} \star H \star K$ where $G_{\kappa} = G \upharpoonright \mathbb{P}_{\kappa}$, $H \star K$ is generic for \mathbb{R}_0 and K is generic for $(\mathbb{R}_1)_H$, where $\mathbb{R}_0 \star \mathbb{R}_1$ is forcing equivalent to $Add(\kappa, 1)$ in $V[G_{\kappa}]$ as in Fact (d). Let $g \subseteq \kappa$ code $G_{\kappa} \star H$, then $HOD[g] =$ $HOD[G_{\kappa}\star H] \models$ "there is a Suslin tree on κ ". Therefore,

$$
HOD[g] \models \kappa \text{ is not weakly compact}
$$

as desired. This proves Lemma [6.1.](#page-20-0)

 \Box

Note that Lemma [6.1](#page-20-0) implies that there is some $g \subseteq \omega_1^V$ such that

$$
\text{HOD}_g \neq \text{HOD}[g].\tag{6.1}
$$

To see the above equation, let g be as in Lemma [6.1.](#page-20-0) Since the unique normal measure μ on ω_1^V is OD , $\mu \cap \text{HOD}_g \in \text{HOD}_g$ witnesses ω_1^V is measurable in HOD_g . However, ω_1^V is not weakly compact, and hence not measurable in $HOD[g]$.

Let $j = j_{\mu}$ be the ultrapower embedding induced by μ . Let Y be the set of all $A \cup \{\alpha\}$ such that

- (i) $A \subseteq \omega_1$.
- (ii) $\omega_1 \leq \alpha < \omega_2$.
- (iii) $\alpha \in i(A)$.

Lemma 6.3. Assume AD^+ . Then Y is not ∞ -Borel.

Proof. We first claim that Y does not have any $OD \infty$ -Borel code. Suppose not. Let S be an OD ∞ -Borel code for Y, say $A \cup {\alpha} \in Y$ iff $L[S, A \cup {\alpha}] \models$ $\varphi[S, A, \alpha]$ for some formula φ . Note that for any $A \subseteq \omega_1$, $j(A) \in \text{HOD}[A]$ because for any $\omega_1 \leq \alpha < \omega_2$,

$$
\alpha \in j(A) \Leftrightarrow A \cup \{\alpha\} \in Y
$$

\n
$$
\Leftrightarrow L[S, A \cup \{\alpha\}] \models \varphi[S, A, \alpha]
$$

\n
$$
\Leftrightarrow \text{HOD}[A] \models "L[S, A \cup \{\alpha\}] \models \varphi[S, A, \alpha]".
$$

In particular, let g be as in Lemma [6.1.](#page-20-0) Then in HOD[g], there is an ω_1^V -Suslin tree T coded into g. Since $j(g) \in \text{HOD}[g], j(T) \in \text{HOD}[g]$. But then there is a node $s \in j(T)$ on level ω_1^V of the tree $j(T)$. This means there is a cofinal branch $b \subseteq T$ in HOD[g]. This contradicts T is Suslin in HOD[g].

Finally, to see that Y has no ∞ -Borel codes, note that Y is lightface projective in the codes. If Y has an ∞ -Borel codes, Y has a code S coded by a Δ_1^2 set by the (lightface) Σ_1^2 -basis theorem (cf. [\[ST10\]](#page-28-7))^{[8](#page-23-0)}. But then S is OD, contradicting our previous claim. \Box

Now let X be the set of $A \subseteq \omega_1$ such that A codes (T, b) where

- T is an ω_1 -tree of height ω_1 on ω_1 ,
- $\bullet \ \ b \in T,$
- *b* is extended by the $L[j(T)]$ -least cofinal branch of T.

X cannot have any $OD \infty$ -Borel code (or more generally, X cannot have any $OD_x \infty$ -Borel code for any real x). Suppose S is such a code. Then for any $g \subseteq \omega_1^V$, then ω_1^V has the tree property in HOD[g] because $S \in \text{HOD}$ and given any ω_1^V -tree $T \in \text{HOD}[g]$ that has ω_1^V many levels, $\text{HOD}[g]$ can use S to compute a cofinal branch of T as follows. For each $\alpha < \kappa$, let b_{α} be the branch in T of order type α such that the $L[j(T)]$ -least cofinal branch of T extends b_{α} . Note that $(T, b_{\alpha}) \in X$ for each α . Therefore, HOD[g] can use S to compute the cofinal branch $b = \bigcup_{\alpha} b_{\alpha}$ of T. This contradicts lemma [6.1.](#page-20-0) By a similar argument as above, X cannot have any ∞ -Borel code. \Box

- **Remark 6.4.** (i) Theorem [1.5](#page-1-2) is in some sense optimal in light of the previous results that show every subset of $\mathcal{P}_{\omega_1}(\omega_1)$ is ∞ -Borel under AD⁺. The next section gives a sufficient condition for subsets of $\mathcal{P}(\kappa)$ to be ∞ -Borel. We do not have a full characterization of ∞ -Borelness for subsets of $\mathcal{P}(\kappa)$.
- (ii) Fact (c) is unpublished, but is a standard result in inner model theory. One could have shown if Y (or X) in the theorem has ∞ -Borel codes, then it has to have one in $L(\Sigma, \mathbb{R})$ for some pointclass Γ and a Γ -Woodin pair (P, Σ) (cf. [\[SWKL16\]](#page-29-5) for a discussion of Γ-Woodin mice) by a Σ_1 reflection argument. We can show there is no ∞ -Borel code for Y (and X) in $L(\Sigma, \mathbb{R})$ much as before. In this model, we can work over HOD_{Σ} , which can be shown to satisfy GCH and ω_1^V is the least measurable; furthermore, there is a pair (M, Λ) as in Fact (c), where M is a fine-structural Σ mouse such that M_{∞} agrees with HOD_{Σ} well past ω_1^V , in fact up to Θ (see [\[Sar15\]](#page-28-11)). We can construct the generic G as above over HOD_{Σ} as in Claim [6.2;](#page-21-2) the g that witnesses ω_1^V is not weakly compact in HOD_Σ can be constructed from G as before.

⁸[\[ST10\]](#page-28-7) only proves the boldface Σ_1^2 -theorem, but this suffices. To see this, first note that the proof of Lemma [6.1](#page-20-0) shows that Y in fact has no $OD_x \infty$ -Borel code for any real x. Now note that $Y \in L(\mathcal{P}_{\theta_0}(\mathbb{R}))$ and is lightface projective (in the code) there, so if Y has an ∞ -Borel code, it must have an $OD_x \infty$ -Borel code for some real x.

7 The ABCD Conjecture

Proof of Theorem [1.7.](#page-2-1) For simplicity, let us assume $V = L(\mathbb{R})$. Let $\kappa < \Theta$ and τ be the topology defined on $\mathcal{P}(\kappa)$ as in Definition [1.1.](#page-2-3) Let $A \subseteq \mathcal{P}(\kappa)$ be τ -Borel. We show A is ∞ -Borel. Without loss of generality, we may assume A is τ -open since ∞ -Borel sets are closed under complements and countable unions. Let ν be the unique supercompact measure on $\mathcal{P}_{\omega_1}(\kappa)$ and for each $\sigma \in \mathcal{P}_{\omega_1}(\kappa)$, let \dot{k}_{σ} be the canonical $Coll(\omega, \sigma)$ -name for the generic enumeration of σ . Suppose A is OD_x as witnessed by the formula φ , i.e. $F \in A \Leftrightarrow \varphi(F, x)$. Then for any $F \subseteq \kappa$,

$$
\begin{split} F \in A &\Leftrightarrow \forall^{*}_{\nu} \sigma \ \mathrm{HOD}_{x}[F \cap \sigma, \sigma - F] \vDash \text{``}1 \Vdash_{Coll(\omega, \sigma)} \mathrm{HOD}_{x}[\dot{k}_{\sigma}] \vDash \\ 1 \Vdash_{\mathbb{B}\mathbb{C}^{x}_{\kappa, \omega}/\dot{k}_{\sigma}} L(\kappa^{\omega}) &\vDash \forall F' \in N_{rng(\dot{k}_{\sigma})}(F) \varphi(F', x). \end{split}
$$

In the above, recall that $\mathbb{BC}_{\kappa,\omega}^x$ is defined in HOD_x and for any $k \subseteq Coll(\omega, \sigma)$ in V, we can find generics $g \subseteq \mathbb{BC}_{\kappa,\omega}^x/g_k$ that adds $(\kappa^{\omega})^V$ symmetrically. The clause " $\forall F' \in N_{rng(k_{\sigma})}(F)$ " can be expressed as a formula of $\{F \cap \sigma, \sigma - F\}$ as follows:

$$
\forall F' \subseteq \kappa \forall \alpha < \kappa \ (\alpha \in F \cap \sigma \to \alpha \in F' \land \alpha \in \sigma - F \to \alpha \notin F').
$$

To see the forward direction, suppose $F \in A$. Since A is open, there is a $\sigma \in$ $\mathcal{P}_{\omega_1}(\kappa)$ such that $N_{\sigma}(F) \subseteq A$. By fineness of ν , the set $B = {\sigma^* : \sigma \subseteq \sigma^*} \in \nu$. For each $\sigma^* \in B$, for each $k \subseteq Coll(\omega, \sigma^*)$ -generic over $\text{HOD}_x[F \cap \sigma^*, \sigma^* - F]$, we can find a generic $g \subseteq \mathbb{BC}_{\kappa,\omega}^x/k$ over $\text{HOD}_x[F \cap \sigma^*, \sigma^* - F][k]$ such that the symmetric set $\kappa^{\omega}{}_{g} = (\kappa^{\omega})^{V}$. Therefore

$$
L(\dot{\kappa}^{\omega}{}_{g}) = L(\mathbb{R}^{V}) \models N_{\sigma^*}(F) = N_{rng(k)}(F) \subseteq N_{\sigma}(F) \subseteq A.
$$

So we have the right hand side. The proof of the converse is similar. If the right hand side holds, fix a σ^* in the measure 1 set and $k \subseteq Coll(\omega, \sigma^*)$ -generic over $\text{HOD}_x[F \cap \sigma^*, \sigma^* - F]$ and g as above. So $(\kappa^{\omega} g) = (\kappa^{\omega})^V$ and $V \models \forall F \in$ $N_{\sigma^*}(F)\varphi(F',x)$. In particular, $\varphi(F,x)$ holds since $F \in N_{\sigma^*}(F)$. This verifies $F \in A$.

Note that $HOD_x = L[Z]$ for some set of ordinals Z. There is a formula ψ such that the right hand side can be written as

$$
\forall_{\nu}^* \sigma \ L[Z][F \cap \sigma, \sigma - F] \models \psi(F \cap \sigma, \sigma - F, \mathbb{BC}_{\kappa, \omega}^x, x). \tag{7.1}
$$

Let $Z_{\infty} = [\sigma \mapsto Z]_{\nu}$, $\mathbb{B}\mathbb{C}_{\infty} = [\sigma \mapsto \mathbb{B}\mathbb{C}_{\kappa,\omega}^x]_{\nu}$, $F_{\infty} = [\sigma \mapsto F \cap \sigma]_{\nu}$. Note that by normality of ν ,

$$
F_{\infty} = j_{\nu}[F] \wedge j_{\nu}[\kappa] = [\sigma \mapsto \sigma]_{\nu},
$$

where j_{ν} is the canonical ultrapower map induced by ν . By Los's theorem, [7.1](#page-24-1) is equivalent to

$$
L[Z_{\infty}][j_{\nu}[F], j_{\nu}[\kappa] - j_{\nu}[F]] \models \psi(j_{\nu}[F], j_{\nu}[\kappa] - j_{\nu}[F], \mathbb{BC}_{\infty}).
$$
 (7.2)

Note that we can compute $j_{\nu}[F], j_{\nu}[\kappa] - j_{\nu}[F]$ from $j_{\nu} \restriction \kappa$ and F, therefore, [7.2](#page-24-2) is equivalent to

$$
L[Z_{\infty}, j_{\nu} \upharpoonright \kappa][F] \models "L[Z_{\infty}][j_{\nu}[F], j_{\nu}[\kappa] - j_{\nu}[F]] \models \psi(j_{\nu}[F], j_{\nu}[\kappa] - j_{\nu}[F], \mathbb{BC}_{\infty})." \tag{7.3}
$$

Since $F \in A$ iff [7.3](#page-25-0) holds, A is ∞ -Borel and in fact, we can find an OD_x Borel code for A.

The general case is similar. The main point is by general AD^+ -theory, there is a set of ordinals J such that $A \in L(J, \mathbb{R})$. Working in $L(J, \mathbb{R})$, suppose A is $OD(J, x)$ for some real x, then by a similar calculations as above, where we replace HOD_x by $HOD_{J,x}$, we can construct an ∞ -Borel code for A.

 \Box

Now we outline the argument that AD^+ implies the $ABCD$ Conjecture holds. For simplicity, we assume $V = L(\mathbb{R})$. The reader can read the full details of the general proof in $[Cha24]$. By $[Cha24]$, it suffices to show that for any infinite $\kappa < \Theta$, letting $\mathcal{P}_B(\kappa)$ be the set of all bounded subsets of κ , there is no injection $\Phi : \mathcal{P}_B(\kappa) \to \lambda^{\epsilon}$ for any $\epsilon < \kappa$ and any λ . By an argument as in [\[Cha24\]](#page-27-4) using Σ_1 -reflection, if such a Φ exists, we can assume $\kappa, \lambda < \underline{\delta}_1^2$. Fix such a Φ. Let $x \in \mathbb{R}$ be such that $\Phi \in OD_x$. Let $M = \text{HOD}_x$ and $\mathbb{P} = Coll(\epsilon^{+,M}, \epsilon^{+,M}).$ The following are facts we will use in this outline:

- Any successor cardinal in M, in particular $\epsilon^{+,M}, \epsilon^{+,M}$, have cofinality ω in V . This follows from the work of Steel and Woodin (cf. $[SW16]$).
- The set of $F \subseteq \mathbb{P}$ such that $F \in V$ and F is M-generic is nonempty. Furthermore, any such F is countably generated i.e. there is a countable $\sigma \subseteq \mathbb{P}$ such that $F = \{p \in \mathbb{P} : \exists q \in \sigma \; q \leq p\}$; we say that σ generates F and writes $\langle \sigma \rangle_{\mathbb{P}} = F$. This is proved in [\[Cha24\]](#page-27-4).

Let A be the set of tuples (f, α, β) such that

- (i) $f: \epsilon^{+,M} \to \epsilon^{+,M}$ is a surjection induced by an M-generic $g \subseteq \mathbb{P}$, and
- (ii) $\Phi(f)(\alpha) = \beta$.

Claim 7.1. A is the intersection of a τ -open set and an ∞ -Borel set. Hence A is ∞ -Borel; furthermore, A has an $OD_x \infty$ -Borel code.

Proof. Let B be the set of surjections $f: \epsilon^{+,M} \to \epsilon^{++,M}$ that are induced by a generic $G \subseteq \mathbb{P}$ over HOD_x . Let G_f be the unique such generic for each such f. By the above aforementioned fact, $B \neq \emptyset$ and every $f \in B$ has the property that G_f is countably generated. Let

$$
S = \{ (f, \alpha, \beta, \sigma) : f \in B \land \Phi(f)(\alpha) = \beta \land \sigma \in \mathcal{P}_{\omega_1}(\mathbb{P}) \land G_f = \langle \sigma \rangle_{\mathbb{P}} \}.
$$

Let ν be the (unique) normal fine measure on $\mathcal{P}_{\omega_1}(\kappa^2 \cup \mathbb{P})$ and τ be the topology as defined in [1.1](#page-2-3) on $\mathcal{P}(\kappa^2)$. Let

$$
C = \bigcup \{ N_{\sigma \cup \{(\alpha,\beta)\}}(f) : (f, \alpha, \beta, \sigma) \in S \}.
$$

Then clearly C is τ -open and is OD_x . By the proof of Theorem [1.7,](#page-2-1) C has an $OD_x \infty$ -Borel code.

We now claim that B is ∞ -Borel. We have, letting Z be a set of ordinals such that $HOD_x = L[Z]$, then

$$
f \in B \Leftrightarrow L[Z][f] \models \text{``}\forall D \subseteq \mathbb{P} \ (D \in L[Z] \land D \text{ is dense } \Rightarrow G_f \cap D \neq \emptyset)\text{''}.
$$

The equivalence above clearly shows B is ∞ -Borel. ^{[9](#page-26-1)}

Finally, $A = B \cap C$ since if $f' \in N_{\sigma \cup \{(\alpha,\beta)\}}(f) \cap B \subseteq B \cap C$ for some $(f, \alpha, \beta, \sigma) \in S$, then $f' = f$ as f is uniquely determined by σ . This completes the proof of the lemma and in fact shows that A has an $OD_x \infty$ -Borel code. \square

Let S be an $OD_x \infty$ -Borel code of A. So $S \in M = \text{HOD}_x$. Let $G \subseteq \mathbb{P}$ be M-generic such that $G \in V$ and $f : \epsilon^{+,M} \to \epsilon^{+,M}$ be the surjection induced by G. In $M[G]$, using S, we can compute $\Phi(f) \in \lambda^{\epsilon}$. Since $\Phi(f) \in M[G]$ and forcing by P does not add new ϵ -sequences, $\Phi(f) \in M$. We can also compute f from S and $\Phi(f)$ since Φ is an injection. Therefore, $f \in M$ and therefore $G \in M$. This is a contradiction. ^{[10](#page-26-2)}

8 Questions

We collect a few questions left open from the above analysis.

- Question 8.1. (i) Assume AD^+ . Suppose μ is an arbitrary countably complete measure on some set X. Must $Ult(V,\mu)$ be well-founded?
- (ii) Assume AD^+ . Suppose μ is an arbitrary supercompact measure on $\wp_{\omega_1}(X)$ for some set X. Suppose $(M_{\sigma} : \sigma \in \wp_{\omega_1}(X))$ is such that for each σ , M_{σ} is a transitive model of ZF[−] . Must Los's theorem holds for the ultraproduct $\prod_{\sigma} M_{\sigma}/\mu$?
- (iii) Does AD^+ and ω_1 is $\mathbb R$ -supercompact imply there must be a unique normal, fine measure on $\wp_{\omega_1}(\mathbb{R})$?

Regarding [8.1\(](#page-26-3)i), Solovay [\[Sol06\]](#page-28-1) shows that $\text{cof}(\Theta) > \omega + \text{DC}_{\mathbb{R}} + \neg \text{DC}_{\mathcal{P}(\mathbb{R})}$ implies there is a countably complete measure μ on cof(Θ) such that Ult (V, μ) is ill-founded. We do not know if a model of AD^+ satisfying the hypothesis Solovay's proof requires can exist. Regarding (iii), by results of Solovay and

⁹We could alternatively show B is ∞ -Borel as follows.

$$
f \in B \Leftrightarrow \forall_{\nu}^* \sigma \text{ HOD}_x[f \cap \sigma, \sigma - f] \models \text{``1} \Vdash_{Coll(\omega, \sigma)} \text{HOD}_x[\dot{k}_{\sigma}] \models
$$

1
$$
\Vdash_{\mathbb{BC}^{\mathcal{X}}_{\kappa, \omega}/\dot{k}_{\sigma}} L(\kappa^{\omega}) \models \langle f \cap \sigma \rangle_{\mathbb{P}} \text{ is generic over } \text{HOD}_x.
$$

In the above, by $f \cap \sigma$, we mean the set of conditions $p \in \sigma \cap \mathbb{P}$ such that $p \subseteq f$. The equivalence above is verified similarly to the proof of Theorem [1.7.](#page-2-1) The key point is that all $f \in B$ are such that G_f is countably generated.

¹⁰In [\[Cha24\]](#page-27-4), the first author uses the fact that $HOD_{x,G} = HOD_x[G]$ in a substantial way; this fact was proved in [\[Cha24\]](#page-27-4). Here, we avoid this; instead, the existence of S allows us to adapt the argument in [\[Cha24\]](#page-27-4).

Woodin, $AD_{\mathbb{R}} + DC_{\mathbb{R}}$ implies that there is a unique normal, fine measure on $\wp_{\omega_1}(\mathbb{R})$. The minimal model of the theory "AD⁺ and ω_1 is R-supercompact" also satisfies the uniqueness of such a measure (cf $[That 15]$ and $[RT18]$). It is known that the conclusion of (iii) is false in the absence of AD^+ .

Recall the topology τ defined on $\mathcal{P}(\kappa)$ above and our result that τ -Borel sets are ∞-Borel.

Question 8.2. Is there a necessary and sufficient condition for ∞ -Borelness of subsets of $\mathcal{P}(\kappa)$ in terms of the topology τ ?

References

- [Cha19] William Chan, An introduction to combinatorics of determinacy, arXiv preprint arXiv:1906.04344 (2019).
- [Cha24] , Cardinality of the set of bounded subsets of a cardinal, In preparation.
- [CJ] William Chan and Stephen Jackson, Applications of infinity-borel codes to definability and definable cardinals, To appear in Fundamenta Mathematicae.
- [CJT22] William Chan, Stephen Jackson, and Nam Trang, The size of the class of countable sequences of ordinals, Transactions of the American Mathematical Society 375 (2022), no. 3, 1725–1743.
- [CJT23] ______, More definable combinatorics around the first and second uncountable cardinals, Journal of Mathematical Logic (2023), 2250029.
- [CJT24] $\quad \quad _ _$, Almost everywhere behavior of functions according to partition measures, Forum of Mathematics, Sigma, vol. 12, Cambridge University Press, 2024, p. e16.
- [Cum10] James Cummings, Iterated forcing and elementary embeddings, Handbook of set theory (2010), 775–883.
- [HSS17] Leo Harrington, Richard A. Shore, and Theodore A. Slaman, Σ_1^1 in every real in a Σ^1_1 class of reals is Σ^1_1 , Computability and complexity, Lecture Notes in Comput. Sci., vol. 10010, Springer, Cham, 2017, pp. 455–466. MR 3629734
- [IT18] Daisuke Ikegami and Nam Trang, On supercompactness of ω 1, Symposium on Advances in Mathematical Logic, Springer, 2018, pp. 27– 45.
- [IT23] , *Preservation of AD via forcings*, to appear on Israel Journal of Mathematics (2023).
- [Jac09] Steve Jackson, *Structural consequences of ad*, Handbook of set theory, Springer, 2009, pp. 1753–1876.
- [Kun78] Kenneth Kunen, *Saturated ideals*, The Journal of Symbolic Logic 43 (1978), no. 1, 65–76.
- [Lar] Paul Larson, Forcing over models of determinacy, available at http://www.tau.ac.il/∼ rinot/host.html, to appear in the Handbook of Set Theory.
- [Lar23] Paul B Larson, Extensions of the axiom of determinacy, vol. 78, American Mathematical Society, 2023.
- [MS08] Donald A Martin and John R Steel, The tree of a moschovakis scale is homogeneous, Games, scales, and Suslin cardinals. The Cabal Seminar. Vol. I, 2008, pp. 404–420.
- [MW08] Donald A Martin and W Hugh Woodin, Weakly homogeneous trees, Games, Scales and Suslin Cardinals: The Cabal Seminar, vol. 1, Lecture Notes in Logic, 2008.
- [RT18] D. Rodríguez and N. Trang, $L(\mathbb{R}, \mu)$ is unique, Advances in Mathematics 324 (2018), 355–393.
- [Sar15] G. Sargsyan, Hod mice and the mouse set conjecture, vol. 236, Memoirs of the American Mathematical Society, no. 1111, American Mathematical Society, 2015.
- [Sol06] Robert M Solovay, The independence of DC from AD, Cabal Seminar 76–77: Proceedings, Caltech-UCLA Logic Seminar 1976–77, Springer, 2006, pp. 171–183.
- [ST10] J. R. Steel and N. Trang, AD^+ , derived models, and Σ_1 -reflection, available at http://math.berkeley.edu/∼steel/papers/Publications.html (2010).
- [Ste83] John R. Steel, Scales in L(R), Cabal seminar 79–81, Lecture Notes in Math., vol. 1019, Springer, Berlin, 1983, pp. 107–156. MR MR730592
- [Ste08] , Scales in K(R), Games, scales, and Suslin cardinals. The Cabal Seminar. Vol. I, Lect. Notes Log., vol. 31, Assoc. Symbol. Logic, Chicago, IL, 2008, pp. 176–208. MR MR2463615
- [Ste09] J. R. Steel, The derived model theorem, Logic Colloquium 2006, Lect. Notes Log., vol. 32, Assoc. Symbol. Logic, Chicago, IL, 2009, pp. 280–327. MR 2562557
- [SW16] John R. Steel and W. Hugh Woodin, HOD as a core model, Ordinal Definability and Recursion Theory: The Cabal Seminar, Volume III (Alexander S. Kechris, Benedikt Löwe, and John R. Steel, eds.), Cambridge University Press, 2016, Cambridge Books Online, pp. 257–346.
- [SWKL16] John R Steel, W Hugh Woodin, AS Kechris, and B Löwe, Hod as a core model, Ordinal definability and recursion theory: the Cabal Seminar, vol. 3, 2016, pp. 257–346.
- [Tra14] Nam Trang, *HOD in natural models of* AD^+ , Annals of Pure and Applied Logic 165 (2014), no. 10, 1533–1556.
- [Tra15] , Structure theory of $l(\mathbb{R}, \mu)$ and its applications, The Journal of Symbolic Logic 80 (2015), no. 1, 29–55.
- [Tra21] , Supercompactness can be equiconsistent with measurability, Notre Dame Journal of Formal Logic 62 (2021), no. 4, 593–618.
- [Wil12] Trevor Miles Wilson, *Contributions to descriptive inner model the*ory, Ph.D. thesis, University of California, 2012, Available at author's website.
- [Woo83] W Hugh Woodin, AD and the uniqueness of the supercompact measures on $\mathcal{P}_{\omega_1}(\lambda)$, Cabal Seminar 79–81: Proceedings, Caltech-UCLA Logic Seminar 1979–81, Springer, 1983, pp. 67–71.
- [Woo06] $\qquad \qquad$, The cardinals below $|[\omega_1]^{<\omega_1}|$, Annals of Pure and Applied Logic 140 (2006), no. 1-3, 161–232.