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Abstract

The paper studies the existence and non-existence of ∞-Borel codes
for subsets of P(κ) for ω < κ < Θ under AD+. We show that for κ < Θ,
all subsets of κω and Pω1(κ) are ∞-Borel; however, there is a subset of
P(ω1) that has no ∞-Borel codes. The latter is due to Woodin. We define
a topology τ on P(κ) and show that every τ -Borel set is ∞-Borel; this
gives a sufficient condition for ∞-Borelness for subsets of P(κ). As an
application, we use these ideas to show in L(R), the ABCD Conjecture
holds; this is a special case of a more general theorem due to the first
author.

1 Introduction

This paper deals with the topic of ∞-Borel codes, which are generalizations of
Borel codes for Borel sets. Borel codes are reals that canonically code a Borel
set of reals. ∞-Borel codes are sets of ordinals that canonically code (often
times) much more complicated sets of reals or elements of the space λκ for some
ordinals κ, λ. ZFC implies that every set of reals is Suslin and therefore, has
an ∞-Borel code; however, it is not known that the theory ZF+ AD implies
this. The axiom AD+, due to W. H. Woodin, is a strengthening of AD. Part of
AD+ stipulates that every set of reals has an ∞-Borel code. It is not known AD
implies AD+, but every known model of AD satisfies AD+.

∞-Borel codes have a number of applications within the general AD+ theory.
For example, under ZF, suppose there are no uncountable sequences of distinct
reals and every subset of P(ω) has an ∞-Borel code, then every set of reals has
the Ramsey property. In particular, AD+ implies this regularity property for
sets of reals. It is not known if AD implies this.

This paper gives partial answers to the following two questions about ∞-
Borel codes under AD+.
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(i) Given a set A, can one construct an ∞-Borel code that is relatively simple
(in definability) compared to the complexity of A?

(ii) For a cardinal κ > ω, are subsets of P(κ) ∞-Borel?

Regarding (i), Woodin has shown the following unpublished theorem, con-
cerning the definability of ∞-Borel codes under AD+.

Theorem 1.1 (Woodin). Assume AD++V = L(P(R)). Suppose X = P(ω) or
ωω and A ⊆ X is OD. Then A has an OD ∞-Borel code. Suppose furthermore
that V = L(S,R) for some set S ⊆ ON , then every OD(S) A ⊆ X has an
OD(S) ∞-Borel code.

Remark 1.2. The proof of the ”furthermore” clause of Theorem 1.1 can be
easily adapted from a proof of a special case when V = L(R) given in [Cha19]
or the proof of the first part of the theorem. The main challenge is the proof of
the first part of the theorem.

[CJ] also used Theorem 1.1 to prove an analog of a result of Harrington-
Slaman-Shore [HSS17] concerning the pointclass Σ1

1: Assuming AD+ and V =
L(P(R)), if H ⊆ R has the property that there is a nonempty OD set K ⊆ R
so that H is ODz for all z ∈ K, then H is OD.

In [IT18, Therem 5], Ikegami and the third author prove the following the-
orem.1 We will outline a proof here. In the following, Θ is the supremum of
ordinals α such that there is a surjection from R onto α and θ0 is the supremum
of ordinals α such that there is an OD surjection from R onto α

Theorem 1.3. Assume AD+. Suppose κ < Θ, X = ωκ and A ⊆ X, then A
has an ∞-Borel code. Additionally, suppose V = L(P(R)) and either Θ = θ0 or
ADR, then for any set of ordinals S, for every OD(S) A ⊆ X, A has an OD(S)
∞-Borel code.

The above theorems have the following corollary.

Corollary 1.4. 1. (Woodin) Assume AD++V = L(P(R)). Then for any
x ∈ ωω, HODx = HOD[x]. Furthermore, suppose for some set of ordinals
S, V = L(S,R), then for any such x, HODS,x = HODS [x].

2. Assume AD++V = L(P(R)). Additionally, assume either Θ = θ0 or
ADR, then for any set of ordinals S, for any κ < Θ, for any x ∈ κω,
HODS,x = HODS [x].

The following theorem of Woodin, Theorem 1.5, answers (ii) negatively. We
include its proof here with Woodin’s permission.

Theorem 1.5 (Woodin). Assume AD+. There is a set A ⊆ P(ω1) that has no
∞-Borel code.

1The authors of [IT18] did not state the theorem this way. Furthermore, to prove the first
clause of [IT18, Therem 5], one does not need the supercompactness of ω1, strong compactness
suffices.
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Part of the proof of Theorem 1.5 is Lemma 6.1, which shows Corollary
1.4 cannot be generalized to uncountable sequences. Inspecting the proof of
Theorem 1.5, one sees that this implies there is an OD set A ⊆ P(κ) that has
no OD ∞-Borel codes. However, we can prove

Theorem 1.6. Assume AD+. Let κ < Θ and A ⊆ P(κ). There is a set
A∗ ⊆ R×P(κ) such that A = {f ⊆ κ : ∃x ∈ R (x, f) ∈ A∗} and A∗ is ∞-Borel.

The last two theorems imply that in general, ∞-Borel subsets of P(κ)n (for
n > 1) are not closed under projections. We give a sufficient condition for a set
A ⊆ P(κ) to be ∞-Borel for κ > ω.

Definition 1.1. Let κ > ω and F ⊆ κ. Let σ ∈ Pω1(κ) and define Nσ(F ) to
be the set of F ′ ⊆ κ such that

∀α ∈ σ (α ∈ F ′ ⇔ α ∈ F ).

Let τ be the topology on P(κ) generated by the sets Nσ(F ) as basic open sets.

Theorem 1.7. Assume AD+. Let κ < Θ and A ⊆ P(κ). Suppose A is τ -Borel.
Then A is ∞-Borel.

The problem of distinguishing cardinalities of infinite sets under AD+ is an
fundamental problem concerning structural properties of AD+ models and is
notoriously difficult. Cantor’s original formulation of cardinalities states that
X,Y have the same cardinality (denoted |X| = |Y |) if and only if there is a
bijection f : X → Y . |X| ≤ |Y | if and only if there is an injection of X into Y .
And |X| < |Y | if and only if |X| ≤ |Y | but ¬(|Y | ≤ |X|). The Axiom of Choice
(AC) implies that every set is well orderable, and hence the class of cardinalities
forms a wellordered class under the injection relation. Under AD, the class
of cardinalities is not wellorderable; in fact, ¬(|R ≤ |ω1|) and ¬(|ω1| ≤ |R|).
The following conjecture gives a sufficient and necessary condition for when the
cardinalities of two sets of the form αβ , γδ for infinite cardinals α, β, γ, δ are
comparable.

Conjecture 1.8 (The ABCD Conjecture). Assume ZF. Let α, β, γ, δ < Θ be
infinite cardinals. Suppose β ≤ α, δ ≤ γ. Then

|αβ | ≤ |γδ| if and only if β ≤ δ and α ≤ γ.

Some remarks are in order about the conjecture. First, the conjecture implies
in particular that if δ < β or if γ < α, then αβ cannot inject into γδ. One
easily sees that ZFC implies the failure of the ABCD Conjecture; one can see
that by, for instance, noticing that ZFC implies |ωω| ≥ |ωω

1 |2; in this case,
γ = ω < α = ω1, yet ω

ω
1 injects into ωω. The conjecture deals with the case

β ≤ α, δ ≤ γ being infinite cardinals, but the other cases either have been known
to follow from AD+ or can simply be reduced to the cases the conjecture deals
with. For instance, if β > α and δ > γ, then |αβ | = |P(β)| and |γδ| = |P(δ)|.

2If ZFC holds, Θ is the successor of the continuum and ω1 < Θ.
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AD+ implies that |P(β)| ≤ |P(δ)| if and only if β ≤ δ < Θ. If β > α and δ ≤ γ,
then we really compare |ββ | and |γδ|. It is important here that the cardinals
in the conjecture are infinite and are < Θ. For instance, when β = 1, α is an
infinite cardinal > γ ≥ δ, then |αβ | = |α| and AD+ implies that α cannot inject
into P(γ) and therefore cannot inject into γδ if α < Θ. On the other hand,
α = 3 can inject into P(γ) for γ = 2, or for example, α = γ+ and γ ≥ Θ, then α
does inject into P(γ) if AD++V = L(P(R)) holds. Also, if AD++V = L(P(R))
holds, it is easy to see that (Θ+)ω injects into ΘΘ; this shows the failure of the
conjecture for α = Θ+, β = ω, δ = γ = Θ.

The first author has recently shown that AD+ implies the ABCD Conjecture.
This result will appear in an upcoming paper (cf. [Cha24]). Partial results
concerning this conjecture had been established in [CJT24, CJT22, CJT23,
Woo06]. In this paper, we outline how the ABCD Conjecture can be shown to
hold in L(R) using Theorem 1.7.

In Section 2, we review basic facts about AD+ and∞-Borel codes. In Section
3, we review homogeneous and weakly homogeneous sets in AD+. In Section 4,
we review Vopěnka algebras, which is a key tool in producing ∞-Borel codes
in the AD+ context. We prove 1.1,1.3, 1.4, 1.6 in Section 5. Section 6 proves
Theorem 1.5. Section 7 discusses the topology τ and outlines the proof that
the ABCD conjecture holds in L(R). Some conjectures and open questions are
presented in Section 8.

The first author is partially supported by NSF grants DMS-1945592 and
DMS-1800323 and FWF grants I6087 and Y1498. The second author is partially
supported by NSF grant DMS-1800323. The third author is partially supported
by NSF grant DMS-1945592.

2 AD+ and ∞-Borel codes

We now review basic notions on determinacy axioms. For a nonempty set X,
the Axiom of Determinacy in Xω (ADX) states that for any subset A of
Xω, in the Gale-Stewart game with the payoff set A, one of the players must
have a winning strategy. We write AD for ADω. The ordinal Θ is defined as the
supremum of ordinals which are surjective images of R. Under ZF+AD, Θ is
very big, e.g., it is a limit of measurable cardinals while under ZFC, Θ is equal
to the successor cardinal of the continuum |R|. Ordinal Determinacy states
that for any λ < Θ, any continuous function π : λω → ωω, and any A ⊆ ωω,
in the Gale-Stewart game with the payoff set π−1(A), one of the players must
have a winning strategy. In particular, Ordinal Determinacy implies AD while
it is still open whether the converse holds under ZF+DC.

For λ < Θ, we write Pλ(R) for the set of A ⊆ R such that the Wadge rank
of A is < λ. For any set X, we write ℘ω1(X) for the set of countable subsets of
X. We write D for the set of Turing degrees. For x, y ∈ ωω, we write x ≤T y,
x ≡T y for x is Turing reducible to y and x is Turing equivalent to y respectively.
A Turing degree has the form [x]T = {y ∈ ωω : x ≡T y}.

We will introduce the notion of ∞-Borel codes. Before that, we review some
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terminology on trees. Given a set X, a tree on X is a collection of finite
sequences of elements of X closed under initial segments. Given an element t
of X<ω, lh(t) denotes its length, i.e., the domain or the cardinality of t. Given
a tree T on X and elements s and t of T , s is an immediate successor of t
in T if s is an extension of t and lh(s) = lh(t) + 1. Given a tree T on X and
an element t of T , SuccT (t) denotes the collection of all immediate successors
of t in T . An element t of a tree T on X is terminal if SuccT (t) = ∅. For
an element t of a tree T on X, term(T ) denotes the collection of all terminal
elements of T . Given a tree T on X, [T ] denotes the collection of all x ∈ Xω

such that for all natural numbers n, x ↾ n is in T . A tree T on X is well-
founded if [T ] = ∅. We often identify a tree T on X × Y with a subset of the
set {(s, t) ∈ X<ω × Y <ω | lh(s) = lh(t)}, and p[T ] denotes the collection of all
x ∈ Xω such that there is a y ∈ Y ω with (x, y) ∈ [T ].

Definition 2.1. Let λ, κ be non-zero ordinals.

1. An ∞-Borel code in λκ is a pair (T, ρ) where T is a well-founded tree
on some ordinal γ, and ρ is a function from term(T ) to κ× λ.

2. Given an ∞-Borel code c = (T, ρ) in λκ, to each element t of T , we assign
a subset Bc,t of λκ by induction on t using the well-foundedness of the
tree T as follows:

(a) If t is a terminal element of T , let Bc,t be the basic open set Oρ(t) in
λκ. Here ρ(t) is a pair of ordinals (α, β) ∈ κ × λ and Oρ(t) has the
form {f ∈ λκ : ρ(t) ∈ f}.

(b) If SuccT (t) is a singleton of the form {s}, let Bc,t be the complement
of Bc,s in the space λκ.

(c) If SuccT (t) has more than one element, then let Bc,t be the union of
all sets of the form Bc,s where s is in SuccT (t).

We write Bc for Bc,∅.

3. A subset A of λκ is ∞-Borel if there is an ∞-Borel code c in λκ such that
A = Bc.

We will identify P(λ) with 2λ. So an ∞-Borel code for A ⊆ P(λ) is an
∞-Borel code for a subset of 2λ. We can generalize the above definitions of ∞-
Borel codes in a number of ways. One way is we can replace λ in Definition 2.1
by a set of ordinals S. The definition of an ∞-Borel code for a set A ∈ P(Sκ)
is modified in an obvious way from Definition 2.1. We can also generalize the
definition of ∞-Borel codes in λκ1

1 ×· · ·×λκn
n for some n ∈ ω (with the product

topology) in an obvious way. We leave the details to the reader.
We will also use the following characterization of ∞-Borelness:

Fact 2.1. Let λ, κ be a non-zero ordinals and A be a subset of λκ. Then the
following are equivalent:

1. A is ∞-Borel, and
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2. for some formula ϕ and some set S of ordinals, for all elements x of λκ,
x is in A if and only if L[S, x] ⊨ “ϕ(S, x)”.

Proof. For the case λ = 2, one can refer to [Lar, Theorem 8.7]. The general
case can be proved in the same way.

Remark 2.2. In fact, the second item of Fact 2.1 is equivalent to the following
using Lévy’s Reflection Principle:

� for some γ > λ, κ, some formula ϕ, and some set S of ordinals, for all
elements x of λκ, x is in A if and only if Lγ [S, x] ⊨ “ϕ(S, x)”.

Throughout this paper, we will freely use either of the equivalent conditions
of ∞-Borelness.

We now introduce the axiom AD+, and review some notions on Suslin sets.
The axiom AD+ states that (a) DCR holds, (b) Ordinal Determinacy holds, and
(c) every subset of ωω is ∞-Borel. A subset A of ωω is Suslin if there are
some ordinal λ and a tree T on ω×λ such that A = p[T ]. A is co-Suslin if the
complement of A is Suslin. An infinite cardinal λ is a Suslin cardinal if there is
a subset A of ωω such that there is a tree on ω×λ such that A = p[T ] while there
are no γ < λ and a tree S on ω×λ such that A = p[S]. Under ZF+DCR, AD

+ is
equivalent to the assertion that Suslin cardinals are closed below Θ in the order
topology of (Θ, <). Another equivalence that is often useful in applications is
the statement that AD + V = L(P(R)) holds and every Σ1 statement with
Suslin co-Suslin sets as parameters true in V is true in a transitive model M
of ZF− + DCR coded by a Suslin co-Suslin set of reals A. We call this Σ1-
reflection into the Suslin co-Suslin sets (or sometimes just Σ1-reflection).
Another form of Σ1-reflection that is also useful is Σ1-reflection into the ∆2

1˜sets, which says that AD+ V = L(P(R)) holds and every Σ1 statement with
∆2

1˜ sets as parameters true in V is true in a transitive model M of ZF− + DCR

coded by a ∆2
1˜ set of reals A.

The sequence (θα : α ≤ Ω) is called the Solovay sequence and is defined
as follows. θ0 is the supremum of ordinals α such that there is an OD surjection
π : R → α. For limit α ≤ Ω, θα = supβ<αθβ . Suppose θα has been defined for
α < Ω, letting A ⊆ R be of Wadge rank θα, θα+1 is the supremum of α such
that there is an OD(A) surjection π : R → α. Θ = θΩ.

The following fundamental facts about AD+ are due to Woodin.

Theorem 2.3 (Woodin). Assume AD++V = L(P(R)). The following hold.

1. V = L(J,R) for some set of ordinals J if and only if ADR fails.

2. For any real x, HODx = L[Z] for some Z ⊆ Θ.

We will not prove Theorem 2.3. Instead, we will discuss some key ingredients
that go into the proof. The proof of part (2) can be found in [Tra14]. The set
Z basically codes a Vopěnka algebra, to be discussed in the next section. For
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part (1), let κ be the largest Suslin cardinal and S(κ) be the class of all κ-
Suslin sets. If ADR fails, κ < Θ. In that case, let T be a tree projecting to a
universal κ-Suslin set and define the equivalence relation ≡T on R as: x ≡T y
iff L[T, x] = L[T, y]. We also define x ≤T y iff x ∈ L[T, y]. The measure µT on
R/ ≡T is defined as: A ∈ µT iff ∃x {y : x ≤T y} ⊆ A. µT is non-principal and
countably complete. Let J = [x 7→ T ]µT

. One can show V = L(J,R).
We end this section by proving a basic fact concerning supercompact mea-

sures on ℘ω1
(X) for some set X. Assume AD++ADR. Let X be a set such that

there is a surjection π : R → X. Let µ be the Solovay measure. By a theorem of
Solovay, cf. [Sol06], ADR implies µ exists and is the club filter on ℘ω1

(R). Let
µX be the measure on ℘ω1

(X) induced by µ and π. This means µX is defined
as: for any A ⊆ ℘ω1(X),

A ∈ µX ⇔ π−1[A] ∈ µ.

By a theorem of Woodin (cf. [Woo83]), µX is the unique normal, fine, countably
complete measure on ℘ω1

(X). In fact, µX is just the club filter on ℘ω1
(X).

Fact 2.4. Assume V = L(P(R)) + AD+ + ADR. The ultrapower Ult(V, µX) is
well-founded.

Proof. Suppose not. By Σ1-reflection, there is a transitive model N of the form
Lα(Pβ(R)) for α, β < Θ that satisfies ZF− + ADR, R ∪ ℘ω1

(X) ⊆ N , and N |=
“the ultrapower M = Ult(V, µX) is ill-founded”. Now since µX is the club
measure on ℘ω1

(X),
µN
X = µX ∩N.

Since DCR holds and that there is a surjection from R onto N , we can find a
sequence (fn : n < ω) such that ([fn]µ∩N : n < ω) witnesses the ill-foundedness
of the ultraproduct in N . Let An = {σ : fn+1(σ) ∈ fn(σ)} for each n. Then
An ∈ µ ∩ N for each n. By countable completeness of µ,

⋂
nAn ̸= ∅. Let

σ ∈
⋂

nAn. Then the sequence (fn(σ) : n < ω) is a ϵ-descending sequence.
Contradiction.

3 Homogeneously Suslin sets and applications

We summarize basic facts about (weakly) homogeneously Suslin sets. For a
more detailed discussion, the reader should consult for example [Ste09]. Recall
we identify the set of reals R with the Baire space ωω.

Given an uncountable cardinal κ, and a set Z, measκ(Z) denotes the set of
all κ-additive measures on Z<ω. If µ ∈ measκ(Z), then there is a unique n < ω
such that Zn ∈ µ by κ-additivity; we let this n = dim(µ). If µ, ν ∈ measκ(Z),
we say that µ projects to ν if dim(ν) = m ≤ dim(µ) = n and for all A ⊆ Zm,

A ∈ ν ⇔ {u : u ↾ m ∈ A} ∈ µ.

For each µ ∈ measκ(Z), let jµ : V → Ult(V, µ) be the canonical ultrapower
map by µ. In this case, there is a natural embedding from the ultrapower of V
by ν into the ultrapower of V by µ:
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πν,µ : Ult(V, ν) → Ult(V, µ)

defined by πν,µ([f ]ν) = [f∗]µ where f∗(u) = f(u ↾ m) for all u ∈ Zn. A tower
of measures on Z is a sequence ⟨µn : n < k⟩ for some k ≤ ω such that for all
m ≤ n < k, dim(µn) = n and µn projects to µm. A tower ⟨µn : n < ω⟩ is
countably complete if the direct limit of {Ult(V, µn), πµm,µn

: m ≤ n < ω} is
well-founded. We will also say that the tower ⟨µn : n < ω⟩ is well-founded.

Definition 3.1. Given a tree T on ω × κ, a homogeneity system for T is a
system ⟨µs : s ∈ ω<ω⟩ of countably complete measures on κ<ω such that for all
s, t ∈ ω<ω and x ∈ ωω, the following hold:

� µs(Ts) = 1, here Ts = {t ∈ κ|s| : (s, t) ∈ T},

� s ⊆ t⇒ µt projects to µs, and

� x ∈ p[T ] ⇒ ⟨µx↾n : n < ω⟩ is wellfounded.

If such a system exists for T , we say that T is homogeneous.
A = p[T ] is κ-homogeneous if the measures ⟨µs : s ∈ ω<ω⟩ are κ-complete.

A is < γ-homogeneous if it is κ-homogeneous for all κ < γ.

Definition 3.2. The tree T on ω×κ isweakly homogeneous if there is a weak
homogeneity system µ̄ associated with T , i.e., there is a system ⟨Ms : s ∈ ω<ω⟩
such that the following hold:

� for each s, Ms is a countable set of countably complete measures on κ<ω

such that for each µ ∈Ms, µ(Ts) = 1, and

� x ∈ p[T ] ⇒ there is a wellfounded tower ⟨µn : n < ω⟩ such that ∀n µn ∈
Mx↾n.

A = p[T ] ⊆ R is κ-weakly homogeneous iff the measures in the weak
homogeneity system µ̄ associated with T are κ-complete. A is < γ-weakly
homogeneous if it is κ-weakly homogeneous for all κ < γ.

Here are some facts about homogeneous sets and weakly homogeneous sets
under AD and AD+. Part (iii) of the theorem is an improvement of part (ii).
We will only need part (i) of the theorem in this paper; but we state parts (ii)
and (iii) for completeness.

Theorem 3.1. (i) (Martin, [MS08]) Assume AD and suppose A ⊆ R is
Suslin co-Suslin, then A is < Θ-homogeneously Suslin.

(ii) (Martin-Woodin, [MW08]) Assume ADR. Then every tree is < Θ-weakly
homogeneous.

(iii) (Woodin, [Lar23]) Assume AD+. Then every tree T on ω × κ for κ less
than the largest Suslin cardinal is < Θ-weakly homogeneous and hence
every Suslin co-Suslin set of reals is < Θ-weakly homogeneous.
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Theorem 3.1 allows us to prove the following facts.

Lemma 3.2. Assume ZF + AD++V = L(P(R)). Then for any set C of reals
that is Suslin co-Suslin, there is an s ∈

⋃
γ<Θ γ

ω such that C is OD from s and
that C is in HOD{s}(R). If in addition ADR holds, then any set of reals C is
OD from some s ∈

⋃
γ<Θ γ

ω and that C ∈ HOD{s}(R).

Proof. See [IT23, Lemma 2.11].

We also have the following variation, in fact a refinement, of the above lemma
that will be useful in Section 5.

Lemma 3.3. Assume ZF+AD++V = L(P(R)). Let C = HOD(
⋃

γ<Θ γ
ω). Let

A be Suslin co-Suslin, then A ∈ C.

Proof. Let A be Suslin co-Suslin. By Theorem 3.1, A = p[T ] where T is ho-
mogeneously Suslin witnessed by the sequence (µu | u ∈ ω<ω) of measures on
κ<ω for some κ < Θ. By a theorem of Kunen, all countably complete measures
on κ<ω are OD; in fact, there is an OD injection f : measω1(κ

<ω) → ON .
We let s ∈ ONω enumerate the parameters defining (µu | u ∈ ω<ω), that is
s = f [{µu : u ∈ ω<ω}]. Now the set

R = {(u, α, β) : u ∈ ω<ω ∧ jµu
(α) = β}

is well-orderable, and R ∈ HOD[s]. Now we can compute the Martin-Solovay
tree T ′ of T inside of HOD[s] using R, where

(t, α⃗) ∈ T ′ ⇔ ∀i < |t| jµt↾i+1(α⃗(i)) > α⃗(i+ 1).

Now for any x ∈ R,

x /∈ A⇔ x ∈ p[T ′] ⇔ the tower (µx↾n : n < ω) is ill-founded.

The illfoundedness of the tower (µx↾n : n < ω) can be computed in HOD[s][x]
using T ′, R. So HOD[s][x] can decide whether x /∈ A, equivalently whether
x ∈ A.

The above sketch shows that A,¬A ∈ HOD[s](R) and hence A ∈ C.

4 Vopěnka algebras

We next introduce Vopěnka algebras and their variants we will use in this paper.
In this section, all definitions assume the hypothesis AD++ V = L(P(R)). The
results of this section are all essentially due to W. H. Woodin. Recall the
definition of forcing projection maps σ : Q → P between posets Q and P as
defined in [Cha19, Section 7]. As a matter of notation, we write 1P for the
weakest condition in P.

Definition 4.1. Let γ be a non-zero ordinal < Θ and T be a set of ordinals.
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1. Let n be a natural number with n ≥ 1 and OT
γ,n be the collection of all

nonempty subsets of (γω)n which are OD from T . Fix a bijection πn : η →
OT

γ,n which is OD from T , where η is some ordinal. Let QT
γ,n be the poset

on η such that for each p, q in QT
γ,n, we have p ≤ q if πn(p) ⊆ πn(q). We

call QT
γ,n theVopěnka algebra for adding an element of (γω)n in HOD{T}.

2. For all natural numbers ℓ and m with 1 ≤ ℓ ≤ m, let σm,ℓ : QT
γ,m →

QT
γ,ℓ be the natural map induced from πℓ and πm, i.e., for all p ∈ QT

γ,m,

πl
(
σm,ℓ(p)

)
= {x | ∃y ∈ πm(p) y ↾ ℓ = x}. Then each σm,ℓ is a projection

between posets. Let
(
QT

γ,ω, (σn : QT
γ,ω → QT

γ,n | n < ω)
)
be the inverse

limit of the system (σm,ℓ : QT
γ,m → QT

γ,ℓ | 1 ≤ ℓ ≤ m < ω). We call QT
γ,ω

the inverse limit of Vopěnka algebras for adding an element of (γω)ω in
HOD{T}.

3. When T = ∅ or T is OD, then we omit it from our notation. Similarly,
when γ = 2, we omit it from our notation. In particular, we denote Qn

the Vopěnka algebra for adding an element of (2ω)n in HOD.

Definition 4.2. Let γ be a non-zero ordinal < Θ and T be a set of ordinals.

1. Let n be a natural number with n ≥ 1 and let BCT,∗
γ,n be the poset consisting

of OD(T ) ∞-Borel codes for subsets of (γω)n with the ordering p ≤ q if
Bp ⊆ Bq. We define the equivalence relation ∼ on BCT,∗

γ,n as follows: p ∼ q

iff Bp = Bq. We let BCT
γ,n = BCT,∗

γ,n/ ∼.

2. For all natural numbers ℓ andm with 1 ≤ ℓ ≤ m, let σm,ℓ : BCT
γ,m → BCT

γ,ℓ

be the natural map, i.e., for all p ∈ BCT
γ,m, σm,ℓ(p) is the equivalent class

of Borel codes that code the set {x ∈ (γω)l | ∃y ∈ Bp y ↾ ℓ = x}. Assume
each σm,ℓ is a well-defined projection between posets (see Remark 4.1).

Let
(
BCT

γ,ω, (σn : BC
T
γ,n → BCT

γ,ω | n < ω)
)
be the inverse limit of the

system (σm,ℓ : BCT
γ,m → BCT

γ,ℓ | 1 ≤ ℓ ≤ m < ω). We call BCT
γ,ω the

inverse limit of Vopěnka algebras of ∞-Borel codes for adding an element
of (γω)ω in HOD{T}.

3. When T = ∅ or T is OD, then we omit it from our notation. Similarly,
when γ = 2, we omit it from our notation as before.

Remark 4.1. For each m < ω, we can regard BCT
γ,m as a sub-algebra of QT

γ,m.
In Definition 4.1, it is clear that the maps σm,ℓ are projections. However, in
Definition 4.2, proving σm,ℓ is a well-defined forcing projection is non-trivial
and uses

(∗): if p ∈ BCT
γ,m+1 then {t : ∃s ∈ Bp s ↾ m = t} has an ODT ∞-Borel code.

If (∗) fails, then there is some m and some p ∈ BCT
γ,m+1 such that σm+1,m(p)

is not even defined. If (∗) holds, then all σm,l are well-defined total functions.
It is easy to check then they are all forcing projection maps (see [Cha19, Fact
7.14]).
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The reader can see [Cha19, Section 7] for a more detailed discussion of these
facts in the case γ = ω. For γ > ω, it is not clear to us if (∗) holds in general.
We will prove some version of (∗) in the last section of the paper. The same
remarks apply to the maps σm,ℓ in Definition 4.4.

The following lemmas will be useful in Section 5:

Lemma 4.2. Assume ZF+ AD+ + “V = L(T,R)” for some set T of ordinals.

1. QT
n is of size at most Θ and QT

n has the Θ-c.c. in HOD{T} for all n ≤ ω.

A similar statement holds for BCT
n for all n ≤ ω.

2. For any condition p ∈ QT
ω , there is a QT

ω -generic filter H over HOD{T}
such that p ∈ H, and V = L(T,R) ⊆ HOD{T}[H] and the set RV is
countable in HOD{T}[H] and moreover, RV is the symmetric reals of
HOD{T}[H].

3. Items (1) and (2) hold for BCT
ω,ω if BCT

ω,ω is well-defined (see Corollary
4.5).

Lemma 4.3. Assume ZF+ ADR + V = L(P(R)). Let γ < Θ.

1. The posets Qγ,n for n ≤ ω are of size less than Θ in HOD.

2. Let s ∈ (γω)n for n < ω, and hs = {p ∈ Qγ,n | s ∈ πn(p)}, where
πn : Qγ,n → Oγ,n is as in Definition 4.1. Then the set hs is a Qγ,n-
generic filter over HOD such that HOD[hs] = HOD{s}.

3. (Woodin) For any condition p ∈ Qγ,ω, there is a Qγ,ω-generic filter H
over HOD such that p ∈ H and the set (γω)V is countable in HOD[H]
and HOD(γω) is a symmetric extension.

4. Items (1) – (3) hold for BCT
γ,ω if BCT

γ,ω is well-defined (see Corollary 4.5).

The proofs are standard; the reader can consult for instance [Ste08, Tra21].
The following generalization of the previous lemmas also holds. For more details,
see [Tra21]. We first recall the definitions of the Vopěnka algebras for adding
elements of

⋃
γ<Θ γ

ω.

Definition 4.3. Let T be a set of ordinals.

1. Let n be a natural number with n ≥ 1 and OT
∞,n be the collection of

all nonempty subsets of γω1 × · · · × γωn which are OD from T for some
γ1, . . . , γn < Θ. The order on OT

∞,n is defined as: for p, q ∈ OT
∞,n, we say

p ≤ q if for some γ1, . . . , γn < Θ, p, q ⊆ γω1 × · · · × γωn and p ⊆ q. Fix
a bijection πn : η → OT

∞,n which is OD from T , where η is some ordinal.

Let QT
∞,n be the poset on η such that for each p, q in QT

∞,n, we have p ≤ q

if πn(p) ⊆ πn(q). We call QT
∞,n theVopěnka algebra for adding an element

of (
⋃

γ<Θ γ
ω)n in HOD{T}.

11



2. For all natural numbers ℓ and m with 1 ≤ ℓ ≤ m, let σm,ℓ : QT
∞,m → QT

∞,ℓ

be the natural map induced from πℓ and πm, i.e., for all p ∈ QT
∞,m,

πl
(
σm,ℓ(p)

)
= {x | ∃y ∈ πm(p) y ↾ ℓ = x}. Then each σm,ℓ is a projection

between posets. Let
(
QT

∞,ω, (σn : QT
∞,ω → QT

∞,n | n < ω)
)
be the inverse

limit of the system (σm,ℓ : QT
∞,m → QT

∞,ℓ | 1 ≤ ℓ ≤ m < ω). We call QT
∞,ω

the inverse limit of Vopěnka algebras for adding an element of (
⋃

γ<Θ γ
ω)ω

in HOD{T}.

3. When T = ∅ or T is OD, then we omit it from our notation. In particular,
we denote Q∞,n the Vopěnka algebra for adding an element of (

⋃
γ<Θ γ

ω)n

in HOD.

Definition 4.4. Let T be a set of ordinals.

1. Let n be a natural number with n ≥ 1 and let BCT,∗
∞,n be the poset con-

sisting of OD(T ) ∞-Borel codes for subsets of γω1 × · · · × γωn for some
γ1, . . . , γn < Θ with the ordering p ≤ q if Bp ⊆ Bq. We define the

equivalence relation ∼ on BCT,∗
∞,n as follows: p ∼ q iff Bp = Bq. We let

BCT
∞,n = BCT,∗

∞,n/ ∼.

2. For all natural numbers ℓ and m with 1 ≤ ℓ ≤ m, let σm,ℓ : BCT
∞,m →

BCT
∞,ℓ be the natural map, i.e., for all p ∈ BCT

∞,m, σm,ℓ(p) is the equivalent

class of Borel codes that code the set {x ∈ (
⋃

γ<Θ γ
ω)l | ∃y ∈ Bp y ↾ ℓ =

y}. Suppose each σm,ℓ is a well-defined projection between posets (see

Remark 4.1). Let
(
BCT

∞,ω, (σn : BC
T
∞,ω → BCT

∞,n | n < ω)
)
be the inverse

limit of the system (σm,ℓ : BCT
∞,m → BCT

∞,ℓ | 1 ≤ ℓ ≤ m < ω). We call

BCT
∞,ω the inverse limit of Vopěnka algebras of ∞-Borel codes for adding

an element of (
⋃

γ<Θ γ
ω)ω in HOD{T}.

3. When T = ∅ or T is OD, then we omit it from our notation. Similarly,
when γ = 2, we omit it from our notation as before.

For a given γ and T , if all OD(T ) subsets of γω have OD(T ) ∞-Borel codes,
then the posets QT

γ,1 and BCT
γ,1 are isomorphic. In general, we do not know if

this follows from AD+. Let t ∈ γω, ht = {p ∈ QT
γ,1 | t ∈ π1(p)} ⊆ QT

γ,1 be the

HODT -generic for adding t, and gt = {p ∈ BCT
γ,1 | t ∈ Bp} ⊆ BCT

γ,1 be the
HODT -generic for adding t. Clearly,

� ht ∈ HODT,t,

� t ∈ HODT,ht
.

We do not know in general that ht ∈ HODT [t]. However, it is easy to see that
(see [Cha19, Fact 7.6] for a proof)

� t ∈ HODT [gt], and

� gt ∈ HODT [t].
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Therefore,
HODT [t] = HODT [gt] ⊆ HODT,ht = HODT,t. (4.1)

A similar conclusion also holds for the forcings Q∞,1 and BC∞,1 respectively.
Let t ∈ γω for some γ < Θ, ht ⊆ Q∞,1 be the generic over HOD for adding t,
and gt ⊆ BC∞,1 be the generic over HOD for adding t. Then

HOD[t] = HOD[gt] ⊆ HODht = HODt. (4.2)

Equations 4.1 and 4.2 also hold for t ∈ (γω)n for n > 1. Also note that the
first equality of 4.1 and 4.2 also holds for any ZFC model containing the forcing.
For instance, L[BC∞,1][t] = L[BC∞,1][gt]. Some improvements of these will be
presented in Section 5. The reader is advised to consult [Tra21, Cha19] for more
detailed treatments of Vopěnka forcing and the variations discussed above.

We now address the extent to which the inverse limit BCT
γ,ω is well-defined

and topics related to the forcings BCT
γ,n.

Lemma 4.4. ZF + AD+. Suppose γ < Θ, n < ω, and A ⊆ (γω)n+1 has an
∞-Borel code (S, φ), then the set B = {g ∈ (γω)n : ∃f(f, g) ∈ A} has an
OD(S, µ) ∞-Borel code for any fine, countably complete measure µ on ℘ω1

(γω).
If additionally either ADR holds or γ = ω, then B has an OD(S) ∞-Borel code.

Proof. The first part of the lemma is proved in [IT18, Claim 2]. For the second
part, if ADR holds then there exists a unique normal, fine, and countably com-
plete measure µ on ℘ω1

(γω) by results of Solovay [Sol06] and Woodin [Woo83].
Therefore, µ is OD and OD(S, µ) = OD(S). If γ = ω, then there is an OD fine,
countably complete measure µ on ℘ω1(ω

ω) is induced from the Martin measure
as follows. First let ν be the Martin measure on D and π : D → ℘ω1

(ωω) be de-
fined as: π([x]T ) = {y ∈ ωω : y ≤T x}. Clearly, π is an OD map. The measure
µ is defined as: A ∈ µ iff π−1[A] ∈ ν. It is easy to verify that µ is an OD fine,
countably complete measure on ℘ω1

(ωω). Therefore, OD(S, µ) = OD(S).

Corollary 4.5. Suppose ZF + AD+ + V = L(J,R) for some set of ordinals J .
The following hold.

(i) The inverse limit BCJ
ω,ω is well-defined. In fact, BCJ

ω,ω is isomorphic to

QJ
ω,ω.

(ii) For any x ∈ R, any OD(J, x) set A ⊆ (ωω)n, A has an OD(J, x) ∞-Borel
code.

(iii) HODJ = L[J,BCJ
ω,ω].

Proof. Part (i) is a consequence of Lemma 4.4 and [Cha19, Fact 7.14]. Lemma
4.4 implies (∗) for BCJ

ω,n+1 holds all n < ω. The calculations in [Cha19, Fact

7.14] show that the inverse limit BCJ
ω,ω is well-defined because the maps σm,l are

all well-defined forcing projection maps. For part (ii), without loss of generality,
let us fix an OD(J, x) set A ⊆ ωω. The general case just involves more notations.
Say z ∈ A iff L(J,R) |= φ[J, x, s, z] for some finite sequence of ordinals s.
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The following calculations produce an OD(J, x) ∞-Borel code for A (see cf
[Cha19, Corollary 7.20] for a similar calculation with more details). Work over
L[J,BCJ

ω,ω], for any z ∈ R, we let gx,z ⊆ BCJ
ω,2 be the generic adding x, z. Let

Ṙ be the symmetric reals added by a generic g ⊆ BCJ
ω,ω.

z ∈ A⇔ L[J,BCJ
ω,ω][gx,z] ⊨ “1BJ

ω,ω/gx,z
⊩BJ

ω,ω/gx,z
L(J, Ṙ) |= φ[J, x, s, z]”

⇔ L[J,BCJ
ω,ω, x, z] ⊨ “1BJ

ω,ω/gx,z
⊩BCJ

ω,ω/gx,z
L(J, Ṙ) |= φ[J, x, s, z]”.

The fact that L[J,BCJ
ω,ω][gx,z] = L[J,BCJ

ω,ω, x, z] follows from the remark after
4.2. The equivalences above follow from standard properties of the inverse limit
of projections BCJ

ω,ω and calculations as in [Cha19, Theorems 7.18, 7.19]. The

∞-Borel code for A is the set of ordinals S ∈ HODJ,x coding (J,BCJ
ω,ω, x). Part

(ii) immediately gives BCJ
ω,ω is isomorphic to QJ

ω,ω. Part (iii) now follows from
calculations in [Cha19, Corollary 7.20, 7.21].

Lemma 4.6. Assume ZF+ AD+ + ADR + V = L(P(R)).

1. The posets Q∞,n for n ≤ ω are Θ-cc in HOD.

2. Let s ∈ (
⋃

γ<Θ γ
ω)n for n < ω and hs = {p ∈ Q∞,n | s ∈ πn(p)}. Then the

set hs is a Q∞,n-generic filter over HOD such that HOD[hs] = HOD{s}.

3. For any condition p ∈ Q∞,ω, there is a Q∞,ω-generic filter H over HOD
such that p ∈ H and the set (

⋃
γ<Θ γ

ω)V is countable in HOD[H]. Fur-

thermore, V = HOD((
⋃

γ<Θ γ
ω)V ) is the symmetric part of HOD[H].

4. (1) – (3) above also hold for the posets BC∞,n and for BC∞,ω. In fact,
BC∞,ω is a well-defined inverse limit and is isomorphic to Q∞,ω.

Proof sketch. We will not prove the lemma; instead, we sketch the main ideas
here. (1) – (3) are standard calculations. The “Furthermore” clause of part (3)
can be seen to follow from Lemma 3.3 and the fact that every set of reals is
Suslin co-Suslin under AD+ + ADR. For (4), first note that Lemma 4.4 implies
BC∞,ω is a well-defined inverse limit because the maps σm,l are all well-defined
forcing projection maps. To see BC∞,ω is isomorphic to Q∞,ω, it suffices to
show if γ < Θ, n < ω and A ⊆ (γω)n is OD, then A has an OD ∞-Borel
code. For ease of notation, we assume n = 1. For f ∈ γω, suppose f ∈ A
iff V |= φ[s, f ] for some finite set of ordinals s. As in the previous corollary,
we can produce an OD ∞-Borel code for A as follows. Let Z be a set of
ordinals such that HOD = L[Z]3 and gf ⊆ BC∞,1 be the generic adding f . Let
C = HOD((

⋃
γ<Θ γ

ω)V ). We note that by Theorem 3.3, C = V . Then

f ∈ A⇔ HOD[gf ] ⊨ “1B∞,ω/gf ⊩B∞,ω/gf C |= φ[s, f ]”

⇔ L[Z, f ] ⊨ “1B∞,ω/gf ⊩BC∞,ω/gf C |= φ[s, f ]”.

The above calculations easily yield and OD ∞-Borel code for A.
3One can show Z can be taken to the the set of ordinals that canonically codes BC∞,ω .
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5 The existence of ∞-Borel codes

In this section, we prove Theorems 1.1, 1.3, 1.5 and their corollaries.

Proof of Theorem 1.1. Without loss of generality, we let A ⊆ P(ω) and assume
A is OD. First we assume ADR holds. Since ADR holds, V = C by Lemma 3.3.
We show A has an OD ∞-Borel code. Suppose

x ∈ A⇔ C ⊨ φ[x, s]

for some formula φ and some finite sequence of ordinals s.
We note that for any f ∈

⋃
γ<Θ γ

ω, letting gf ⊆ BC∞,1 be generic over HOD
that adds f , then

HOD[f ] = HOD[gf ]

by (4.2). Here is a brief sketch. First note that f ∈ HOD[gf ] so HOD[f ] ⊆
HOD[gf ]; for the converse, we have that gf = {c : f ∈ Bc} and this calculation
of gf can be done over HOD[f ]. Here we use essentially here that conditions of
the forcing are ∞-Borel codes.

Let Z ⊆ Θ be such that HOD = L[Z]. Then we can produce an OD ∞-
Borel code for A as follows, recall the definition of BC∞,ω and related objects
in Section 4.

x ∈ A⇔ HOD[gx] ⊨ “1B∞,ω/gx ⊩B∞,ω/gx C |= φ[x, s]”

⇔ L[Z][x] ⊨ “1B∞,ω/gx ⊩B∞,ω/gx C |= φ[x, s]”.

Again, the main point is by Lemma 4.6, the inverse limit BC∞,ω is well-defined.
The above equivalence shows that ((Z, s), ψ) where ψ(x, (Z, s)) is the formula
“1B∞,ω/gx ⊩B∞,ω/gx C |= φ[x, s]”, is an OD ∞-Borel code for A.

Now assume ADR fails. By Theorem 2.3, V = L(J,R) for some set of or-
dinals J . In fact, we can take J = [d 7→ T ]µT

where T is a tree projecting to
a universal S(κ) set, where κ is the largest Suslin cardinal, S(κ) is the largest
Suslin pointclass, and µT is the T -degree measure defined in Section 2. Now
there are two cases.

Case 1: Θ = θ0
We start with a claim.

Claim 5.1. The largest Suslin pointclass is Σ2
1˜.

Proof. Σ2
1˜ has the scale property by AD+ (cf. [ST10]). By the fact that Θ = θ0 is

regular, we have that Σ2
1˜ = Σ1(R)∩P(R). To see this note that the ⊆-direction

is clear. To see the converse, let A ⊆ R be Σ1(x) for some real x; so let φ be a
Σ1-formula such that for any y ∈ R, y ∈ A ⇔ φ[y, x]. Since Θ is regular, it is
easy to see that there is a transitive M = Lα(Pβ(R)) for some α, β < Θ such
that for y ∈ R,

y ∈ A⇔M |= φ[y, x].
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So we can define y ∈ A iff “there is a set of reals B coding a transitive structure
M containing all reals such that M |= φ[y, x]”. This is easily seen to be Σ2

1(x).
So A ∈ Σ2

1˜ .

Now we finish proving the claim by noting that the set C = {(x, y) ∈ R2 :
y /∈ OD(x)} is a Π1-set that has no uniformization. This is a result by Martin,
cf. [Ste83]. By the above, C is Π2

1 and cannot be uniformized. This gives Σ2
1˜ is

the largest pointclass with the scale property as claimed.

Therefore, we can take T and hence J = [d 7→ T ]µT
to be OD, where

T ∈ HOD is a tree projecting to a universal Σ2
1 set. Hence for some Z ⊆ Θ with

Z ∈ OD,
HOD = HODJ = L[Z].

We can produce an OD ∞-Borel code for A by the following calculations. Sup-
pose

x ∈ A⇔ V |= φ[x, s]

for some finite sequence of ordinals s. Letting gx ⊆ BCω,1 be HOD-generic that
adds x, then HOD[gx] = HOD[x]. We note that by Corollary 4.5, the inverse
limit BCω,ω is well-defined. We have

x ∈ A⇔ HOD[gx] ⊨ “1Bω,ω/gx ⊩Bω,ω/gx L(J,R) |= φ[x, s]”

⇔ L[Z][x] ⊨ “1Bω,ω/gx ⊩BCω,ω/gx L(J,R) |= φ[x, s]”.

The above equivalence easily gives an OD ∞-Borel code for A.

Case 2: Θ > θ0

Let M0 = L(Pθ0(R)).

Claim 5.2. Let Γ = Σ2
1. The following hold.

(i) For any real x, Env(Γ(x)) = EnvM0(Γ(x)).4

(ii) M0 |= Θ = θ0.

Proof. The proof of Claim 5.1 shows that Σ2
1˜ is the largest Suslin pointclass

below θ0 in V . The fact that for each x ∈ R, Env(Γ(x)) ⊆ M0 follows from
results in [Jac09]; see for instance Lemma 3.14. A set A is in Env(Γ)(x) iff for
each countable σ ⊆ R, there is a OD<Γ(x) set B such that A ∩ σ = B ∩ σ (cf.
[Wil12]). This calculation is absolute between V and M0. Part (i) follows. In

4Recall that that Γ = Σ2
1 so δ21˜ = o(Γ) is the Wadge ordinals of Γ. A set A is in Env(Γ(x))

iff for any countable σ ⊂ R, A ∩ σ = B ∩ σ for some B ∈ OD<Γ(x). Here B is OD<Γ(x)
iff there are Γ(x) sets U,W ⊆ R × R and a Γ(x)-norm φ, and an ordinal α < δ21˜ such that

A = Uy = ¬Wy for every y ∈ dom(φ) with φ(y) = α. [Wil12] shows that this notion of
envelopes generalizes Martin’s notion of envelopes Λ˜(Γ˜, δ21˜ ) (cf [Jac09]), as it can be applied

in situations where AD may not hold. Under AD these two notions are equivalent.
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M0, Σ
2
1˜ is the largest Suslin pointclass and Env(Γ)

˜
=def

⋃
x∈REnv(Γ(x)) =

P(R); the last equality holds because the set {(x, y) : y /∈ ODx} has no scale in
M0. This easily implies that in M0, every set of reals A is OD from some real
x. This means M0 |= Θ = θ0. This proves part (ii).

Claim 5.3. Let A ⊆ R be OD. Then A is OD in M0.

Proof. Suppose A is OD, say x ∈ A iff φ[x, s] holds for some finite sequence of
ordinals s. For each countable σ ⊂ R, there is a transitive modelM of ZF−+DC
of the form Lα(Pβ(R)) that ordinal defines A ∩ σ via φ and {s, σ}, i.e.

∀x ∈ σ x ∈ A⇔M |= φ[x, s, σ].

By Σ1-reflection into ∆˜ 2
1, for each σ, there are ασ, βσ,max(sσ) < δ21˜ such that

∀x ∈ σ x ∈ A⇔ Lασ
(Pβσ

(R)) |= φ[x, sσ, σ].

Note the Wadge rank of A is < θ0 and therefore, A ∈ M0. Working in
M0, let µ be the fine, countably complete measure on ℘ω1

(R) induced by the
Turing measure via the canonical surjection π : D → ℘ω1(R), where π(d) =
{x ∈ R : x ≤T d}. µ is OD. Let α = [σ 7→ ασ]µ, β = [σ 7→ βσ]µ, and
s∗ = [σ 7→ sσ]µ. We claim that A is definable in M0 from (α, β, s∗). This
is because for any x ∈ R, x ∈ A iff for any function Fα, Fβ , Fs∗ such that
[Fα]µ = α, [Fβ ]µ = β, [Fs∗ ]µ = s∗,∀∗µσ LFα(σ)(PFβ(σ)(R)) |= φ[x, Fs∗(σ), σ].
The above calculation finishes the proof of the claim.

Using Claim 5.3 and Claim 5.2, we can quote the result of the Θ = θ0 case
to get that A has an OD ∞-Borel code.

This completes the proof of the first clause of Theorem 1.1. As mentioned in
Remark 1.2, the ”Furthermore” clause has a similar proof to the proof of Case
1, so we leave it to the kind reader.

Proof of Theorem 1.3. The proof of [IT18, Claim 2] shows the following.

Lemma 5.4. Assume AD+. Suppose κ < Θ, n < ω, and A∗ ⊆ (κω)n+1 has ∞-
Borel code S∗. Let µ be a fine, countably complete measure on ℘ω1(κ

ω). Then
A = {f : ∃x ∈ κω (x, f) ∈ A∗} has an ∞-Borel code S that is OD(S∗, µ).

Let κ < Θ and A ⊆ κω. Then by basic AD+ theory, there is a set of ordinals
T such that A ∈ L(T,R). To see this, first fix a pre-wellordering ≤ of R of
order type κ and let S0 be an ∞-Borel code for ≤. Using ≤ and the fact that
one can canonically code an ω-sequence of reals by a real, one sees that κω can
be simply coded by ≤ and R. Therefore, using ≤, one can code A by a subset
B ⊆ R. Let S1 be an ∞-Borel code for B and let T = (S0, S1). It is clear that
κω, A ∈ L(T,R).
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Suppose V = L(P(R)) |= AD++Θ = θ0, then V = L(T,R) for some OD set
of ordinals T . Then for any κ < Θ = θ0, there is an OD surjection π : R → κω.
Let µ be the OD fine, countably complete measure on ℘ω1

(R) in Claim 5.3. π, µ
induce an OD fine, countably complete measure ν on ℘ω1

(κω) by a standard
procedure:

A ∈ ν ⇔ {π−1[σ] : σ ∈ A} ∈ µ.

By the above discussion, every OD = OD(T ) subset of κω has OD(T, µ) = OD
∞-Borel code. A similar argument also gives every OD(S) subset of κω has an
OD(S) ∞-Borel code for any set of ordinals S.

Suppose V = L(P(R)) |= AD+ + ADR. By [Woo83] and ADR, there is a
unique normal, fine measure µκ on ℘ω1

(κω) for each κ < Θ. So µκ is OD for
each κ < Θ. Let S be a set of ordinals and A ⊆ κω be OD(S). By Lemma 5.4
applied to the µκ’s, we have that (*) holds and therefore BCS

∞,ω is a well-defined
limit. Let κ < Θ and A ⊆ κω be OD(S), so there is a formula φ and some finite

set of ordinals β⃗ such that

f ∈ A⇔ V |= φ[f, β⃗, S].

Let Z be an OD(S) set of ordinals such that HODS = L[Z] and gf ⊆ BCS
∞,1

be the generic for adding f , we then have

f ∈ A⇔ HODS [gf ] ⊨ “1BC∞,ω/gf ⊩BC∞,ω/gf HOD(
⋃
γ<Θ

γω) |= φ[f, β⃗, S]”

⇔ L[Z][f ] ⊨ “1BC∞,ω/gf ⊩BC∞,ω/gs HOD(
⋃
γ<Θ

γω) |= φ[f, β⃗, S]”.

The above calculations easily imply that A has an OD(S) ∞-Borel code.

Proof of Corollary 1.4. For each x ⊆ ω, let gx ⊆ BCω,1 be the generic for adding
x. Thus we have as before

HOD[x] = HOD[gx].

Clearly HOD[x] ⊆ HODx. To see the converse, let X ⊆ ON be OD(x); say
X ⊆ γ. Let φ be a formula defining X from x and some s ∈ ON<ω. So

∀β < γ β ∈ X ⇔ φ(β, s, x)

and for each β < γ, let
T ∗
β = {a : φ(β, s, a)}.

Note that T ∗
β is OD for each β.

Fix an OD injection π∗ : OD∩P(ω) → HOD as in the definition of the usual
Vopěnka forcing Qω,1, where π

∗ maps the algebra Oω,1 of OD subsets of P(ω)
into its isomorphic copy Qω,1 in HOD. We can assume that π∗[Oω,1] = BCω,1
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because we have shown every OD subset of P(ω) has an OD ∞-Borel code. We
have that

Z = {(β, π∗(T ∗
β )) : β < γ} ∈ HOD

and that for β < γ,

β ∈ X ⇔ (β, π∗(T ∗
β )) ∈ Z ∧ π∗(T ∗

β ) ∈ gx.

The above equivalence implies

X ∈ HOD[gx] = HOD[x].

So we have shown
HODx = HOD[x].

For the “furthermore” clause of part (1), we use the “furthermore” clause of
Theorem 1.1, which states that if A ⊆ P(ω) is ODS for some set of ordinals S
then A has an ODS ∞-Borel code when V = L(S,R). By an argument similar
to the above, we get for each real x,

HODS,x = HODS [x].

This completes the proof of part (1).
The proof of part (1) can be adapted to prove part (2). But we will give

here a different proof of part (2) that cannot be used to prove part (1). We
assume ADR and use the forcing BC∞,ω and related objects as in Section 4 to
prove part (2) holds for any s ∈ γω for γ < Θ. Again, we have that for any
s ∈ γω for some γ < Θ, letting gs ⊆ BC∞,1 be the generic adding s,

HOD[s] = HOD[gs].

Furthermore, by Lemma 4.6, V = HOD(
⋃

γ<Θ γ
ω) is the symmetric extension of

HOD induced by a generic H ⊆ BC∞,ω. Note here that by Theorem 1.3, BC∞,ω

is well-defined. Let X ∈ HODs be a set of ordinals. So there is a formula φ and
a finite sequence of ordinals t such that

α ∈ X ⇔ V |= φ[α, s, t].

Now we have:

α ∈ X ⇔ HOD[gs] ⊨ “1BC∞,ω/gs ⊩BC∞,ω/gs HOD(
⋃
γ<Θ

γω) |= φ[α, s, t]”

⇔ HOD[s] ⊨ “1BC∞,ω/gs ⊩BC∞,ω/gs HOD(
⋃
γ<Θ

γω) |= φ[α, s, t]”.

The above calculations show that X ∈ HOD[s]. So HOD[s] = HODs. The
argument above can be easily adapted to work for an arbitrary set of ordinals
S by running the argument above over HODS using BCS

∞,ω.
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Suppose now Θ = θ0. Then since ADR fails, by Theorem 2.3, there is a set
of ordinals T such that V = L(T,R). Since Θ = θ0, we can in fact take T to be
OD. Therefore, HODT = HOD. Furthermore, for any γ < Θ, V = HOD(γω)
is a symmetric extension of HOD induced by a generic H ⊆ BCγ,ω. The fact
that BCγ,ω is well-defined follows from Theorem 1.3. The rest of the proof is
the same as in the ADR case with BCγ,ω used in place of BC∞,ω.

Remark 5.5. (i) The main reason we need a different proof for part (1) of
Corollary 1.4 is because we do not have an analogue of Lemma 4.6 in the
situation of part (1), where ADR may fail.

(ii) One can easily modify the proof above and [IT18, Claims 2 and 3] to show
that if V = L(T,R) |= AD+ for some set of ordinals T , and f ∈ ℘ω1(κ)
for some uncountable cardinal κ < Θ, then

HODT,f = HODT [f ] = HODT [gf ]

where gf is HODT generic for the variation of the Vopenka algebra in
HODT consisting of OD(T ) subsets of ℘ω1(κ) with OD(T ) ∞-Borel codes.
The main point is that there is an OD(T ) fine, countably complete measure
on ℘ω1

(℘ω1
(κ)).

(iii) More is true. Under the assumption of Corollary 1.4, HODt = HOD[t] for
any t ∈ ONω. The proof of this uses different techniques due to Woodin
and is beyond the scope of this paper.

Proof of Theorem 1.6. We assume AD+ and let ν witness ω1 is R-supercompact.
Let κ < Θ and A ⊆ P(κ). Let ≤ be a prewellordering of the reals of length κ
and let

Â = {x ∈ R : x codes Cx ∈ A}.5

Let
A∗ = {(x,Cx) : x ∈ Â}.

In other words, (x, f) ∈ A∗ iff x ∈ Â and f = Cx. We claim that A∗ has
an ∞-Borel code. Note that Â ⊆ R and hence by AD+, Â has an ∞-Borel
code; similarly, ≤ has an ∞-Borel code. We fix ∞-Borel codes S1, S2 for ≤, Â
respectively. If κ < θ0 and A ⊆ P(κ) is OD, then we can in fact assume ≤ is
OD and hence can take S1, S2 ∈ HOD by Theorem 1.1.

Let T = (S1, S2). We work in L(T,R). Let Ṙ ∈ HOD be the canonical
BCT

ω,ω-name for the symmetric reals added by a BCT
ω,ω-generic over HODT and

Z ⊆ ON be such that HODT = L[Z]. We note that the system (BCT
ω,ω, (BC

T
ω,n, σn,m :

n ≥ m)) is a well-defined inverse limit system and satisfies Lemma 4.2 in L(T,R)
(see Remark 4.1 and Theorem 1.1). We then have the following equivalence,
where gx ⊆ BCT

ω,1 is the generic adding x:

5The coding x 7→ Cx is via the Coding Lemma relative to ≤.
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(x, f) ∈ A∗ ⇔ HODT [x, f ] ⊨ “x ∈ BS2
∧ ∀α < κ

α ∈ f ⇔ “HODT [x] |= 1BCT
ω,ω/gx

⊩BCT
ω,ω/gx

L(S1, S2, Ṙ) ⊨

∃y(|y|≤ = α ∧ y ∈ Cx)””

⇔ L[Z][x, f ] ⊨ “x ∈ BS2
∧ ∀α < κ

α ∈ f ⇔ “L[Z][x] |= 1BCT
ω,ω/gx

⊩BCT
ω,ω/gx L(S1, S2, Ṙ) ⊨

“∃y(|y|≤ = α ∧ y ∈ Cx)””.

The above calculations easily produce an OD(S1, S2, µ) ∞-Borel code for A∗,
noting that the clause “|y|≤ = α ∧ y ∈ Cx” can easily be written as a formula
φ(S1, S2, µ, y, α).

6 The non-existence of ∞-Borel codes

Proof of Theorem 1.5. We first prove the following lemma.

Lemma 6.1. Assume AD++V = L(P(R)). There is a set g ⊆ ωV
1 such that

HOD[g] |= “ωV
1 is not weakly compact”.

Proof. Let κ = ωV
1 . To construct such a g, we will form a reverse Easton

support iteration P⃗ = ⟨(Pα : α ≤ κ + 1), (Q̇α : α ≤ κ)⟩. Our terminology
concerning iterated forcings is from [Cum10]; the reader is advised to consult
[Cum10] for things we neglect to mention in this argument. In particular, we
have the following:

� If α is not inaccessible, then Q̇α is the canonical Pα-name for the trivial
forcing.

� If α is inaccessible, then Q̇α is the canonical Pα-name for Add(α, 1), the
forcing that adds a generic subset of α whose conditions are of size < α.

� At limit α that is an inaccessible cardinal, Pα is the direct limit of P⃗ ↾ α.
In particular, conditions in Pα are α-sequences p whose support, supp(p),
is bounded below α.

� At limit α that is not an inaccessible cardinal, Pα is the inverse limit of
P⃗ ↾ α. In particular, conditions in Pα are α-sequences p whose support,
supp(p), is any subset of α.

The following are standard facts that we will use in the next argument:

(a) (Steel, Woodin) HOD |= GCH.

(b) (Becker) κ is the least measurable cardinal in HOD.
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(c) (Woodin) There is a mouse pair (M,Σ) such that letting κM be the least
measurable cardinal of M . Let (iα,β : Mα → Mβ : α < β < ω1) be the
iteration according to Σ such that M0 = M , i0,1 is the ultrapower map
by µ0, a normal measure on κM in M , and for α < κ, letting (κα, µα) =
i0,α(κ

M , µ), then iα,α+1 is the ultrapower map of Mα by µα. Finally, let
M∞ be the direct limit of the system (iα,β :Mα →Mβ : α < β < ω1) and
κ∞ be the image of κM under the direct limit maps, then κ∞ = κ and
M∞|(κ+∞)M∞ = HOD|(κ+)HOD.

(d) (Kunen, [Kun78]) For any inaccessible α, Add(α, 1) is forcing equivalent
to R0 ⋆ Ṙ1 where R0 is the forcing for adding an α-Suslin tree as defined in
[Kun78] and Ṙ1 names the forcing that adds a branch through the Suslin
tree added by R0.

6

(e) (Silver, [Kun78]) κ remains measurable in V Pκ+1 .

(f) For any inaccessible α ≤ κ, Pα is α-c.c. and for any V -generic G ⊆ Pα,
then (Q̇α)G is of size α, is α-closed and α+-c.c. in V [G]. Furthermore,
V [G] satisfies GCH. See [Cum10].

Regarding Fact (e), we can say more. By standard forcing facts, letting
G ⊆ Pκ+1 be HOD-generic and U ∈ HOD be a normal measure witnessing κ
is measurable. Let j = jU : HOD → N be the ultrapower map by U . Then
there is a generic H ∈ V [G] for the tail j(P⃗) ↾ (κ + 1, j(κ) + 1] and that j lifts
to j+ : HOD[G] →M [G ⋆H]; see [Cum10, Section 12] for a similar argument.7

Since H ∈ HOD[G], j+ induces a measure U+ on κ in V [G], i.e. A ∈ U+ iff
κ ∈ j+(A). U+ extends U and witnesses κ is measurable in HOD[G].

Claim 6.2. There is a HOD-generic G ⊆ Pκ+1 in V .

Proof. Let (M,Σ, κM , µ0) and (iα,β : Mα → Mβ : α < β < κ) be as in Fact

(c). Let P⃗0 = P⃗M be the forcing iteration P⃗ described in above but defined
in M = M0. G0 ⊆ PM

κM+1 be M -generic; such a G0 exists in V because M is
countable. By the remark after Fact (e), we can find a generic H0 ∈M0[G0] for

the tail forcing i0,1(P⃗0) ↾ (κ0 + 1, κ1 + 1] and a measure µ+
0 extending µ0 = µ.

Let G1 = G0 ⋆H0. The lift map i+0,1 :M0[G0] →M1[H1] is the ultrapower map

of M0[G0] by µ
+
0 ; let µ

+
1 = i+0,1(µ

+
0 ).

This process easily extends to every Mα for successor ordinals α, in other
words, we have for each successor α ≤ κ, say α = β + 1, suppose Gβ is defined,
then we define Gα, µ

+
β , µ

+
α from Gβ , µβ , iβ,α the same way G1, µ

+
0 , µ

+
1 is defined

from G0, µ0, i0,1. For α limit, we let Gα be the limit of the Gβ ’s under the
natural maps i+β,β∗ :Mβ [Gβ ] →Mβ∗ [G∗

β ] for β < β∗ < α. Since M∞ =Mκ, Gκ

is defined and exists in V .

6R0 adds no new β-sequences for β < α and letting g ⊆ R0 be V -generic and T be the tree
added by g, in V [g], R1 is simply the forcing whose conditions are elements of T ordered by
end-extension.

7The argument showing the existence of H ∈ HOD[G] uses Fact (a) and (f).
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By Fact (c) and Fact (a), and the fact that Q̇κ can be coded by a subset of

κ, P⃗M∞ = P⃗ and Gκ is HOD-generic for Pκ+1. This completes the proof of the
claim.

Let G ⊆ Pκ+1 be HOD -generic and G ∈ V . The existence of G follows
from Claim 6.2. We finish the proof of the lemma as follows. By Fact (e), κ
is measurable in HOD[G]. Let G = Gκ ⋆ H ⋆ K where Gκ = G ↾ Pκ, H ⋆ K is
generic for R0 and K is generic for (Ṙ1)H , where R0 ⋆ Ṙ1 is forcing equivalent
to Add(κ, 1) in V [Gκ] as in Fact (d). Let g ⊆ κ code Gκ ⋆ H, then HOD[g] =
HOD[Gκ ⋆ H] |= “there is a Suslin tree on κ”. Therefore,

HOD[g] |= κ is not weakly compact

as desired. This proves Lemma 6.1.

Note that Lemma 6.1 implies that there is some g ⊆ ωV
1 such that

HODg ̸= HOD[g]. (6.1)

To see the above equation, let g be as in Lemma 6.1. Since the unique normal
measure µ on ωV

1 is OD, µ ∩ HODg ∈ HODg witnesses ωV
1 is measurable in

HODg. However, ωV
1 is not weakly compact, and hence not measurable in

HOD[g].
Let j = jµ be the ultrapower embedding induced by µ. Let Y be the set of

all A ∪ {α} such that

(i) A ⊆ ω1.

(ii) ω1 ≤ α < ω2.

(iii) α ∈ j(A).

Lemma 6.3. Assume AD+. Then Y is not ∞-Borel.

Proof. We first claim that Y does not have any OD ∞-Borel code. Suppose
not. Let S be an OD ∞-Borel code for Y , say A ∪ {α} ∈ Y iff L[S,A ∪ {α}] |=
φ[S,A, α] for some formula φ. Note that for any A ⊆ ω1, j(A) ∈ HOD[A]
because for any ω1 ≤ α < ω2,

α ∈ j(A) ⇔ A ∪ {α} ∈ Y

⇔ L[S,A ∪ {α}] |= φ[S,A, α]

⇔ HOD[A] |= “L[S,A ∪ {α}] |= φ[S,A, α]”.

In particular, let g be as in Lemma 6.1. Then in HOD[g], there is an ωV
1 -Suslin

tree T coded into g. Since j(g) ∈ HOD[g], j(T ) ∈ HOD[g]. But then there is a
node s ∈ j(T ) on level ωV

1 of the tree j(T ). This means there is a cofinal branch
b ⊆ T in HOD[g]. This contradicts T is Suslin in HOD[g].
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Finally, to see that Y has no ∞-Borel codes, note that Y is lightface pro-
jective in the codes. If Y has an ∞-Borel codes, Y has a code S coded by a
∆2

1 set by the (lightface) Σ2
1-basis theorem (cf. [ST10])8. But then S is OD,

contradicting our previous claim.

Now let X be the set of A ⊆ ω1 such that A codes (T, b) where

� T is an ω1-tree of height ω1 on ω1,

� b ∈ T ,

� b is extended by the L[j(T )]-least cofinal branch of T .

X cannot have any OD ∞-Borel code (or more generally, X cannot have any
ODx ∞-Borel code for any real x). Suppose S is such a code. Then for any
g ⊆ ωV

1 , then ωV
1 has the tree property in HOD[g] because S ∈ HOD and

given any ωV
1 -tree T ∈ HOD[g] that has ωV

1 many levels, HOD[g] can use S to
compute a cofinal branch of T as follows. For each α < κ, let bα be the branch
in T of order type α such that the L[j(T )]-least cofinal branch of T extends bα.
Note that (T, bα) ∈ X for each α. Therefore, HOD[g] can use S to compute
the cofinal branch b =

⋃
α bα of T . This contradicts lemma 6.1. By a similar

argument as above, X cannot have any ∞-Borel code.

Remark 6.4. (i) Theorem 1.5 is in some sense optimal in light of the previ-
ous results that show every subset of Pω1

(ω1) is ∞-Borel under AD+. The
next section gives a sufficient condition for subsets of P(κ) to be ∞-Borel.
We do not have a full characterization of ∞-Borelness for subsets of P(κ).

(ii) Fact (c) is unpublished, but is a standard result in inner model theory.
One could have shown if Y (or X) in the theorem has ∞-Borel codes,
then it has to have one in L(Σ,R) for some pointclass Γ and a Γ-Woodin
pair (P,Σ) (cf. [SWKL16] for a discussion of Γ-Woodin mice) by a Σ1-
reflection argument. We can show there is no ∞-Borel code for Y (and X)
in L(Σ,R) much as before. In this model, we can work over HODΣ, which
can be shown to satisfy GCH and ωV

1 is the least measurable; furthermore,
there is a pair (M,Λ) as in Fact (c), where M is a fine-structural Σ-
mouse such that M∞ agrees with HODΣ well past ωV

1 , in fact up to Θ
(see [Sar15]). We can construct the generic G as above over HODΣ as in
Claim 6.2; the g that witnesses ωV

1 is not weakly compact in HODΣ can
be constructed from G as before.

8[ST10] only proves the boldface Σ˜2
1-theorem, but this suffices. To see this, first note that

the proof of Lemma 6.1 shows that Y in fact has no ODx ∞-Borel code for any real x. Now
note that Y ∈ L(Pθ0 (R)) and is lightface projective (in the code) there, so if Y has an ∞-Borel
code, it must have an ODx ∞-Borel code for some real x.
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7 The ABCD Conjecture

Proof of Theorem 1.7. For simplicity, let us assume V = L(R). Let κ < Θ and
τ be the topology defined on P(κ) as in Definition 1.1. Let A ⊆ P(κ) be τ -Borel.
We show A is ∞-Borel. Without loss of generality, we may assume A is τ -open
since ∞-Borel sets are closed under complements and countable unions. Let ν
be the unique supercompact measure on Pω1

(κ) and for each σ ∈ Pω1
(κ), let

k̇σ be the canonical Coll(ω, σ)-name for the generic enumeration of σ. Suppose
A is ODx as witnessed by the formula φ, i.e. F ∈ A ⇔ φ(F, x). Then for any
F ⊆ κ,

F ∈ A⇔ ∀∗νσ HODx[F ∩ σ, σ − F ] ⊨ “1 ⊩Coll(ω,σ) HODx[k̇σ] |=
1 ⊩BCx

κ,ω/k̇σ
L(κ̇ω) ⊨ ∀F ′ ∈ Nrng(k̇σ)

(F )φ(F ′, x).”

In the above, recall that BCx
κ,ω is defined in HODx and for any k ⊆ Coll(ω, σ)

in V , we can find generics g ⊆ BCx
κ,ω/gk that adds (κω)V symmetrically. The

clause “∀F ′ ∈ Nrng(k̇σ)
(F )” can be expressed as a formula of {F ∩ σ, σ − F} as

follows:

∀F ′ ⊆ κ∀α < κ (α ∈ F ∩ σ → α ∈ F ′ ∧ α ∈ σ − F → α /∈ F ′).

To see the forward direction, suppose F ∈ A. Since A is open, there is a σ ∈
Pω1(κ) such that Nσ(F ) ⊆ A. By fineness of ν, the set B = {σ∗ : σ ⊆ σ∗} ∈ ν.
For each σ∗ ∈ B, for each k ⊆ Coll(ω, σ∗)-generic over HODx[F ∩ σ∗, σ∗ − F ],
we can find a generic g ⊆ BCx

κ,ω/k over HODx[F ∩ σ∗, σ∗ − F ][k] such that the

symmetric set κ̇ωg = (κω)V . Therefore

L(κ̇ωg) = L(RV ) |= Nσ∗(F ) = Nrng(k)(F ) ⊆ Nσ(F ) ⊆ A.

So we have the right hand side. The proof of the converse is similar. If the
right hand side holds, fix a σ∗ in the measure 1 set and k ⊆ Coll(ω, σ∗)-generic
over HODx[F ∩ σ∗, σ∗ − F ] and g as above. So (κ̇ωg) = (κω)V and V |= ∀F ∈
Nσ∗(F )φ(F ′, x). In particular, φ(F, x) holds since F ∈ Nσ∗(F ). This verifies
F ∈ A.

Note that HODx = L[Z] for some set of ordinals Z. There is a formula ψ
such that the right hand side can be written as

∀∗νσ L[Z][F ∩ σ, σ − F ] |= ψ(F ∩ σ, σ − F,BCx
κ,ω, x). (7.1)

Let Z∞ = [σ 7→ Z]ν ,BC∞ = [σ 7→ BCx
κ,ω]ν , F∞ = [σ 7→ F ∩ σ]ν . Note that by

normality of ν,
F∞ = jν [F ] ∧ jν [κ] = [σ 7→ σ]ν ,

where jν is the canonical ultrapower map induced by ν. By Los’s theorem, 7.1
is equivalent to

L[Z∞][jν [F ], jν [κ]− jν [F ]] |= ψ(jν [F ], jν [κ]− jν [F ],BC∞). (7.2)
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Note that we can compute jν [F ], jν [κ]− jν [F ] from jν ↾ κ and F , therefore, 7.2
is equivalent to

L[Z∞, jν ↾ κ][F ] |= “L[Z∞][jν [F ], jν [κ]−jν [F ]] |= ψ(jν [F ], jν [κ]−jν [F ],BC∞).”
(7.3)

Since F ∈ A iff 7.3 holds, A is ∞-Borel and in fact, we can find an ODx Borel
code for A.

The general case is similar. The main point is by general AD+-theory, there
is a set of ordinals J such that A ∈ L(J,R). Working in L(J,R), suppose A
is OD(J, x) for some real x, then by a similar calculations as above, where we
replace HODx by HODJ,x, we can construct an ∞-Borel code for A.

Now we outline the argument that AD+ implies the ABCD Conjecture holds.
For simplicity, we assume V = L(R). The reader can read the full details of the
general proof in [Cha24]. By [Cha24], it suffices to show that for any infinite
κ < Θ, letting PB(κ) be the set of all bounded subsets of κ, there is no injection
Φ : PB(κ) → λϵ for any ϵ < κ and any λ. By an argument as in [Cha24] using
Σ1-reflection, if such a Φ exists, we can assume κ, λ < δ˜21. Fix such a Φ. Let

x ∈ R be such that Φ ∈ ODx. Let M = HODx and P = Coll(ϵ+,M , ϵ++,M ).
The following are facts we will use in this outline:

� Any successor cardinal in M , in particular ϵ+,M , ϵ++,M , have cofinality ω
in V . This follows from the work of Steel and Woodin (cf. [SW16]).

� The set of F ⊆ P such that F ∈ V and F is M -generic is nonempty.
Furthermore, any such F is countably generated i.e. there is a countable
σ ⊆ P such that F = {p ∈ P : ∃q ∈ σ q ≤ p}; we say that σ generates F
and writes ⟨σ⟩P = F . This is proved in [Cha24].

Let A be the set of tuples (f, α, β) such that

(i) f : ϵ+,M → ϵ++,M is a surjection induced by an M -generic g ⊆ P, and

(ii) Φ(f)(α) = β.

Claim 7.1. A is the intersection of a τ -open set and an ∞-Borel set. Hence A
is ∞-Borel; furthermore, A has an ODx ∞-Borel code.

Proof. Let B be the set of surjections f : ϵ+,M → ϵ++,M that are induced by
a generic G ⊆ P over HODx. Let Gf be the unique such generic for each such
f . By the above aforementioned fact, B ̸= ∅ and every f ∈ B has the property
that Gf is countably generated. Let

S = {(f, α, β, σ) : f ∈ B ∧ Φ(f)(α) = β ∧ σ ∈ Pω1(P) ∧Gf = ⟨σ⟩P}.

Let ν be the (unique) normal fine measure on Pω1
(κ2∪P) and τ be the topology

as defined in 1.1 on P(κ2). Let

C =
⋃

{Nσ∪{(α,β)}(f) : (f, α, β, σ) ∈ S}.
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Then clearly C is τ -open and is ODx. By the proof of Theorem 1.7, C has an
ODx ∞-Borel code.

We now claim that B is ∞-Borel. We have, letting Z be a set of ordinals
such that HODx = L[Z], then

f ∈ B ⇔ L[Z][f ] |= “∀D ⊆ P (D ∈ L[Z] ∧D is dense ⇒ Gf ∩D ̸= ∅)”.

The equivalence above clearly shows B is ∞-Borel. 9

Finally, A = B ∩ C since if f ′ ∈ Nσ∪{(α,β)}(f) ∩ B ⊆ B ∩ C for some
(f, α, β, σ) ∈ S, then f ′ = f as f is uniquely determined by σ. This completes
the proof of the lemma and in fact shows that A has an ODx ∞-Borel code.

Let S be an ODx ∞-Borel code of A. So S ∈ M = HODx. Let G ⊆ P be
M -generic such that G ∈ V and f : ϵ+,M → ϵ++,M be the surjection induced
by G. In M [G], using S, we can compute Φ(f) ∈ λϵ. Since Φ(f) ∈ M [G] and
forcing by P does not add new ϵ-sequences, Φ(f) ∈ M . We can also compute
f from S and Φ(f) since Φ is an injection. Therefore, f ∈ M and therefore
G ∈M . This is a contradiction. 10

8 Questions

We collect a few questions left open from the above analysis.

Question 8.1. (i) Assume AD+. Suppose µ is an arbitrary countably com-
plete measure on some set X. Must Ult(V, µ) be well-founded?

(ii) Assume AD+. Suppose µ is an arbitrary supercompact measure on ℘ω1
(X)

for some set X. Suppose (Mσ : σ ∈ ℘ω1(X)) is such that for each σ, Mσ is
a transitive model of ZF−. Must Los’s theorem holds for the ultraproduct∏

σMσ/µ?

(iii) Does AD+ and ω1 is R-supercompact imply there must be a unique normal,
fine measure on ℘ω1

(R)?

Regarding 8.1(i), Solovay [Sol06] shows that cof(Θ) > ω + DCR + ¬DCP(R)
implies there is a countably complete measure µ on cof(Θ) such that Ult(V, µ)
is ill-founded. We do not know if a model of AD+ satisfying the hypothesis
Solovay’s proof requires can exist. Regarding (iii), by results of Solovay and

9We could alternatively show B is ∞-Borel as follows.

f ∈ B ⇔ ∀∗νσ HODx[f ∩ σ, σ − f ] ⊨ “1 ⊩Coll(ω,σ) HODx[k̇σ ] |=

1 ⊩BCx
κ,ω/k̇σ

L(κ̇ω) ⊨ ⟨f ∩ σ⟩P is generic over HODx.”

In the above, by f ∩ σ, we mean the set of conditions p ∈ σ ∩ P such that p ⊆ f . The
equivalence above is verified similarly to the proof of Theorem 1.7. The key point is that all
f ∈ B are such that Gf is countably generated.

10In [Cha24], the first author uses the fact that HODx,G = HODx[G] in a substantial way;
this fact was proved in [Cha24]. Here, we avoid this; instead, the existence of S allows us to
adapt the argument in [Cha24].
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Woodin, ADR + DCR implies that there is a unique normal, fine measure on
℘ω1(R). The minimal model of the theory “AD+ and ω1 is R-supercompact”
also satisfies the uniqueness of such a measure (cf [Tra15] and [RT18]). It is
known that the conclusion of (iii) is false in the absence of AD+.

Recall the topology τ defined on P(κ) above and our result that τ -Borel sets
are ∞-Borel.

Question 8.2. Is there a necessary and sufficient condition for ∞-Borelness of
subsets of P(κ) in terms of the topology τ?
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