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Abstract. Within the determinacy setting, P(ω1) is regular (in the sense of cofinality) with respect to

many known cardinalities and thus there is substantial evidence to support the conjecture that P(ω1) has
globally regular cardinality. However, there is no known information about the regularity of P(ω2). It

is not known if P(ω2) is even 2-regular under any determinacy assumptions. The paper will provide the

following evidence that P(ω2) may possibly be ω1-regular: Assume AD+. If ⟨Aα : α < ω1⟩ is such that
P(ω2) =

⋃
α<ω1

Aα, then there is an α < ω1 so that ¬(|Aα| ≤ |[ω2]<ω2 |).

1. Introduction

A cardinality is an equivalence class under the bijection relation on the class of a sets. The cardinality
of X is denoted |X| and consists of all sets in bijection with X. Cardinalities are ordered by the injection
comparison relation: |X| ≤ |Y | if and only if there is an injection of X into Y . A cardinal is an ordinal
which does not inject into any smaller ordinals. Assuming the axiom of choice, every cardinality has a unique
cardinal as a member. The axiom of choice will not be assumed here.

If κ is a cardinal, then the classical definition of the cofinality of κ is cof(κ) is the least cardinal δ so that
there is an increasing function ρ : δ → κ so that sup(ρ) = κ. An equivalent definition is that it is the least
ordinal δ so that for all γ < δ and function Φ : κ→ γ, there is an α ∈ γ so that |Φ−1[{α}]| = κ.

In choiceless settings, cardinalities no longer have unique cardinal members since sets may not wellorder-
able. The collection of cardinalities are also no longer wellordered by the injection comparison relation. In
[7], the authors developed a robust notion of regularity and cofinality in the choiceless setting.

Let X be a set and Y be a class. X is said to have Y -regular cardinality if and only if for every function
Φ : X → Y , there is a y ∈ Y so that |Φ−1[{y}]| = |X|. A set X is said to be locally regular if and only if for
all sets Y with |Y | < |X|, X has Y -regular cardinality. A set X is said to be globally regular if and only if
for all sets Y which are surjective images of X and ¬(|X| ≤ |Y |), X has Y -regular cardinality.

Since cardinalities are not wellordered under the injection comparison relation, the natural definition of
the cofinality of a set is formally a proper class:

• The local cofinality of a set X is the class

lcof(X) = {Y : (∃Z)(|Z| = |Y | ∧ Z ⊆ X ∧ X does not have Y -regular cardinality)}.

• Let Surj(X) be the class of all sets onto which X surjects. The global cofinality of a set X is the
class

gcof(X) = {Y ∈ Surj(X) : X does not have Y -regular cardinality}.
Observe that if X has locally regular cardinality, then lcof(X) = |X| and if X has globally regular

cardinality, then gcof(X) = {Y ∈ Surj(X) : |X| ≤ |Y |}.
The following summarizes some of the results obtained by the authors in [7] concerning regularity and

cofinality. If α is an ordinal, then lcof(α) = {X : |cof(α)| ≤ |X| ≤ |α|} and gcof(α) = {X ∈ Surj(α) :
|cof(α)| ≤ |X|}. Thus lcof(α) = gcof(α). If κ is a regular cardinal, then κ has globally regular cardinality
and lcof(κ) = gcof(κ) = |κ|. Thus the choiceless theory of regularity and cofinality for wellorderable sets has
a strong resemblance to the usual theory of cofinality in the choiceful framework.
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Assuming ACR
ω and all sets of reals have the perfect set property, R has locally regular cardinality and

lcof(R) = |R|. Under AD+, the Woodin’s perfect dichotomy ([3], [6]) implies that R has globally regular
cardinality and gcof(R) = {X ∈ Surj(R) : X is not wellorderable}.
E0 is the equivalence relation on ω2 defined by x E0 y if and only if there exists an m ∈ ω so that for all

n ∈ ω, if m ≤ n < ω, then x(n) = y(n). Under AD+, the Hjorth’s dichotomy ([11]) implies that R/E0 is
globally regular and gcof(R/E0) = {X ∈ Surj(R) : X is not linearly orderable}.

Under ACR
ω and all subsets of R have the property of Baire and the perfect set property, |R| and |ω1| are

incomparable cardinalities. This can be used to show that R⊔ω1 does not have 2-regular cardinalities. Thus
gcof(R ⊔ ω1) = {X ∈ Surj(R) : |X| ≥ 2}. Under the same assumptions, R × ω1 does not have R-regular
cardinality and does not have ω1-regular cardinality. Under AD+, the Woodin perfect set dichotomy will
show that gcof(R× ω1) = {X ∈ Surj(R) : X is uncountable}.

Martin showed that ω1 →∗ (ω1)ω1
<ω1

and ω2 →∗ (ω2)<ω2
<ω2

under AD. The partition properties on ω1 can
be used to show that for all ϵ ≤ ω1, [ω1]ϵ has ω-regular cardinality. If ϵ < ω1, then [ω1]ϵ does not have
ω1-regular cardinality since [ω1]ϵ =

⋃
δ<ω1

[δ]ω1 by the regularity of ω1 and since |[δ]ϵ| ≤ |R| < |[ω1]ϵ|. The

partition relation on ω2 can be used to show that for all ϵ < ω2, [ω2]ϵ has ω1-regular cardinality. If ϵ < ω2,
[ω2]ϵ =

⋃
δ<ω2

[δ]ϵ and hence as before, [ω2]ϵ does not have ω2-regular cardinality.

The strong partition property ω1 →∗ (ω1)ω1
2 can be used to show that for each λ < ω1, [ω1]<ω1 has

λ-regular cardinality. [ω1]<ω1 does not have ω1-regular cardinality since [ω1]<ω1 =
⋃

ϵ<ω1
[ω1]ϵ and |[ω1]ϵ| <

|[ω1]<ω1 | for all ϵ < ω1.
At the present time, the regular cardinals, R, and R/E0 are the only known locally or globally regular

cardinalities. P(ω1) is the most natural candidate for another globally regular cardinality. The most
important conjecture concerning regularity and cofinality is that P(ω1) has globally regular cardinality. [7]
has amassed substantial evidence that P(ω1) should be globally regular under determinacy assumptions.
P(ω1) is regular with respect to essentially every set (which does not already have an injective copy of P(ω1))
for which one currently has a practical understanding: [5] showed that ω1 →∗ (ω1)ω1

2 implies that P(ω1)
has ON-regular cardinality. One of the main results of [7] is that ω1 →∗ (ω1)ω1

<ω1
implies that P(ω1) has

<ω1ON-regular cardinality. (It is open if the strong partition property ω1 →∗ (ω1)ω1
2 implies the very strong

partition property ω1 →∗ (ω1)ω1
<ω1

; however, the very strong partition property on ω1 is a consequence of

AD.) Assuming AD+, P(ω1) is regular with respect to quotient of many familiar Borel equivalence relations.
If E is an equivalence relation with all classes countable, then P(ω1) has R/E-regular cardinality. If E is E0,
E1, E2, a countable Borel equivalence relation, an essentially countable equivalence relation, a hyperfinite
equivalence relation, a hypersmooth equivalence relation, or more generally a Σ1

1 equivalence relation which
is pinned in any model of ZFC (in the sense of Zapletal [20]), then P(ω1) has R/E-regular cardinality. The
Friedman-Stanley jump of =+ is not a pinned equivalence relation. Its quotient ωR/ =+ is in bijection with
Pω1(R), the set of countable subsets of R. One can still show that P(ω1) has Pω1(R)-regular cardinality
under AD+.

As mentioned above, [ω2]<ω2 does not have ω2-regular cardinality. Intuitively, one would expect [ω2]<ω2 to
at least have ω1-regular cardinality. Above, it was remarked that the strong partition property ω1 →∗ (ω1)ω1

2

implies [ω1]<ω1 has ω-regular cardinality. However, ω2 is a weak but non-strong partition cardinal and thus
the argument for [ω1]<ω1 does not apply for [ω2]<ω2 . Similarly, the intuition is that P(ω2) should be highly
regular and perhap globally regular.

However since ω2 is weak partition cardinal which is not a strong partition cardinal, [ω2]<ω2 and P(ω2)
seems just out of reach of the partition arguments and the Martin’s ultrapower analysis of ω2. (Surprisingly,
[ω2]<ω2 and more generally [ωn]<ω2 for 2 ≤ n < ω can still be analyzed through the ultrapowers by measures
on ω1 as shown in [7]). Unlike P(ω1), nothing is known about the cofinality of P(ω2). For example, one does
not know if P(ω2) even has 2-regular cardinality. The goal of this paper is to produce some evidence that
[ω2]<ω2 and P(ω2) could have 2-regular cardinality or more generally could have ω1-regular cardinality. (In
the forthcoming [7], the authors have shown that [ω2]<ω2 and even [ωn]<ω2 are ω1-regular for all 2 ≤ n < ω.)

If [ω2]<ω2 does not have ω1-regular cardinality, then one can decompose [ω2]<ω2 into an ω1-length sequence
of disjoint sets ⟨Aα : α < ω1⟩ so that |Aα| < |[ω2]<ω2 |. Although the structure of the cardinalities below
[ω2]<ω2 is far from understood, perhaps the largest natural cardinality of combinatorial flavor strictly below
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[ω2]<ω2 is [ω2]ω1 . An instance of ω1-regularity for [ω2]<ω2 would be to show that [ω2]<ω2 cannot be a union
of ω1-many sets ⟨Aα : α < ω1⟩ so that each |Aα| ≤ |[ω2]ω1 |.

Perhaps the largest natural cardinality strictly below P(ω2) is |[ω2]<ω2 |. An instance of ω1-regularity
for P(ω2) would be to show that P(ω2) cannot be a union of ω1-many sets ⟨Aα : α < ω1⟩ so that each
|Aα| ≤ |[ω2]<ω2 |.

The main results of this paper will verify these two instances of ω1-regularity:

• (Theorem 3.18) Assume AD+. If ⟨Aα : α < ω1⟩ is such that [ω2]<ω2 =
⋃

α<ω1
Aα, then there exists

an α < ω1 so that ¬(|Aα| ≤ |[ω2]ω1 |).
• (Theorem 3.19) Assume AD+. If ⟨Aα : α < ω1⟩ is such that P(ω2) =

⋃
α<ω1

Aα, then there exists

an α < ω1 so that ¬(|Aα| ≤ |[ω2]<ω2 |).
Recently, the authors in [7] have fully verified under AD the conjecture that [ω2]<ω2 is ω1-regular: For any
⟨Aα : α < ω1⟩ such that [ω2]<ω2 =

⋃
α<ω1

Aα, there is an α < ω1 so that |Aα| = |[ω2]<ω2 |. (More generally,

for all 2 ≤ n < ω, [ωn]<ω2 is ω1-regular.) The verification of ω1-regularity for [ω2]<ω2 (or more generally,
[ωn]<ω2 when 2 ≤ n < ω) uses a very technical analysis of the ultrapower of ω1 by the club ultrafilter on ω1

where the type or length of a function into ω2 represented by a function f : ω1 → ω1 is not fixed by varies
with f . It is still not known if P(ω2) is 2-regular.

For each 1 ≤ n < ω, the projective ordinal δ1n is the supremum of the length of ∆1
n prewellorderings on R.

It can be shown that for all n ∈ ω, δ12n+2 = (δ12n+1)+. δ11 = ω1 and δ12 = ω2. Also δ13 = ωω+1 and δ14 = ωω+2.
The last section will show that the results for ω1 and ω2 can be generalized to each odd projective ordinal
δ12n+1 and the next even projective ordinal δ12n+2.

• (Theorem 4.38) Assume AD+. Let n ∈ ω. If ⟨Aα : α < δ12n+1⟩ is such that P(δ12n+2) =
⋃

α<δ1
2n+1

Aα,

then there is an α < δ12n+1 so that ¬(|Aα| ≤ |[δ12n+2]<δ1
2n+2 |).

2. Cardinality of Sets of Functions on Ordinals

Definition 2.1. If X and Y are sets, then let XY be the set of all functions from X to Y .
If δ is a ordinal and X is a set, then let <δX =

⋃
ϵ<δ

ϵX.

If δ and λ are ordinals and X ⊆ λ, then let [X]δ be the collection of all increasing functions f : δ → X.
Let [X]<δ =

⋃
ϵ<δ[X]ϵ.

If δ is a cardinals and X is a set, then let Pδ(X) = {A ∈ P(X) : |A| < δ}.
If δ ≤ λ are ordinals, then let IB(δ, λ) = {f ∈ δλ : (∀α < δ)(sup(f ↾ α) < λ)}.

This section collects some basic results concerning the cardinality of sets of the form [λ]δ, δλ, and [λ]<δ.

Fact 2.2. Let δ ≤ λ be ordinals such that δ is a cardinal. Then |[λ]<δ| = |Pδ(λ)| = |<δλ|.

Proof. Let Φ : [λ]<δ → Pδ(λ) be defined by Φ(f) = rang(f). Φ is a bijection.
Let π : λ × λ → λ be a bijection. For f ∈ <δλ, let Gf = {π(α, β) : α ∈ dom(f) ∧ f(α) = β}. Note

that since dom(f) ∈ δ and δ is a cardinal, |Gf | < δ. Thus Gf ∈ Pδ(λ). Define Ψ : <δλ → Pδ(λ) by
Ψ(f) = Gf . Ψ is an injection. The previous paragraph showed there is an bijection of Pδ(λ) into [λ]<δ

and [λ]<δ ⊆ <δλ. Thus there is an injection Ψ : Pδ(λ) → <δλ. By the Cantor-Schröder-Bernstein theorem,
|<δλ| = |Pδ(λ)| = |[λ]<δ|. □

Say an ordinal λ is indecomposable if and only if for all α, β < λ, α+ β < λ and α · β < λ.

Fact 2.3. If δ ≤ λ are ordinals and λ is indecomposable, then |IB(δ, λ)| = |[λ]δ|.

Proof. For f ∈ IB(δ, λ), define Φ(f) ∈ [λ]δ by recursion as follows. Suppose for all β < δ, Φ(f) ↾ β has been
defined and for all α < β, Φ(f)(α) ≤ sup(f ↾ α+1)·(α+1) < λ. Then sup(Φ(f) ↾ β) ≤ sup(f ↾ β)·β < λ since
sup(f ↾ β) < λ and λ is indecomposable. Let Φ(f)(β) = sup(Φ(f) ↾ β) + f(β) which is less than λ since λ is
indecomposable. Then Φ(f)(β) = sup(Φ(f) ↾ β) + f(β) ≤ sup(f ↾ β) ·β+ f(β) ≤ sup(f ↾ β+ 1) · (β+ 1) < λ
since λ is indecomposable.

This defines Φ : IB(δ, λ) → [λ]δ. Note that for all α < δ, f(α) is the unique ordinal γ so that Φ(f)(α) =
sup(Φ(f) ↾ α) + γ. Thus Φ is an injection. Thus |IB(δ, λ)| ≤ |[λ]δ|. Since [λ]δ ⊆ IB(δ, λ), |[λ]δ| ≤ |IB(δ, δ)|.
By the Cantor-Schröder-Bernstein, |[λ]δ| = |IB(δ, λ)|. □
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Fact 2.4. Let δ ≤ λ be ordinals such that λ is indecomposable and δ ≤ cof(λ). Then |δλ| = |[λ]δ|.

Proof. Suppose δ ≤ cof(λ). For all f ∈ δλ and α < δ, sup(f ↾ α) < λ. Thus δλ ⊆ B(δ, λ). Thus
|δλ| = |B(δ, λ)| = |[λ]δ| by Fact 2.3. □

Fact 2.5. Let δ ≤ λ be ordinals such that λ is indecomposable, cof(δ) = cof(λ), and δ < cof(λ)+. Then
|δλ| = |[λ]δ|.

Proof. Note that |δλ| = |cof(λ)λ| since |δ| = |cof(δ)|. By Fact 2.4, |cof(λ)λ| = |[λ]cof(λ)|. Thus |δλ| = |[λ]cof(λ)|.
Thus it suffices to produce an injection of [λ]cof(λ) into [λ]δ. Let ρ : cof(λ) → δ. Since λ is indecomposable,
δ · λ = λ. For each α < λ, let ι(α) be the least β < cof(λ) so that α ≤ ρ(β). For f ∈ [λ]cof(λ), let
Φ(f) : δ → λ be defined by Φ(f)(α) = δ · f(ι(α)) + α. One can check that for all f ∈ [λ]cof(λ), Φ(f) ∈ [λ]δ

and Φ : [λ]cof(λ) → [λ]δ is an injection. □

Fact 2.6. If κ is a measurable cardinal (has a κ-complete nonprincipal ultrafilter on κ), then for all δ < κ,
there is no injection of κ into P(δ).

Proof. Suppose Φ : κ → P(δ) is a function. Let µ be a κ-complete nonprincipal ultrafilter on κ. For each
α < δ and i ∈ {0, 1}, let Ai

α = {β < κ : Φ(β)(α) = i} (where elements of P(δ) are identified with elements
of δ2). For each α < δ, let iα be the unique i ∈ {0, 1} so that Aiα

α ∈ µ. Since µ is κ-complete,
⋂

α<δ A
iα
α ∈ µ.

Let f ∈ δ2 be defined by f(α) = iα. Since µ is nonprincipal, let α1 < α2 < δ so that α1, α2 ∈
⋂

α<δ A
iα
α .

Φ(α1) = f = Φ(α2). Thus Φ is not an injection. □

Under AD, ω1 is a strong partition cardinal and ω2 is a weak partition cardinal. Thus ω1 and ω2 are
measurable cardinals. More generally, δ12n+1 is a strong partition cardinal and δ12n+2 is a weak partition

cardinal. (It is known that δ13 = ωω+1 and δ14 = ωω+2.) (See [6], [17], or [18] for more information concerning
partition properties under AD and the associated measures.)

If κ is a cardinal, then one says boldface GCH holds at κ if and only if there is no injection of κ+ into
P(κ). Boldface GCH holds below κ if and only if boldface GCH holds at all δ < κ. Fact 2.6 implies the
following result.

Fact 2.7. Assume AD. Boldface GCH holds at ω and ω1.

Steel ([24] and [25]) showed that if L(R) |= AD, then L(R) |= “boldface GCH holds below Θ”. Thus by
the Moschovakis coding lemma, it is a theorem of AD that boldface GCH holds below ΘL(R). More generally,
Woodin showed that AD+ implies the boldface GCH holds below Θ.

Fact 2.8. Suppose λ is cardinal and λ does not inject into P(κ) for any κ < λ. Then ¬(|[λ]cof(λ)| ≤
|
⋃

δ≤κ<λ[κ]δ|).

Proof. Suppose there is an injection Φ : [λ]cof(λ) →
⋃

δ≤κ<λ[κ]δ. Let Φ̃ ⊆ [λ]cof(λ) × λ × λ be defined by

(f, α, β) ∈ Φ̃ if and only if α ∈ dom(Φ(f)) and Φ(f)(α) = β. L[Φ̃] |= ZFC. In L[Φ̃], define Ψ : [λ]cof(λ) →⋃
δ≤κ<λ[κ]δ by Ψ(f)(α) = β if and only if Φ̃(f, α, β). Note Ψ ∈ L[Φ̃] and L[Φ̃] |= Ψ : [λ]cof(λ) →

⋃
δ≤κ<λ[κ]δ

is an injection. If there are δ ≤ κ < λ so that L[Φ̃] |= λ ≤ |[κ]δ|, then there is an injection of λ into
[κ]δ ⊆ P(κ) in the real world. This contradicts the assumption that λ does not inject into P(κ) for any

κ < λ. Thus L[Φ̃] |= |
⋃

δ≤κ<λ[κ]δ| = λ. By a theorem of ZFC, L[Φ̃] |= |[λ]cof(λ)| ≥ λ+. It is impossible that

L[Φ̃] |= Ψ : [λ]cof(λ) →
⋃

δ≤κ<λ[κ]δ is an injection. □

Fact 2.9. Suppose κ is a regular cardinal and there is no injection of κ into P(δ) for any δ < κ. Then
|[κ]<κ| < |P(κ)|.

Proof. It is clear that |[κ]<κ| ≤ |P(κ)|. Since κ is regular, [κ]<κ =
⋃

δ≤µ<κ[µ]δ. By Fact 2.8, ¬(|P(κ)| =

|[κ]κ| ≤ |
⋃

δ≤µ<κ[µ]δ]| = [κ]<κ). □

Since Martin showed that ω2 → (ω2)22 (and in fact, ω2 → (ω2)ϵ2 for all ϵ < ω2), ω2 is a regular cardinal.

Fact 2.10. Assume AD. |[ω2]<ω2 | < |P(ω2)|.

Proof. This follows from Fact 2.7 and Fact 2.9. □
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Fact 2.11. Let δ ≤ λ be ordinals such that cof(λ) < cof(δ) and λ does not inject into P(κ) for all κ < λ.
Then |[λ]δ| < |δλ|.

Proof. It is clear that [λ]δ ⊆ δλ. Since cof(δ) ̸= cof(λ), [λ]δ =
⋃

κ<λ[κ]δ ⊆
⋃

µ≤κ<λ[κ]µ. Define Ψ :

[λ]cof(λ) → δλ by

Ψ(f)(α) =

{
f(α) α < cof(λ)

0 cof(λ) < α
.

Ψ is an injection. Thus if there was an injection of δλ into |[λ]δ|, then there would be an injection of [λ]cof(λ)

into
⋃

µ≤κ<λ[κ]µ which contradicts Fact 2.8. □

Example 2.12. Assume AD. Recall Steel showed the boldface GCH holds below ΘL(R) (and one can directly
use the analysis of the ultrapower by the finite partition measures on ω1 to show the boldface GCH below
ωω+1).

(1) |[ωω]ω1 | < |ω1ωω|. This follows from Fact 2.11. The cardinality of the collection of the increasing
sequences can be smaller than the cardinality of the collection of all sequences.

(2) |IB(ω1, ωω)| = |[ωω + ω]ω1 | < |IB(ω1, ωω + ω)| = |ω1(ωω + ω)|. To see this: Note that [ωω + ω]ω1 =
[ωω]ω1 ⊆

⋃
δ≤κ<ωω

[κ]δ. Thus by Fact 2.8, [ωω]ω1 does not inject into
⋃

δ≤κ<ωω
[κ]δ and thus does not

inject into [ωω+ω]ω1 . However [ωω]ω1 ⊆ IB(ω1, ωω+ω). This shows that |[ωω+ω]ω1 | < |IB(ω1, ωω+
ω)|. Notice that ωω + ω is not indecomposable. This shows that the indecomposability assumption
of Fact 2.3 is necessary. Also since [ωω + ω]ω1 = [ωω]ω1 , |[ωω + ω]ω1 | = |[ωω]ω1 | = |IB(ω1, ωω)|
by Fact 2.3. Note that ω1(ωω) ⊆ IB(ω1, ωω + ω) ⊆ ω1(ωω + ω) and |ω1(ωω + ω)| = |ω1ωω|. Thus
|ω1(ωω + ω)| = |IB(ω1, ωω + ω)|. This shows that |[ωω + ω]ω1 | < |ω1(ωω + ω)|.

Fact 2.13.

• ([8]) (AD) [ω1]<ω1 does not inject into ω(ωω).
• ([8]) (AD + DCR). [ω1]<ω1 does not inject into ωON, the class of ω-sequences of ordinals.
• ([9]) More generally, if κ →∗ (κ)<κ

2 (κ is a weak partition cardinal), then [κ]<κ does not inject into
λON, for all λ < κ.

Fact 2.14. Assume AD. |[ω2]ω1 | < |[ω2]<ω2 |.

Proof. Under AD, Martin showed that ω2 is a weak partition cardinal (that is, satisfies ω2 →∗ (ω2)<ω2
2 ).

The result follows from the third point in Fact 2.13. □

Example 2.15. Assume AD. Note that ¬(|[ωω]ω| ≤ |[ωω]ω1 |). This is because if there was an injection of
[ωω]ω into [ωω]ω1 , then there would be an injection of [ωω]ω into [ωω]ω1 =

⋃
ω1≤κ<ωω

[κ]ω1 ⊆
⋃

δ≤κ<ωω
[κ]δ

which violates Fact 2.8. Note that ¬(|[ωω]ω1 | ≤ |[ωω]ω|). This is because [ω1]<ω1 injects into [ωω]ω1 and
[ω1]<ω1 does not inject into ωON by Fact 2.13. Since [ωω]ω1 injects into [ωω]ω1+ω, this shows that |[ωω]ω| <
|[ωω]ω1+ω|.

See [4] for more information concerning distinguishing sets of the form [κ]δ and δκ for varying δ ≤ κ < Θ
under AD+.

3. Decomposition into ω1 Many Pieces

Definition 3.1. Fix a bijection π : ω × ω → ω. If x ∈ ωω and k ∈ ω, then let x[k] ∈ ωω be defined by
x[k](n) = x(π(k, n)).

If x ∈ ω2, then define Rx ⊆ ω × ω by Rx(m,n) if and only if x(π(m,n)) = 1. Let field(x) = field(Rx) =
{m : (∃n)(Rx(m,n) ∨Rx(n,m))}.

Let WO = {w ∈ ω2 : Rw is a wellordering}. Let ot : WO → ω1 be defined by ot(w) is the order type of
(field(w),Rw). If α < ω1, then let WOα = {w ∈ WO : ot(w) = α}.

Definition 3.2. Let α < ω1. For s ∈ <ωα, let Nα
s = {f ∈ ωα : s ⊆ f}. Give ωα the topology generated by

{Nα
s : s ∈ <ωα} as a basis (which is the product of the discrete topology on α). Then ωα is homeomorphic

to ωω with its usual topology.
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Under AD, all subsets of ωω have the Baire property and thus well ordered unions of meager subsets of
ωω are meager in ωω. (For the latter fact: Given a wellordered sequence of meager sets whose union is
nonmeager, consider the horizontal and vertical section of the prewellordering induced by the sequence to
obtain a contradiction.) Therefore under AD, for all α < ω1, all subsets of ωα have the Baire property and
wellordered unions of meager subsets of ωα are meager in ωα.

For α < ω1, let surjα = {f ∈ ωω1 : f [ω] = α}. For all α < ω1, surjα is comeager in ωα.
If α < ω1, p ∈ <ωα, and φ is a formula, then let (∀∗,αp f)φ(f) be the assertion that for comeagerly many

f ∈ Nα
p , φ(f) holds.

Definition 3.3. For each f ∈ ωω1, let Af = {n ∈ ω : (∀m < n)(f(m) ̸= f(n))}. (Note for all f ∈ ωω1,
f ↾ Af : Af → f [ω] is a bijection.)

For f ∈ ωω1, let G(f) ∈ ω2 be defined by G(f)(π(m,n)) = 1 if and only if m ∈ Af , n ∈ Af , and
f(m) < f(n). G is a simple form of the Kechris-Woodin generic coding function for ω1 which is developed
more generally in [16].

Fact 3.4. G : ωω1 → WO and for all α < ω1, if f ∈ surjα, then G(f) ∈ WOα.

Proof. Note that (field(G(f)),RG(f)) = (Af ,RG(f)) is order isomorphic to (f [Af ], <) where < is the usual
ordering on ω1. Thus G(f) does indeed belong to WO. Also if f ∈ surjα, then f [Af ] = α and thus
G(f) ∈ WOα. □

Definition 3.5. Let ⟨ρr : r ∈ R⟩ be some standard coding of strategies ρ : <ωω → ω on ω by reals. Let
Ξr : R → R be the Lipschitz continuous function corresponding to the strategy ρr. (That is, for each f ∈ ωω,
Ξr(f) ∈ ωω is defined by recursion by Ξr(f)(n) = ρr(⟨f(0),Ξr(f)(0), ..., f(n−1),Ξr(f)(n−1), f(n)⟩).) Note
that ⟨Ξr : r ∈ R⟩ is a coding of all Lipschitz continuous function by reals.

If A,B ∈ R, then write A ≤L B if and only if there is an r ∈ R so that A = Ξ−1
r [B]. The Wadge lemma

under AD asserts that for all A,B ∈ P(R), A ≤L B or (R \B) ≤L A.
Martin-Monk showed that under AD and DCR, ≤L is a wellfounded relation. For each A ∈ P(R), let

rkL(A) ∈ ON be the rank of A in ≤L. Let Θ be the supremum of the ordinals which are surjective images
of R. It can be shown that Θ is the length of ≤L and thus for all A ∈ P(R), rkL(A) < Θ.

Fact 3.6. (Moschovakis coding lemma) Assume AD. Let Γ be a pointclass closed under ∃R, ∧, and continuous
preimages. Let (P,⪯) be a prewellordering in Γ. Let κ be the length of (P,⪯) and φ : P → κ be the associated
surjective norm. If R ⊆ P × R, then there is an S ∈ Γ with the following property.

• S ⊆ R
• For all α < κ, there exists a p ∈ P and x ∈ R so that φ(p) = α and R(p, x) if and only if there exists

a p ∈ P and x ∈ R so that φ(p) = α and S(p, x).

The following is a useful coarse consequence of the Moschovakis coding lemma.

Fact 3.7. If κ is a surjective image of R (i.e. κ < Θ), then R surjects onto P(κ).

Fix the following notation which will be used in the discussion that follows: Let X be a surjective image
of R. Fix π : R → X. Let δ ≤ λ < Θ. By Fact 3.7, there is a surjection ϖ : R → P(λ). If B ⊆ R, let
TB = {(x, f) : (∃z ∈ B)(x = π(z[0])∧f = ϖ(z[1])}. Let ⟨Aα : α < ν⟩ be such that for all α < ν, Aα ⊆ X. (In
this section, ν will either be ω or ω1.) In the below applications, |Aα| ≤ |<δλ| or |Aα| ≤ |δλ| for all α < ν.
Elements of <δλ or δλ can be identified as elements of P(λ× λ) or of P(λ) (after coding pairs). As an
example, if A ⊆ X and Φ : A→ <δλ, then the graph of Φ is TB where B = {z ∈ R : Φ(π(z[0])) = ϖ(z[1])}.

Theorem 3.8. Assume AD. Suppose X is a surjective image of R. Let δ ≤ λ be cardinals so that 1 ≤ δ < Θ
and ω ≤ λ < Θ. Let ⟨An : n ∈ ω⟩ be a sequence so that for all n ∈ ω, An ⊆ X. Assume one of the following
three settings.

(1) |Aα| ≤ |<δλ| for all n ∈ ω.
(2) |Aα| ≤ |δλ| for all n ∈ ω.
(3) |Aα| ≤ |[λ]δ| for all n ∈ ω.

Assume that there is a Z ∈ P(R) so that for all n ∈ ω, there exists an r ∈ R so that TΞ−1
r [Z] is a graph of

an injection of An into <δλ in (1) (into δλ in (2) or [λ]δ in (3)). Then, respectively, the following hold.
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(1) |
⋃

n∈ω An| ≤ |<δλ|.
(2)

⋃
n∈ω An| ≤ |δλ|.

(3) |
⋃

n∈ω An| ≤ |[λ]δ|.

Proof. Assume the setting of (1) that for all n ∈ ω, |An| ≤ |<δλ|. Let R ⊆ ω×R be defined by R(n, r) if and
only if TΞ−1

r [Z] is the graph of an injection of An into <δλ. (Recall that Ξ−1
r [Z] is the subset of R Lipchitz

reducible to Z via the Lipschitz continuous function Ξr and TΞ−1
r [Z] was defined before the statement of

Theorem 3.8.) By ACR
ω, there is a sequence ⟨rn : n ∈ ω⟩ so that for all n ∈ ω, R(n, rn). Thus for all n ∈ ω,

TΞ−1
rn [Z] is the graph of an injection An into <δλ. Let Φn : An → <δλ be the injection whose graph is TΞ−1

rn [Z].

For each x ∈
⋃

n∈ω An, let ι(x) be the least n so that x ∈ An. Since ω ≤ λ, let ς : ω × λ→ λ be a bijection.

Define Φ :
⋃

n∈ω An → <δλ by letting Φ(x) ∈ [λ]|Φι(x)(x)| be defined by Φ(x)(γ) = ς(ι(x),Φι(x)(x)(γ)).
Suppose x ̸= y. If ι(x) ̸= ι(y), then Φ(x) ̸= Φ(y) since ς is a bijection. If ι(x) = ι(y) with common value
n ∈ ω, then Φn(x) ̸= Φn(y) since Φn is an injection. Then again Φ(x) ̸= Φ(y) since ς is an injection. This
establishes that Φ is an injection.

In the setting of (2) in which for all n ∈ ω, |An| ≤ |δλ|, the proof is essentially the same.
In the setting of (3) in which for all n ∈ ω, |An| ≤ |[λ]δ|, observe that the bijection ς : ω × λ→ λ may be

chosen with the property that for all n ∈ ω and α < β < λ, ς(n, α) < ς(n, β). (For instance, ς derived from
the Gödel pairing function would have such property.) Then the resulting function Φ(x) defined as above
would belong to [λ]δ. □

Theorem 3.9. Assume AD. Suppose X is a surjective image of R. Let ⟨Aα : α < ω1⟩ be a sequence so that
for all α < ω1, Aα ⊆ X. Let δ and λ be cardinals such that ω1 ≤ δ ≤ λ < Θ. Assume one of the following
three settings.

(1) cof(δ) ≥ ω1 and for all α < ω1, |Aα| ≤ |<δλ|.
(2) For all α < ω1, |Aα| ≤ |δλ|.
(3) cof(λ) ≥ ω1, and for all α < ω1, |Aα| ≤ |[λ]δ|.

Assume that there is a Z ∈ P(R) so that for all α < ω1, there exists an r ∈ R so that TΞ−1
r [Z] is the graph

of an injection of Aα into [λ]<δ in (1) (into δλ in (2) or into [λ]δ in (3)). Then, respectively, the following
hold.

(1) |
⋃

α<ω1
Aα| ≤ |<δλ|.

(2) |
⋃

α<ω1
Aα| ≤ |δλ|.

(3) |
⋃

α<ω1
Aα| ≤ |[λ]δ|.

Proof. Assume the setting of (1) that for all α < ω1, |Aα| ≤ |<δλ| where cof(δ) ≥ ω1. Since |<δλ\{∅}| = |<δλ|,
injections from Aα into <δλ \ {∅} will be considered to simplify notation.

Let WO ⊆ R be the Π1
1 set of reals coding wellorderings and ot : WO → ω1 be the associated surjective

norm given by the order type function. Define R ⊆ WO × R by R(w, r) if and only if TΞ−1
r [Z] is the graph

of an injection of Aot(w) into <δλ \ {∅}. (WO, ot) is a prewellordering which belongs to the pointclass Σ1
2

which is closed under continuous preimage, ∧, and ∃R. By the Moschovakis coding lemma (Fact 3.6), there
is a Σ1

2 set S ⊆ R so that for all α < ω1, there is a w ∈ WOα and r ∈ R so that S(w, r). Let ≤Π1
1
∈ Π1

1 and

≤Σ1
1
∈ Σ1

1 be the two norm relations which witness that (WO, ot) is a Π1
1-norm. Let S̃(w, r) if and only if

w ∈ WO ∧ (∃v)(v ≤Σ1
1
w ∧w ≤Σ1

1
v ∧ S(v, r)). S̃ ∈ Σ1

2 and dom(S̃) = WO. Since Σ1
2 has the scale property,

let Λ : WO → R be a uniformization with the property that for all w ∈ WO, S̃(w,Λ(w)). Thus for all
w ∈ WO, R(w,Λ(w)). For all w ∈ WO, TΞ−1

Λ(w)
[Z] is the graph of an injection of Aot(w) into <δλ \ {∅}. For

each w ∈ WO, let Φw : Aot(w) → <δλ \ {∅} be the injection whose graph is TΞ−1
Λ(w)

[Z].

For each x ∈
⋃

α<ω1
Aα, let ι(x) be the least α < ω1 so that x ∈ Aα. Note that |<ωω1| = |ω1|. Let

σ : ω1 × <ωω1 × δ × λ→ λ be a bijection. Define

Υ(x) = {σ(ι(x), p, η, ζ) : (∃ϵ < δ)(∀∗,ι(x)p f)(ϵ = dom(ΦG(f)(x)) ∧ η < ϵ ∧ ΦG(f)(x)(η) = ζ)}.

Observe that Υ(x) ∈ P(λ).
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Fix x ∈
⋃

α<ω1
Aα. Let Kx = {p ∈ <ωι(x) : (∃η, ζ)(σ(ι(x), p, η, ζ) ∈ Υ(x)}. If p ∈ Kx, then there

is a unique ϵ < δ so that (∀∗,ι(x)p f)(dom(ΦG(f)(x)) = ϵ). To see this, suppose ϵ, ϵ̂ < δ are such that

(∀∗,ι(x)p f)(dom(ΦG(f)(x)) = ϵ) and (∀∗,ι(x)p f)(dom(ΦG(f)(x)) = ϵ̂). Let A0 = {f ∈ N
ι(x)
p : dom(ΦG(f)(x)) =

ϵ} and A1 = {f ∈ N
ι(x)
p : dom(ΦG(f)(x)) = ϵ̂}. A0 and A1 are comeager subsets of N

ι(x)
p . Thus A0∩A1 ̸= ∅.

Let h ∈ A0 ∩ A1. Then ϵ = dom(ΦG(h)(x)) = ϵ̂. Let ϵxp be this unique ϵ associated to x and p. Let
Ux,p = {η < ϵxp : (∃ζ)(σ(ι(x), p, η, ζ) ∈ Υ(x)}. Note that |Ux,p| ≤ |ϵxp |. If η ∈ Ux,p, there is a unique ζ such
that σ(ι(x), p, η, ζ) ∈ Υ(x). To see this, suppose ζ1, ζ2 so that σ(ι(x), p, η, ζ1), σ(ι(x), p, η, ζ2) ∈ Υ(x). Then

B0 = {f ∈ N
ι(x)
p : ΦG(f)(x)(η) = ζ1} and B1 = {f ∈ N

ι(x)
p : ΦG(f)(x)(η) = ζ2} are comeager in N

ι(x)
p .

B0 ∩ B1 is comeager in N
ι(x)
p . Let h ∈ B0 ∩ B1. Then ζ1 = ΦG(h)(x)(η) = ζ2. Let ζxp,η be this unique ζ.

Thus Υ(x) = {σ(ι(x), p, η, ζxp,η) : p ∈ Kx ∧ η ∈ Ux,p}. Thus |Υ(x)| ≤ |
⋃

p∈Kx
Ux,p| ≤ sup{|ϵxp | : p ∈ Kx} < δ

since |Kx| ≤ |<ωι(x)| = ω because ι(x) < ω1 and cof(δ) > ω. Thus Υ(x) has cardinality less than δ and
hence Υ(x) ∈ Pδ(λ). It has been shown that Υ :

⋃
α<ω1

Aα → Pδ(λ).

Next, one will show that for all x ∈
⋃

α<ω1
Aα, Υ(x) ̸= ∅. Let α = ι(x). Let E1 : surjα → δ be defined

by E1(f) = dom(ΦG(f)(x)). Since wellordered unions of meager subsets of ωα is a meager subset of ωα and

surjα is a comeager subset of ωα, there is some ϵ < δ so that E−1
1 [{ϵ}] is nonmeager. Let E2 : E−1

1 [{ϵ}] → λ
be defined by E2(f) = ΦG(f)(x)(0). Again since E−1

1 [{ϵ}] is nonmeager and wellordered unions of meager

sets are meager, there is some ζ < λ so that E−1
2 [{ζ}] is nonmeager. By the Baire property, there is a

p ∈ <ωα so that E−1
2 [{ζ}] is comeager in Nα

p . Then σ(α, p, 0, ζ) ∈ Υ(x). Υ(x) ̸= ∅.
Next, to show Υ is an injection. Suppose x ̸= y. First, suppose ι(x) ̸= ι(y). Above, it was shown

that Υ(x) ̸= ∅. Let σ(ι(x), p, η, ζ) ∈ Υ(x). Since σ is an injection and all elements of Υ(y) take the form

σ(ι(y), p̂, η̂, ζ̂), Υ(x) ̸= Υ(y). Next, suppose that ι(x) = ι(y) and denote this common ordinal by α. Let
D = {f ∈ surjα : dom(ΦG(f)(x)) ̸= dom(ΦG(f)(y))}. First suppose D is nonmeager. Consider ϖ : D → δ× δ
by ϖ(f) = (dom(ΦG(f)(x)),dom(ΦG(f)(y))). Since a wellordered union of meager sets is meager and D

is not meager, there is some ϵ1, ϵ2 < δ so that ϖ−1[{(ϵ1, ϵ2)}] is nonmeager. Without loss of generality,
suppose ϵ1 < ϵ2. Define ς : ϖ−1[{(ϵ1, ϵ2)}] → λ by ς(f) = ΦG(f)(y)(ϵ1). Since ϖ−1[{(ϵ1, ϵ2)}] is nonmeager

and wellordered union of meager sets is meager, there is a ζ ∈ λ so that ς−1[{ζ}] is nonmeager. By the
Baire property, let p ∈ <ωα be such that ς−1[{ζ}] is comeager in Nα

p . Then σ(α, p, ϵ1, ζ) ∈ Υ(y). However,
σ(α, p, ϵ1, ζ) /∈ Υ(x) since (∀∗,αp f)(dom(ΦG(f)(x)) = ϵ1). In this case, Υ(x) ̸= Υ(y). Finally, suppose ωα \D
is comeager. Let Σ : ωα \D → δ be defined by Σ(f) = dom(ΦG(f)(x)) = dom(ΦG(f)(y)). Since ωα \D is

comeager, there is some ϵ < δ so that Σ−1[{ϵ}] is nonmeager. Note that since ΦG(f) is an injection for all

f ∈ surj(α), ΦG(f)(x) ̸= ΦG(f)(y). Define Π : Σ−1[{ϵ}] → ϵ be defined by Π(f) is the least η < ϵ so that

ΦG(f)(x)(η) ̸= ΦG(f)(y)(η). Since Σ−1[{ϵ}] is nonmeager, there is an η < ϵ so that Π−1[{η}] is nonmeager.

Let Γ : Π−1[{η}] → λ × λ be defined by Γ(f) = (ΦG(f)(x)(η),ΦG(f)(y)(η)). Since Π−1[{η}] is nonmeager,

there are ζ1, ζ2 ∈ λ with ζ1 ̸= ζ2 so that Γ−1[{(ζ1, ζ2)}] is nonmeager. Since all subsets of ωα have the
Baire property, there is a p ∈ <ωα so that Γ−1[{(ζ1, ζ2)}]is comeager in Nα

p . Then σ(α, p, η, ζ1) ∈ Υ(x) and
σ(α, p, η, ζ1) /∈ Υ(y). Thus Υ(x) ̸= Υ(y). It has been shown that Υ :

⋃
α<ω1

Aα → Pδ(λ) is an injection.

Fact 2.2 shows |<δλ| = |Pδ(λ)|.
Next assume the setting of (2). The following will sketch the necessary modifications. By the same

argument as above, for each w ∈ WO, there is an injection Φw : Aot(w) → δλ. Let

Kx = {(p, η) : p ∈ <ωι(x) ∧ η < δ ∧ (∃ζ < λ)(∀∗,ι(x)p f)(ΦG(f)(x)(η) = ζ)}

For each (p, η) ∈ Kx, by the argument provided above, there is a unique ζ so that (∀∗,ι(x)p f)(ΦG(f)(x)(η) = ζ).
Thus for each (p, η) ∈ Kx, let ζxp,η be this unique ζ. Note that Kx ⊆ <ωι(x) × δ ⊆ <ωω1 × δ. Let

τ : <ωω1 × δ → δ be a bijection. Let µ : ω1 × λ→ λ be a bijection. Define Υ : X → δλ by

Υ(x)(α) =

{
µ(ι(x), 0) τ−1(α) /∈ Kx

µ(ι(x), ζxp,η) τ−1(α) ∈ Kx ∧ τ−1(α) = (p, η)
.

Finally, one will to show Υ is an injection. Suppose x, y ∈
⋃

α<ω1
Aα and x ̸= y. If ι(x) ̸= ι(y), then

Υ(x) ̸= Υ(y) since µ is a bijection. Now suppose ι(x) = ι(y) and let α denote this common ordinal.
For all f ∈ surjα, ΦG(f)(x) ̸= ΦG(f)(y). Let Σ : surjα → δ be defined by Σ(f) is the least η < δ so
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that ΦG(f)(x)(η) ̸= ΦG(f)(y)(η). Since surjα is comeager in ωα and wellordered unions of meager sets

are meager, there is an η < δ so that Σ−1[{η}] is nonmeager. Let Π : Σ−1[{η}] → λ × λ be defined by
Π(f) = (ΦG(f)(x)(η),ΦG(f)(y)(η)). Since Σ−1[{η}] is nonmeager, there is some ζ1, ζ2 < λ so that ζ1 ̸= ζ2
and Π−1[{(ζ1, ζ2)}] is nonmeager. By the Baire property, let p ∈ <ωα so that Π−1[{(ζ1, ζ2)}] is comeager in
Nα

p . Let β = τ(p, η). Then Υ(x)(β) = µ(α, ζ1) ̸= µ(α, ζ2) = Υ(y)(β). Thus Υ(x) ̸= Υ(y). It has been shown
that Υ is an injection.

Assume the setting of (3). Let Kx, ζxp,η, and τ : <ωω1 × δ → δ be defined as in (2). The bijection
µ : ω1×λ→ λ can be chosen with the property that for all ν < ω1 and γ < λ, sup{µ(ν, β) : β < γ} < λ. Let
Υ be defined as above in (2). For x ∈ X, γ < δ, and p ∈ <ωι(x), let P x

γ,p = {η ∈ δ : τ(p, η) < γ∧τ(p, η) ∈ Kx}.
For each p ∈ <ωι(x), let F x

p,γ = {ζxp,η : η ∈ P x
γ,p}. The claim is that F x

p,γ is bounded below λ. To see this,

suppose F x
p,γ is not bounded below λ. For each η ∈ P x

γ,p, let Y x
p,γ,η = {f ∈ N

ι(x)
p : ΦG(f)(x)(η) = ζxp,η}.

Each Y x
p,γ,η is comeager in N

ι(x)
p . Since wellordered intersection of comeager subsets of N

ι(x)
p is comeager

in N
ι(x)
p ,

⋂
η∈Px

γ,p
Y x
p,γ,η is comeager in N

ι(x)
p and is in particular nonempty. Let f ∈

⋂
η∈Px

γ,p
Y x
p,γ,η. Then

sup(ΦG(f)(x) ↾ γ) ≥ sup{ζxp,η : η ∈ P x
γ,p} = sup(F x

p,γ) = λ. Then since γ < δ, ΦG(f)(x)(γ) ≥ λ and hence

ΦG(f)(x) /∈ [λ]δ. Contradiction. Thus for all p ∈ <ωι(x), sup(F x
p,γ) < λ. Since cof(λ) > ω and |<ωι(x)| = ω,

sup{sup(F x
p,γ) : p ∈ <ωι(x)} < λ. Note that sup(Υ(x) ↾ γ) ≤ sup{µ(ι(x), ζ) : ζ ∈

⋃
p∈<ωι(x) F

x
p,γ} ≤

sup{µ(ι(x), ζ) : ζ < sup{sup(F x
p,γ) : p ∈ <ωι(x)}} < λ (by the property of chosen bijection µ). This shows

that Υ :
⋃

α<ω1
Aα → IB(δ, λ). Υ is an injection by the same argument as in (2). The result now follows

from Fact 2.3. □

Theorem 3.10. Assume AD, DCR, and cof(Θ) > ω1. Let X be a surjective image of R. Let ⟨Aα : α < ω1⟩
be a sequence so that for all α < ω1, Aα ⊆ X. Let δ and λ be cardinals so that ω1 ≤ δ ≤ λ < Θ. Assume
one of the following three settings.

(1) cof(δ) ≥ ω1 and for all α < ω1, |Aα| ≤ |<δλ|.
(2) For all α < ω1, |Aα| ≤ |δλ|.
(3) cof(λ) ≥ ω1 and for all α < ω1, |Aα| ≤ |[λ]δ|.

Then, respectively, the following hold.

(1) |
⋃

α<ω1
Aα| ≤ |<δλ|.

(2) |
⋃

α<ω1
Aα| ≤ |δλ|.

(3) |
⋃

α<ω1
Aα| ≤ |[λ]δ|.

Proof. For each α < ω1, let βα be the least β so that there is some B ∈ P(R) with rkL(B) = β and TB is
the graph of an injection of Aα into <δλ. Since cof(Θ) > ω1, sup{βα : α < ω1} < Θ. Let Z ∈ P(R) so that
rkL(Z) = sup{βα : α < ω1}. The result now follows from Theorem 3.9. □

Theorem 3.11. Assume AD, DCR, and cof(Θ) > ω. Suppose X is a surjective image of R. Let 1 ≤ δ < Θ
and ω ≤ λ < Θ. Let ⟨An : n ∈ ω⟩ be a sequence so that for all n ∈ ω, Aα ⊆ X. Assume one of the following
three settings.

(1) |Aα| ≤ |<δλ| for all n ∈ ω.
(2) |Aα| ≤ |δλ| for all n ∈ ω.
(3) |Aα| ≤ |[λ]δ| for all n ∈ ω

Then, respectively, the following hold.

(1) |
⋃

n∈ω An| ≤ |<δλ|.
(2) |

⋃
n∈ω An| ≤ |δλ|.

(3) |
⋃

n∈ω An| ≤ |[λ]δ|.

Proof. The argument is similar to the proof of Theorem 3.10 using Theorem 3.8. □

Woodin defined an extension of AD called AD+ which includes (1) DCR, (2) all sets of reals are ∞-Borel,
and (3) ordinal determinacy (For every λ < Θ, continuous function π : ωλ→ R, and A ⊆ R, the game on λ
with payoff π−1[A] is determined). It is open whether AD and AD+ are equivalent. Basic information about
aspects of AD+ can be found in [3], [6], [19], and [17].
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Fact 3.12. (Woodin) Suppose AD+ and V = L(P(R)). Then either ADR holds or there is a set of ordinals
J so that V = L(J,R).

Fact 3.13. If AD+, ¬ADR, and V = L(P(R)), then Θ is regular.

Proof. By Fact 3.12, there is a set of ordinals J so that V = L(J,R). All sets in L(J,R) are ordinal definable
from J and an r ∈ R. For each r ∈ R and α < Θ, if there is an OD{J,r} surjection ϖ : R → α, then let
ϖα,r : R → α be the least such surjection according to the canonical wellordering of OD{J,r}. For each
α < Θ, let πα : R → α be defined by

πα(x) =

{
ϖx[0](x[1]) if there is an OD{J,x[0]} surjection of R onto α

0 otherwise.

πα is a surjection. This define the sequence ⟨πα : α < Θ⟩ so that πα : R → α is a surjection for each α < Θ.
Now suppose cof(Θ) < Θ. Let τ : R → cof(Θ) be a surjection. Define σ : R → Θ by σ(x) = πτ(x[0])(x

[1]). σ
is a surjection onto Θ which is impossible. □

Let 1 ≤ n < ω and A ⊆ Rn (again R refers to ωω). A is Suslin if and only if there is an ordinal λ and a
tree T ⊆ ωn × λ so that A = {(x1, ..., xn) ∈ Rn : (∃f ∈ ωλ)((x1, ..., xn, f) ∈ [T ]}. A ⊆ Rn is coSuslin if and
only if Rn \A is Suslin.

Fact 3.14. (Woodin) Assume AD+ and ADR. All sets of reals are Suslin.

A transitive set M is said to be Suslin and coSuslin if and only if there is a surjection π : R → M so
that the equivalence relation Eπ ⊆ R × R on R and the relation Fπ ⊆ R × R defined below are Suslin and
coSuslin:

x Eπ y ⇔ π(x) = π(y) and (x, y) ∈ Fπ ⇔ π(x) ∈ π(y).

Note that M is in bijection with R/Eπ. Let F̃π ⊆ R/Eπ × R/Eπ be defined by ([x]Eπ , [y]Eπ ) ∈ F̃π if and

only if (x, y) ∈ Fπ. Then (M,∈) is ∈-isomorphic to (R/Eπ, F̃π). In other words, M is Suslin and CoSuslin
if it has a natural coding on R which is Suslin and coSuslin.

Let S be the union of the collection of all transitive set which are Suslin and coSuslin. (S,∈) is a
∈-structure. In general, one says a set X is Suslin and coSuslin if and only if X ∈ S.

Woodin showed that AD+ implies the following reflection property.

Fact 3.15. (Woodin; [22]) (Σ1-reflection into Suslin and coSuslin) Assume AD+ and V = L(P(R)). S ≺Σ1

(V,∈). (That is, S is a Σ1-elementary substructure of the universe V .)

Theorem 3.16. Assume AD+. Let X be a surjective image of R. Let ⟨Aα : α < ω1⟩ be a sequence so that
for all α < ω1, Aα ⊆ X. Let δ and λ be cardinals so that ω1 ≤ δ ≤ λ < Θ. Assume one of the following
three settings.

(1) cof(δ) ≥ ω1 and for all α < ω1, |Aα| ≤ |<δλ|.
(2) For all α < ω1, |Aα| ≤ |δλ|.
(3) cof(λ) ≥ ω1 and for all α < ω1, |Aα| ≤ |[λ]δ|.

Then, respectively, the following hold.

(1) |
⋃

α<ω1
Aα| ≤ |<δλ|.

(2) |
⋃

α<ω1
Aα| ≤ |δλ|.

(3)
⋃

α<ω1
Aα| ≤ |[λ]δ|.

Proof. Consider the setting of (1). Let ς : R → X be a surjection. Define an equivalence relation E on R by
x E y if and only if ς(x) = ς(y). Note that X is in bijection with R/E. For each α < ω1, let Kα = ς−1[Aα]
and Eα = E ↾ Kα. Then Kα/Eα ⊆ R/E and Aα is in bijection with Kα/Eα. Injections of Aα into <δλ
induce injections of Kα/Eα into <δλ. Let π : R → R/E be defined by π(x) = [x]E . Let ϖ : R → P(λ)
be a surjection given by Fact 3.7. Then injections between Kα/Eα and [λ]<δ can be coded by sets of reals
through the coding B 7→ TB described above. This shows that X and ⟨Aα : α < ω1⟩ with the property
stated in setting (1) are in bijection with objects R/E and ⟨Kα/Eα : α < ω1⟩ with the properties in setting
(1) which belong to L(P(R)). It suffices to prove the theorem in L(P(R)).
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With this discussion in mind, one will now assume AD+, V = L(P(R)), and that X and ⟨Aα : α < ω1⟩
belong to L(P(R)) with the properties stated in (1). If cof(Θ) > ω1, then the result follows from Theorem
3.10. Suppose cof(Θ) ≤ ω1. Thus Θ is singular and hence ADR holds by Fact 3.13. Assume for the sake of
contradiction that there is a set X and a sequence ⟨Aα : α < ω1⟩ satisfying (1) and ¬(|

⋃
α<ω1

Aα| ≤ |<δλ|).
Let Y =

⋃
α<ω1

Aα and thus ¬(|Y | ≤ |<δλ|). Since all sets of reals are Suslin and coSuslin by Fact 3.14 since

AD+ and ADR holds, the sets Y , δ, and λ are Suslin and coSuslin and hence belong to S.
Let ψ be the following sentence with δ, λ, and Y as a parameter: δ ≤ λ < Θ̇ and there exists a sequence

⟨Ãα : α < ω1⟩ so that Y =
⋃

α<ω1
Ãα and for all α < ω1, |Aα| ≤ |<δλ|. (Θ̇ is an abbreviation for the ordinal

defined as the supremum of the ordinals which are surjective images of R.) Let T be some sufficiently strong
finite fragment of ZF. Let φ be the following Σ1-sentence with Y , δ, λ, and R as parameters: There exists
a transitive set M |= T + AD so that R ⊆ M and M |= ψ. Let ⪯ be a prewellordering of length λ whose
associated norm was used to define the surjectionϖ : R → P(λ) which appears in the coding described before
Theorem 3.8. Since L(P(R)) |= “T, AD, and ψ” and using reflection on the hierarchy ⟨Lα(P(R)) : α < ON⟩,
there is an ordinal α ≥ Θ such that Lα(P(R)) |= “T, AD, and ψ”. Thus L(P(R)) |= φ as witnessed by
Lα(P(R)). By Σ1-reflection into Suslin and coSuslin (Fact 3.15), S |= φ. Let M ∈ S be a transitive set

containing R so that M |= ψ. Let ⟨Ãα : α < ω1⟩ with Y =
⋃

α<ω1
Ãα witness the existential quantifier in ψ.

Since for each α < ω1, M |= |Ãα| ≤ |<δλ|, R ⊆M , satisfies AD, and has the prewellordering ⪯ used to code
injections of subsets of Y into <δλ, there is some B ∈ P(R)∩M so that TB codes the graph of an injection

of Ãα into <δλ. Since M ∈ S implies M is a surjective image of R, sup{rkL(B) : B ∈ P(R)∩M} < ΘV . In
the real world, let Z ∈ P(R) be such that rkL(Z) ≥ sup{rkL(B) : B ∈ P(R)∩M}. Note that for all α < ω1,

there is an r ∈ R so that TΞ−1
r [Z] codes the graph of an injection of Ãα into [λ]<δ. Applying Theorem 3.9 in

the real world to ⟨Ãα : α < ω1⟩, one has that |Y | = |
⋃

α<ω1
Ãα| ≤ |<δλ|. This contradicts the assumption

that ¬(|Y | ≤ |<δλ|). □

Theorem 3.17. Assume AD+. Suppose X is a surjective image of R. Let 1 ≤ δ < Θ and ω ≤ λ < Θ. Let
⟨An : n ∈ ω⟩ be a sequence so that for all n ∈ ω, Aα ⊆ X. Assume one of the following three settings.

(1) |Aα| ≤ |<δλ| for all n ∈ ω.
(2) |Aα| ≤ |δλ| for all n ∈ ω.
(3) |Aα| ≤ |[λ]δ| for all n ∈ ω

Then, respectively, the following hold.

(1) |
⋃

n∈ω An| ≤ |<δλ|.
(2) |

⋃
n∈ω An| ≤ |δλ|.

(3) |
⋃

n∈ω An| ≤ |[λ]δ|.

Proof. The proof follows the template of the proof of Theorem 3.16 using Theorem 3.8. □

Theorem 3.18. Assume AD+ (or AD, DCR, and cof(Θ) > ω1). If ⟨Aα : α < ω1⟩ is a sequence such that⋃
α<ω1

Aα = [ω2]<ω2 , then there is an α < ω1 so that ¬(|Aα| ≤ |[ω2]ω1 |).

Proof. Suppose ⟨Aα : α < ω1⟩ is a sequence such that [ω2]<ω2 =
⋃

α<ω1
Aα. Suppose for the sake of

contradiction that for all α < ω1, |Aα| ≤ |[ω2]ω1 |. By Theorem 3.16, |[ω2]<ω2 | ≤ |[ω2]ω1 | which violates Fact
2.14. □

Theorem 3.18 is regarded as partial evidence that [ω2]<ω2 is ω1-regular which means for any ⟨Aα : α < ω1⟩
such that

⋃
α<ω1

Aα = [ω2]<ω2 , there is an α < ω1 so that |Aα| = |[ω2]<ω2 |. This conjecture has recently

been solved by the author. [7] showed that under AD, [ω2]<ω2 has ω1-regular cardinality. However, it is still
not known if P(ω2) is ω1-regular or even 2-regular. The following is some evidence.

Theorem 3.19. Assume AD+ (or AD, DCR, and cof(Θ) > ω1). If ⟨Aα : α < ω1⟩ is a sequence such that⋃
α<ω1

Aα = P(ω2), then there is an α < ω1 so that ¬(|Aα| ≤ |[ω2]<ω2 |).

Proof. Suppose ⟨Aα : α < ω1⟩ is a sequence such that P(ω2) =
⋃

α<ω1
Aα. Suppose for the sake of

contradiction that for all α < ω1, |Aα| ≤ |[ω2]<ω2 |. By Theorem 3.16, |P(ω2)| ≤ |[ω2]<ω2 | which violates
Fact 2.10. □
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Since under AD, ω3 is singular with cof(ω3) = ω2, Fact 2.9 cannot be used to show [ω3]<ω3 or even [ω3]ω2

have smaller cardinality than P(ω3). However [4] shows that |[ω3]ω2 | < |[ω3]<ω3 | ≤ |P(ω3)| under AD+ by
the following result.

Fact 3.20. ([4]) Assume AD+.

(1) (ABCD Conjecture) Let α, β, γ, and δ be cardinals such that ω ≤ α ≤ β < Θ and ω ≤ γ ≤ δ < Θ.
|αβ| ≤ |γδ| if and only if α ≤ γ and β ≤ δ.

(2) If κ < Θ is a cardinal and ϵ < κ, then |ϵκ| < |<κκ|.

It is still open if |[ω3]<ω3 | < |P(ω3)|. The following result implies that if one decomposes [ω3]<ω3 or
P(ω3) into ω1-many pieces ⟨Aα : α < ω1⟩. Then at least one piece Aα does not inject into [ω3]ω2 .

Theorem 3.21. Assume AD+ (or AD, DCR, and cof(Θ) > ω1).

(1) If ω1 ≤ κ < Θ is a regular cardinal and ⟨Aα : α < ω1⟩ is a sequence such that
⋃

α<ω1
Aα = P(κ),

then there is an α < ω1 so that ¬(|Aα| ≤ |[κ]<κ|).
(2) If ω1 ≤ ϵ < κ < Θ and ⟨Aα : α < ω1⟩ is a sequence such that

⋃
α<ω1

Aα = <κκ, then there is an

α < ω1 so that ¬(|Aα| ≤ |ϵκ|).
(3) If ω1 ≤ ϵ < κ < Θ and ⟨Aα : α < ω1⟩ is a sequence such that

⋃
α<ω1

Aα = P(κ), then there is an

α < ω1 so that ¬(|Aα| ≤ |ϵκ|).

Proof. (1) If |Aα| ≤ |[κ]<κ| = |<κκ|, then |P(κ)| = |<κκ| by Theorem 3.16. Since AD+ implies boldface
GCH below Θ, this would contradict Fact 2.9.

(2) If |Aα| ≤ |ϵκ|, then |<κκ| = |ϵκ| by Theorem 3.16. This would contradict Fact 3.20.
The proof of (3) is similar. □

4. Decomposition into a Suslin Cardinal Many Pieces

This section will consider a decomposition of sets into κ many pieces where κ is a Suslin cardinal. Kechris
and Woodin ([16]) developed a more general generic coding function on Suslin cardinals (or more generally
reliable ordinals). In the previous section, the wellordered additivity of the meager ideal had a prominent
role in many arguments. For κ > ω, there is no clear analog of this for ωκ and its generic coding function.
However, if S ⊆ κ is a countable set, then ωS is homeomorphic to R and thus under AD, the meager ideal on
ωS (with its usual topology) will satisfy the full wellordered additivity. The idea will be to do an argument
similar to the previous section for each countable S ⊆ κ and then take an ultrapower by a supercompact
measure on Pω1

(κ), the set of all countable subsets of κ. One will need to impose conditions regarding
the ultrapower maps of the supercompact measure to successfully generalize these arguments. However, one
will still be able establish the analog of the main result of the previous section (concerning decomposition of
P(ω2) = P(δ12) into ω1 = δ11 many pieces) for decomposition of P(ωω+2) = P(δ14) into ωω+1 = δ13 many
pieces.

Definition 4.1. An ordinal λ is reliable if and only if there is a scale φ⃗ = ⟨φn : n ∈ ω⟩ on a set W ⊆ R
such that the following holds.

(1) For all n ∈ ω, φn : W → λ and φ0 : W → λ is a surjection.
(2) The relation S0(x, y) defined by x, y ∈W ∧φ0(x) ≤ φ0(y) and S1(x, y) defined by x, y ∈W ∧φ0(x) <

φ0(y) are Suslin subsets of R2.

φ⃗ with the above property will be called the reliability witness for λ.
If σ ⊆ λ is countable and ξ ∈ σ, then σ is said to be ξ-honest (relative to φ⃗) if and only if there is a

w ∈ W so that φ0(w) = ξ and for all n ∈ ω, φn(ξ) ∈ σ. Such a w ∈ W will be called a ξ-honest witness for
σ (relative to φ⃗). A countable σ ⊆ λ is honest (relative to φ⃗) if and only if for all ξ ∈ σ, σ is ξ-honest.

Fact 4.2. Suppose λ is a reliable ordinal with reliability witness φ⃗ which is a scale on a set W ⊆ R. For
each ξ < λ, there is a countable set σ so that σ is ξ-honest relative to φ⃗.

Proof. Let w ∈W so that φ0(w) = ξ which is possible since φ0 : W → λ is surjective. Let σ = {φn(w) : n ∈
ω}. σ is ξ-honest with w as its ξ-honest witness. □
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It is generally not possible to uniformly associate ξ to a countable ξ-honest set (relative to a reliability
witness). However if λ is a reliable ordinal of uncountable cofinality, then one can at least uniformly associate
an ordinal less than λ which is ξ-honest which will be sufficient for applications here.

Fact 4.3. Suppose λ is a reliable ordinal with reliability witness φ⃗ and cof(λ) > ω. For each ξ < λ, there is
a ξ′ < λ so that for all γ with ξ′ ≤ γ < λ, γ is ξ-honest relative to φ⃗.

Proof. By Fact 4.2, there is a countable σ̄ ⊆ λ which is ξ-honest. ξ′ = sup(σ) < λ since cof(λ) > ω. Suppose
γ is such that ξ′ ≤ γ < κ. Since σ̄ ⊆ γ, γ is ξ-honest. □

Definition 4.4. Let X be a set. Let Pω1
(X) = {σ ∈ P(X) : |σ| ≤ ω} (which is the set of countable

subsets of X). Let ν be an ultrafilter on Pω1
(X). ν is a fine ultrafilter on Pω1

(X) if and only if for
each x ∈ X, Ax = {σ ∈ Pω1

(X) : x ∈ σ} ∈ ν. ν is a normal ultrafilter on Pω1
(X) if and only if for

every Φ : Pω1
(X) → Pω1

(X) such that {σ ∈ Pω1
(X) : ∅ ̸= Φ(σ) ⊆ σ} ∈ ν, there is an x ∈ X so that

{σ ∈ Pω1(X) : x ∈ Φ(σ)} ∈ ν. ν is a supercompact measure on X if and only if ν is a countably complete,
fine, and normal measure on Pω1(X).

Fact 4.5. (Harrington-Kechris; [10]) Assume AD. If κ less than or equal to a Suslin cardinal, then there is
a supercompact measure on Pω1

(κ).
(Woodin; [26]) Assume AD. If κ is less than or equal to a Suslin cardinal, then the supercompact measure

on Pω1
(κ) is unique.

Fact 4.6. Assume AD. Suppose φ⃗ is a sequence of norms on W ⊆ R which is a reliability witness for λ. Let
ν be a countably complete and fine measure on Pω1(λ). Let ξ < λ. Then {σ ∈ Pω1(λ) : σ is ξ-honest} ∈ ν.

Proof. Pick any w ∈ W so that φ0(w) = ξ (which is possible since φ0 surjects onto λ). By fineness of ν,
An = {σ ∈ Pω1(λ) : φn(w) ∈ σ} ∈ ν. By countably compleness of ν,

⋂
n∈ω An ∈ ν. Since ν is a filter,⋂

n∈ω An ⊆ {σ ∈ Pω1(λ) : σ is ξ-honest} ∈ ν. □

Fact 4.7. Assume AD. Suppose φ⃗ is a sequence of norms on W ⊆ R is a reliability witness for λ. Let ν be
a supercompact measure on Pω1

(λ). Then A = {σ ∈ Pω1
(λ) : σ is honest} ∈ ν.

Proof. Suppose A /∈ ν. Let Ã = Pω1
(λ) \ A. Since ν is an ultrafilter, Ã ∈ ν. Let Φ : Pω1

(λ) → Pω1
(λ)

be defined by Φ(σ) = {ξ ∈ σ : σ is not ξ-honest}. Note that for all σ ∈ Ã, ∅ ≠ Φ(σ) ⊆ σ. So Ã ⊆ {σ ∈
Pω1

(λ) : ∅ ̸= Φ(σ) ⊆ σ} and therefore {σ ∈ Pω1
(λ) : ∅ ̸= Φ(σ) ⊆ σ} ∈ ν. By normality, there is a

η ∈ λ so that B = {σ ∈ Pω1
(λ) : η ∈ Φ(σ)} ∈ ν. Pick a w ∈ W so that φ0(w) = η. For each n ∈ ω,

Cn = {σ ∈ Pω1(λ) : φn(w) ∈ σ} ∈ ν by fineness. Then C =
⋂

n∈ω Cn ∈ ν by countably completeness. Then
D = B ∩ C ∈ ν. Pick any σ ∈ D. w is a η-honest witness for σ since for all n ∈ ω, φn(w) ∈ σ. Thus σ is
η-honest. However, η ∈ Φ(σ) means that σ is not η-honest. Contradiction. □

Recall the notation x[n] from Definition 3.1 for x ∈ R and n ∈ ω.

Fact 4.8. (Kechris-Woodin; [16] Lemma 1.1, [13] Theorem 6.1) Assume AD. Let λ be a reliable ordinal with
φ⃗ be a sequence of norms on a set W ⊆ R being a reliability witness. Then there is a Lipschitz continuous
function G : ωλ→ R so that the following holds.

(1) For all n ∈ ω and f ∈ ωλ, G(f)[n] ∈W and φ0(G(f)[n]) ≤ f(n).
(2) For all n ∈ ω and f ∈ ωλ, if f [ω] is f(n)-honest, then φ0(G(f)[n]) = f(n).

Thus if f [ω] is honest, then for all n ∈ ω, φ0(G(f)[n]) = f(n). For each n ∈ ω, let Gn : ωλ→W be defined
by Gn(f) = G(f)[n].

A function G with the above property is called a generic coding function for λ relative to the reliability
witness φ⃗.

Theorem 4.9 will only need the concept of ξ-honest for a particular ordinal ξ < λ and will never need
full honesty. Thus one will only directly use Fact 4.6 concerning fine and countably complete measures on
Pω1(λ) rather than Fact 4.7 which involves supercompact measures on Pω1(λ). However, it is convenient to
use the uniqueness of the supercompact measure (Fact 4.5) to uniformly find long sequences of supercompact
measures on various ordinals. Theorem 4.9 will just need codes for f(0) rather than all of f so the function
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G0 : ωλ → W will be used directly rather than G. The full generic coding function will be used later to
analyze the ultrapower of the supercompact measure.

Again, use the notation defined before Theorem 3.8: Suppose π : R → X. Let δ ≤ λ < Θ and ϖ : R →
P(λ). If B ⊆ R, let TB = {(x, f) : (∃z ∈ B)(x = π(z[0]) ∧ f = ϖ(z[1]))}. If A ⊆ X and Φ : A → <δλ, then
there is some B ∈ P(R) so that the graph of Φ is TB .

Theorem 4.9. Assume AD. Let X be a surjective image of R. Let κ be a reliable cardinal. Let κ ≤ δ ≤ λ < Θ
be a cardinals with cof(δ) > ω. For each α ≤ κ, let να be the unique supercompact measure on Pω1(α).
Suppose one of the two cases occurs.

(1) jνκ
(δ) = δ and jνκ

(λ) = λ.
(2) For all α < κ, jνα(δ) = δ and jνα(λ) = λ.

Let ⟨Aα : α < κ⟩ be a sequence so that there exists a Z ∈ P(R) with the property that for all α ∈ κ, Aα ⊆ X,
|Aα| ≤ |<δλ|, and there is an r ∈ R so that TΞ−1

r [Z] is the graph of an injection of Aα into <δλ. Then

|
⋃

α<κAα| ≤ |<δλ|.

Proof. Let φ⃗ = ⟨φn : n ∈ ω⟩ be a scale on W ⊆ R which serves as a reliability witness for κ. If case (1)
holds, for each α < κ, let ξ(α) = κ. If case (2) holds, let ξ(α) be the least ξ which is α-honest relative to φ⃗.
Regardless of the case, jνξ(α)

(δ) = δ and jξ(α)(λ) = λ for all α < κ.

Define R ⊆W ×R by R(w, r) if and only if TΞ−1
r [Z] is the graph of an injection of Aφ0(w) into <δλ \ {∅}.

Let Γ be a scaled pointclass containing the Suslin relations W and S0 (from Definition 4.1 for φ0) and closed
under ∃R and ∧. By applying the Moschovakis coding lemma to R, φ0, and Γ, there is a relation R̄ ⊆W ×R
so that R̄ ⊆ R, R̄ ∈ Γ, and for all α < κ, there is a w ∈ W with φ0(w) = α and r ∈ R so that R̄(w, r).

Let R̃ ⊆ W × R be defined by R̃(w, r) if and only if w ∈ W ∧ (∃v)(S0(v, w) ∧ S0(w, v) ∧ R̄(v, r)). R̃ ∈ Γ

and dom(R̃) = W . Since Γ is a scaled pointclass, let Λ : W → R be a uniformization with the property that

for all w ∈ W , R̃(w,Λ(w)). Thus for all w ∈ W , R(w,Λ(w)). For all w ∈ W , TΞ−1
Λ(w)

[Z] is the graph of an

injection of Aφ0(w) into <δλ \ {∅}. For each w ∈ W , let Φw : Aφ0(w) → <δλ \ {∅} be the injection whose
graph is TΞ−1

Λ(w)
[Z].

For each x ∈
⋃

α<κAα, let ι(x) be the least α < κ so that x ∈ Aα. Let τ : <ωκ× δ×λ→ λ be a bijection.
If σ is a countable set and p ∈ <ωσ, then let Nσ

p = {f ∈ ωσ : p ⊆ f}. ωσ is given the product of the discrete
topology on σ which equivalently is generated by {Nσ

p : p ∈ <ωσ} as a basis. For any countable σ, ωσ is
homeomorphic to ωω and has the Baire property for its topology. For p ∈ <ωσ and φ a formula, (∀∗,σp f)φ(f)
abbreviates {f ∈ Nσ

p : φ(f)} is comeager in Nσ
p . For all x ∈

⋃
α<κAα and σ ∈ Pω1

(ξ(ι(x))) with ι(x) ∈ σ,
let

Υx(σ) = {τ(p, η, ζ) : p ∈ <ωσ ∧ (∃ϵ < δ)(∀∗,σ⟨ι(x)⟩ˆpf)(ϵ = dom(ΦG0(f)(x)) ∧ η < ϵ ∧ ΦG0(f)(x)(η) = ζ)}.

Since τ maps into λ, one has that Υx(σ) ∈ P(λ). Thus for each x ∈
⋃

α∈κAα, Υx : Pω1
(ξ(ι(x))) →

P(λ). Note that the hypothesis that
∏

σ∈Pω1
(ξ(ι(x))) λ/νξ(ι(x)) = jνξ(ι(x))

(λ) = λ implicitly implies that this

ultrapower is wellfounded. Define Υ(x) to be the set of all ordinals γ such that there exist (equivalently,
for all) functions f : Pω1

(ξ(ι(x))) → ON with [f ]νξ(ι(x))
= γ, {σ ∈ Pω1

(ξ(ι(x))) : f(σ) ∈ Υx(σ)} ∈ νξ(ι(x)).

(Although this ultrapower does not satisfy  Loś’ Theorem, Υ is intuitively defined by Υ(x) = [Υx]νξ(ι(x))
.)

Claim 1: For all x ∈
⋃

α<κAα, Υ(x) ⊆ λ.
To see Claim 1: Suppose γ ∈ Υ(x) and f : Pω1(ξ(ι(x))) → ON with [f ]νξ(ι(x))

= γ. Thus {σ ∈
Pω1

(ξ(ι(x))) : f(σ) ∈ Υx(σ) ⊆ P(λ)} ∈ νξ(ι(x)). Thus [f ]νξ(ι(x))
< jνξ(ι(x))

(λ) = λ. Thus γ < λ. This shows
γ ∈ λ. Claim 1 has been established.

Claim 2: For all x ∈
⋃

α<κAα, Υ(x) ̸= ∅.
To see Claim 2: Since ξ(ι(x)) is an ι(x)-honest ordinal, A = {σ ∈ Pω1(ξ(ι(x))) : σ is ι(x)-honest} ∈

νξ(ι(x)). Pick any σ ∈ A. Let surjι(x)σ = {f ∈ ωσ : f [ω] = σ∧f(0) = ι(x)} which is a comeager subset ofNσ
⟨ι(x)⟩.

For all f ∈ surjι(x)σ , f [ω] = σ is ι(x)-honest or equivalently f(0)-honest. By Fact 4.8, φ0(G0(f)) = ι(x) and

therefore, ΦG0(f) : Aι(x) → <δλ. For all ϵ < δ, let Bϵ = {f ∈ surjι(x)σ : dom(ΦG0(f)(x)) = ϵ}. One has that

surjι(x)σ =
⋃

ϵ<δ Bϵ. Since wellordered union of meager sets is meager and surjι(x)σ is a comeager subset of

Nσ
⟨ι(x)⟩, there is some ϵ̄ so that Bϵ̄ is nonmeager. (Note that ϵ̄ > 0 since ΦG0(f) : Aι(x) → <δλ \ {∅}.) For

14



each ζ < λ, let Cζ = {f ∈ Bϵ̄ : ΦG0(f)(x)(0) = ζ}. Bϵ̄ =
⋃

ζ<λ Cζ . Again since wellordered union of meager

subsets of ωσ are meager and Bϵ̄ is nonmeager, there is ζ̄ so that Cζ̄ is nonmeager. Since ωσ has the Baire

property, there is a p̄ ∈ <ωσ so that Bϵ̄ is comeager in Nσ
⟨ι(x)⟩ˆp. Then τ(p̄, 0, ζ̄) ∈ Υx(σ). This shows that

for all σ ∈ A, Υx(σ) ̸= ∅. Let h : A → λ be defined by h(σ) = min(Υx(σ)). Then [h]νξ(ι(x))
∈ Υ(x). This

establishes Claim 2.
Claim 3: For all x ∈

⋃
α<κAα and σ ∈ Pω1(ξ(ι(x))), |Υx(σ)| < δ.

To see Claim 3: Let B = {p ∈ <ωσ : (∃ϵ)(∀∗,σ⟨ι(x)⟩ˆpf)(ϵ = dom(ΦG0(f)(x)))}. For each p ∈ B, there is a

unique ϵp < δ so that (∀∗,σ⟨ι(x)⟩ˆpf)(ϵp = dom(ΦG0(f))). Thus ϵp surjects onto Kσ
p = {τ(p, η, ζ) : τ(p, η, ζ) ∈

Υx(σ)} since if τ(p, η, ζ) ∈ Kσ
p , then η < ϵp and ζ is uniquely determined from p and η. Hence |Kσ

p | ≤ |ϵp| < δ.
Since B ⊆ <ωσ is countable, Υx(σ) =

⋃
p∈B K

σ
p , and cof(δ) > ω, one has that |Υx(σ)| < δ.

Claim 4: For all x ∈
⋃

α<κAα, |Υ(x)| < δ and thus Υ(x) ∈ Pδ(λ).
To see Claim 4: Suppose γ ∈ Υ(x) and [f ]νξ(ι(x))

= γ. For each σ ∈ Pω1
(ξ(ι(x))), let hf (σ) be the

ordertype of f(σ) in Υx(σ). By Claim 3, hf : Pω1
(ξ(ι(x))) → δ. Let Σx(γ) = [hf ]νξ(ι(x))

and note

that Σx(γ) is independent of the choice of representative f . Let gx : Pω1
(ξ(ι(x))) → δ be defined by

gx(σ) = ot(Υx(σ)). Note that gx(σ) < δ by Claim 3. Thus Σx(γ) = [hf ]νξ(ι(x))
< [gx]νξ(ι(x))

< jνξ(ι(x))
(δ) = δ.

Thus Σx : Υ(x) → [gx]νξ(ι(x))
where [gx]νξ(ι(x))

< δ. Now suppose γ0 < γ1 and γ0, γ1 ∈ Υ(x). Let f0 and f1
be such that [f0]νξ(ι(x))

= γ0 and [f1]νξ(ι(x))
= γ1. Thus {σ ∈ Pω1

(ξ(ι(x))) : f0(σ) < f1(σ)} ∈ νξ(ι(x)). Thus

Σx(γ0) = [hf0 ]νξ(ι(x))
< [hf1 ]νξ(ι(x))

= Σx(γ1). Thus Σx : Υ(x) → [gx]νξι(x)
is an order-preserving map. Thus

|Υ(x)| < δ and hence Υ(x) ∈ Pδ(λ). This shows Claim 4.
Define χ :

⋃
α<κAα → κ× Pδ(λ) by χ(x) = (ι(x),Υ(x)).

Claim 5: χ :
⋃

α<κAα → κ× Pδ(λ) is an injection.
To see Claim 5: Suppose x0, x1 ∈

⋃
α<κAα and x0 ̸= x1. First suppose ι(x0) ̸= ι(x1). Then χ(x0) =

(ι(x0),Υ(x0)) ̸= (ι(x1),Υ(x1)) = χ(x1). Now assume ι(x0) = ι(x1) and let α be this common ordinal.
Let A = {σ ∈ Pω1(ξ(α)) : σ is α-honest} and note that A ∈ νξ(α). Let A0 be the set of σ ∈ A so that
Eα

σ = {f ∈ surjασ : dom(ΦG0(f)(x0)) = dom(ΦG0(f)(x1))} is nonmeager in ωσ. Let A1 = surjασ \ A0. Since
A = A0 ∪ A1 and A ∈ νξ(α), exactly one of A0 ∈ νξ(α) or A1 ∈ νξ(α). Suppose A0 ∈ νξ(α). Fix σ ∈ A0 so
Eα

σ is nonmeager. Let Fσ
ϵ = {f ∈ Eα

σ : dom(ΦG0(f)(x0)) = ϵ = dom(ΦG0(f)(x1))}. Since Eα
σ =

⋃
ϵ<δ F

α
σ

and Eα
σ is nonmeager in ωσ, let ϵ̄σ < δ be the least ϵ so that Fσ

ϵ is nonmeager. Since for all f ∈ Fσ
ϵ̄σ ,

ΦG0(f) : Aα → <δλ is an injection, ΦG0(f)(x0) ̸= ΦG0(f)(x1). For each η < ϵ̄σ, let Hσ
η be the set of f ∈ Fσ

ϵ̄σ

so that η is least η′ so that ΦG0(f)(x0)(η′) ̸= ΦG0(f)(x1)(η′). Since Fσ
ϵ̄σ =

⋃
η<ϵ̄σ

Hσ
η , let η̄σ be the least η

so that Hσ
η is nonmeager. For each pair (ζ0, ζ1) of distinct ordinals in λ, let Kσ

ζ0,ζ1
be the set of f ∈ Hσ

η̄σ

so that ΦG0(f)(x0)(η̄σ) = ζ0 and ΦG0(f)(x1)(η̄σ) = ζ1. Since Hσ
η̄σ

=
⋃
{Kσ

ζ0,ζ1
: ζ0, ζ ∈ λ ∧ ζ0 ̸= ζ1}, let

(ζ̄σ0 , ζ̄
σ
1 ) be least pair (ζ0, ζ1) so that Kσ

ζ0,ζ1
is nonmeager. Since ωσ has the Baire property, let p̄σ be the

least p ∈ <ωσ (under a uniformly defined wellordering of <ωσ) so that Kσ
ζ̄σ
0 ,ζ̄σ

1
is comeager in Nσ

p . Then

τ(p̄σ, η̄σ, ζ̄
σ
0 ) ∈ Υx0(σ) but τ(p̄σ, η̄σ, ζ̄

σ
0 ) /∈ Υx1(σ). Let h(σ) = τ(p̄σ, η̄σ, ζ̄

σ
0 ). Then h(σ) ∈ Υx0(σ) but

h(σ) /∈ Υx1(σ) for all σ ∈ A0. Then [h]νξ(α)
∈ Υ(x0) but [h]νξ(α)

/∈ Υ(x1). So Υ(x0) ̸= Υ(x1). Hence

χ(x0) = (α,Υ(x0)) ̸= (α,Υ(x1)) = χ(x1). Now suppose A1 ∈ νξ(α). Let σ ∈ A1. Then Eα
σ is meager in ωσ.

Let Iασ = surjασ \Eα
σ which is comeager in ωσ. For each pair of ϵ0 ̸= ϵ1 less than δ, let Jσ

ϵ0,ϵ1 be the set of f ∈ Iασ
so that dom(ΦG0(f)(x0)) = ϵ0 and dom(ΦG0(f)(x1)) = ϵ1. Then Iασ =

⋃
{Jσ

ϵ0,ϵ1 : ϵ0, ϵ1 < δ ∧ ϵ0 ̸= ϵ1}. Let
(ϵ̄σ0 , ϵ̄

σ
1 ) be the least pair (ϵ0, ϵ1) with ϵ0 ̸= ϵ1 so that Jσ

ϵ0,ϵ1 is nonmeager. Without loss of generality, suppose

ϵ̄σ0 < ϵ̄σ1 . For each ζ < λ, let Qσ
ζ = {f ∈ Jσ

ϵ̄σ0 ,ϵ̄
σ
1

: ΦG0(f)(x1)(ϵ̄0) = ζ}. Jσ
ϵ̄σ0 ,ϵ̄

σ
1

=
⋃

ζ<λQ
σ
ζ . Let ζ̄σ be least ζ so

that Qσ
ζ is nonmeager. Since ωσ has the Baire property, let p̄σ be the least p ∈ <ωσ so that Qσ

ζ̄σ
is comeager in

Nσ
p . Let h(σ) = τ(p̄σ, ϵ̄

σ
0 , ζ̄σ). For all σ ∈ A1, h(σ) ∈ Υx1(σ) however h(σ) /∈ Υx0(σ). Thus [h]νξ(α)

∈ Υ(x1)

and [h]νξ(α)
/∈ Υ(x0). So Υ(x0) ̸= Υ(x1). Therefore, χ(x0) = (α,Υ(x0)) ̸= (α,Υ(x1)) = χ(x1). Claim 5 has

been established.
Since |Pδ(λ)| = |<δλ| by Fact 2.2 and |Pδ(λ)| = |κ × Pδ(λ)|, one has that there is an injection of⋃

α<κAα into <δλ. □

Theorem 4.10. Assume AD and DCR. Suppose X is a surjective image of R. Let κ be a reliable cardinal.
Assume cof(Θ) > κ. Let δ and λ be cardinals such that κ ≤ δ ≤ λ < Θ and cof(δ) > ω. For each α ≤ κ, let
να be the unique supercompact measure on Pω1

(α). Suppose one of the two cases occurs.
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(1) jνκ(δ) = δ and jνκ(λ) = λ.
(2) For all α < κ, jνα(δ) = δ and jνα(λ) = λ.

Let ⟨Aα : α < κ⟩ be a sequence so that for all α ∈ κ, Aα ⊆ X, and |Aα| ≤ |<δλ|. Then |
⋃

α<κAα| ≤ |<δλ|.

Proof. The proof follows from Theorem 4.9 in a manner similar to how Theorem 3.10 follows from Theorem
3.9. □

Theorem 4.11. Assume AD+. Suppose X is a surjective image of R. Let κ be a reliable cardinal which
is below a Suslin cardinal. Let κ ≤ δ ≤ λ < Θ be cardinals with cof(δ) > ω. For each α ≤ κ, let να be the
unique supercompact measure on Pω1

(α). Suppose one of the cases occurs.

(1) jνκ
(δ) = δ and jνκ

(λ) = λ.
(2) For all α < κ, jνα

(δ) = δ and jνα
(λ) = λ.

Let ⟨Aα : α < κ⟩ be a sequence so that for all α ∈ κ, Aα ⊆ X, and |Aα| ≤ |<δλ|. Then |
⋃

α<κAα| ≤ |<δλ|.

Proof. This result follows from Theorem 4.9 and Theorem 4.10 as in the proof of Theorem 3.16. □

It is implicit in the assumption that jνα
(λ) = λ that the ultrapower

∏
Pω1

(α) λ/να is wellfounded. This

is addressed in Fact 4.21. Then next few results will work toward showing jνα
(δ14) = δ14 which is due

to Becker [1] Theorem 4.2. One will need an explicit characterization of the supercompact measure on
Pω1

(κ) when κ is a reliable ordinal. Various constructions of a supercompact measure on Pω1
(κ) can be

found in Solovay [21], Harrrington-Kechris [10], and Becker [1]. By Woodin’s result [26] concerning the
uniqueness of the supercompact measure on Pω1(κ), they all define the same measure. Here, one will use
a construction of the supercompact measure from generic codings presented in [13]. However, one uses the
“ordinal determinacy” clause of AD+ to get the necessary determinacy of certain games with moves on the
ordinal. Many results below have AD+ as a hypothesis but had previously been proved under AD using the
determinacy of certain real games given by [10] Harrington-Kechris. The generic coding methods seems more
suitable for generalization as Becker-Jackson [2] and Jackson [12] showed certain cardinals (for instance the
projective ordinals δ1n) have higher degree of supercompactness (i.e. are δ21-supercompact).

Fact 4.12. Let κ be an ordinal, ν be a supercompact measure on Pω1(κ), and f : <ωκ → κ be a function.
Then {σ ∈ Pω1

(κ) : f [<ωσ] ⊆ σ} ∈ ν.

Proof. Let A = {σ ∈ Pω1(κ) : f [<ωσ] ⊆ σ}. For the sake of contradiction, suppose A /∈ ν. Let Ã =

Pω1
(κ) \A and note that Ã ∈ ν since ν is an ultrafilter. Fix a wellordering ≺ of <ωκ. If σ ∈ Ã, then there

is a p ∈ <ωκ so that f(p) /∈ σ. Let pσ be the least such p according to ≺. By the countably additivity of

ν, there is an n̄ so that B = {σ ∈ Ã : |pσ| = n} ∈ ν. If n̄ = 0, then pσ = ∅ for all σ ∈ B. By fineness,
C = {σ ∈ B : f(∅) ∈ σ} ∈ ν. For all σ ∈ C, f(pσ) = f(∅) ∈ σ which contradicts the definition of pσ.
Now suppose n̄ > 0. For each k < n̄, let Φk : B → Pω1(κ) be defined by Φk(σ) = {pσ(k)}. For all k < n̄,
{σ ∈ B : ∅ ≠ Φk(σ) ⊆ σ} ∈ ν. By normality, there is an αk ∈ κ so that Dk = {σ ∈ B : αk ∈ Φk(σ)} ∈ ν. Let
p̄ ∈ n̄κ be defined by p̄(k) = αk. Thus E = {σ ∈ B : pσ = p̄} =

⋂
k<n̄Dk ∈ ν by the countably completeness

of ν. By fineness, F = {σ ∈ D : f(p̄) ∈ σ} ∈ ν. For all σ ∈ F , f(pσ) = f(p̄) ∈ σ which contradicts the
definition of pσ. This completes the proof. □

Definition 4.13. Formally a strategy on κ is a function ρ : <ωκ→ κ. If ρ0 and ρ1 are two strategies, then
ρ0 ∗ ρ1 ∈ ωκ is defined by recursion as follows: If n is even, then (ρ0 ∗ ρ1)(n) = ρ0(ρ0 ∗ ρ1 ↾ n). If n is odd,
then (ρ0 ∗ ρ1)(n) = ρ1(ρ0 ∗ ρ1 ↾ n). If f ∈ ωκ, then let ρ1f be the strategy defined by ρ1f (2n) = f(n) and

ρ1f (2n+ 1) = 0 for all n ∈ ω. If f ∈ ωκ, then let ρ2f be the strategy defined by ρ2f (2n) = 0 and ρ2f (2n+ 1) =

f(n). If f ∈ ωκ, let feven ∈ ωκ and fodd ∈ ωκ be defined by feven(n) = f(2n) and fodd(n) = f(2n+ 1). If ρ
is a strategy, then let Ξ1

ρ,Ξ
2
ρ : ωκ→ ωκ be defined by Ξ1

ρ(f) = (ρ ∗ ρ2f )even and Ξ2
ρ(f) = (ρ1f ∗ ρ)odd.

Fix a bijection πκ,2 : κ→ κ× κ. Let πκ,2
0 , πκ,2

1 : κ→ κ be defined by πκ,2
0 (α) = β and πκ,2

1 (α) = γ where

πκ,2(α) = (β, γ). If ρ is a strategy on κ, let χκ
ρ = πκ,2

0 ◦ ρ and τκρ = πκ,2
1 ◦ ρ.

Definition 4.14. Let κ be a reliable ordinal with reliability witness φ⃗ which is a scale on W ⊆ R. Let
ρ : <ωκ→ κ be a strategy on κ. Let Kρ be the set of σ ∈ Pω1(κ) so that σ is honest relative to the reliability
witness φ⃗ and ρ[<ωσ] ⊆ σ.
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Fact 4.15. Let κ be a reliable ordinal with reliability witness φ⃗ which is a scale on W ⊆ R. Let ρ : <ωκ→ κ
be a strategy on κ. Then Kρ ∈ νκ.

Proof. This follows from Fact 4.7 and Fact 4.12. □

Generic coding can be used to define the unique supercompact measure on Pω1(κ) when κ is a reliable
ordinal. The game will be provided next and used to show that sets of the form Kρ for strategies ρ on κ
form a basis for the supercompact measure on Pω1

(κ).

Fact 4.16. Assume AD+. Let κ be a reliable ordinal with reliability witness φ⃗ which is a scale on W ⊆ R.
Let νκ be the unique supercompact measure on Pω1

(κ). Let A ⊆ Pω1
(κ). A ∈ νκ if and only if there is a

strategy ρ : <ωκ→ κ so that Kρ ⊆ A.

Proof. Fix A ⊆ Pω1
(κ). Define the game GA on κ as following.

GA

I α0 α2 α4 ...

II α1 α3 α5 ...
f

Player 1 and 2 alternate playing ordinals from κ. Player 1 plays the ordinals α2n and Player 2 plays the
ordinals α2n+1 for all n ∈ ω. Player 1 wins GA if and only if {φ0(Gn(f)) : n ∈ ω} ∈ A. Let ν∗κ be the
set of all A ⊆ Pω1

(κ) so that Player 1 has a winning strategy in GA. Let B ⊆ ωω be B = {r ∈ ωω :
(∀n)(r[n] ∈ W ) ∧ {φ0(r[n]) : n ∈ ω} ∈ A}. The payoff set for GA is G−1[B]. Since G : ωκ → ωω is
continuous, the “ordinal determinacy” clause of AD+ implies that GA is determined. It can be shown that
ν∗κ is a supercompact measure on Pω1

(κ). (Thus one can define the unique supercompact measure νκ on
Pω1(κ) to be ν∗κ.)

If there is strategy ρ on κ so that Kρ ⊆ A, then A ∈ νκ since Kρ ∈ νκ by Fact 4.15. Now suppose
A ∈ νκ = ν∗κ. Let ρ be a Player 1 winning strategy in GA. Let σ ∈ Kρ which means that σ is honest and
ρ[<ωσ] ⊆ σ. Let g : ω → σ be a surjection. Let f = ρ ∗ ρ2g be the run of player 1 playing the terms of g
against Player 1 using ρ. Since ρ[<ωσ] ⊆ σ and g[ω] = σ, one has that f [ω] = σ. Since f [ω] = σ is honest, by
the properties of the generic coding function (Fact 4.8), φ0(Gn(f)) = f(n). Thus {φ0(Gn(f)) : n ∈ ω} = σ.
Since ρ is a Player 1 winning strategy, σ = {φ0(Gn(f)) : n ∈ ω} ∈ A. Since σ ∈ Kρ was arbitrary,
Kρ ⊆ A. □

Fact 4.17. Suppose κ be an ordinal, λ < κ, and ν is a supercompact measure on κ. Let Π : Pω1(κ) →
Pω1(λ) be defined by Π(σ) = σ ∩ λ. Then the Rudin-Keisler pushforward µ = Π∗ν defined by A ∈ µ if and
only if Π−1[A] ∈ ν is a supercompact measure on Pω1

(λ).

Proof. It is straightforward to see that µ is an ultrafilter and countably complete. Suppose α ∈ λ. Let
A = {τ ∈ Pω1

(λ) : α ∈ τ}. By the fineness of ν, B = {σ ∈ Pω1
(κ) : α ∈ κ} ∈ ν. Note that B = Π−1[A].

By definition A ∈ µ. Thus µ is fine. Let Φ : Pω1(λ) → Pω1(λ) be such that C = {τ ∈ Pω1(λ) : ∅ ≠ Φ(τ) ⊆
τ} ∈ µ. Define Ψ : Pω1(κ) → Pω1(κ) by Ψ(σ) = Φ(σ ∩ λ) and note that Ψ actually maps into Pω1(λ).
Let D = {σ ∈ Pω1

(κ) : ∅ ≠ Ψ(σ ∩ λ) ⊆ σ}. Note that D = Π−1[C]. Thus D ∈ ν since C ∈ µ = Π∗ν. By
the normality of ν, there is an α ∈ κ so that E = {σ ∈ Pω1

(κ) : α ∈ Ψ(σ)} ∈ ν. Note that α ∈ λ. Let
F = {τ ∈ Pω1

(λ) : α ∈ Φ(τ)}. Note that E = Π−1[F ] and hence F ∈ µ. This shows that µ is normal. □

Using the proof of Fact 4.17, one can provide an explicit characterization of the supercompact measure on
Pω1

(λ) when λ less than or equal to a Suslin cardinal using the generic coding on a reliable ordinal greater
than or equal to λ.

Fact 4.18. Assume AD+. Let λ be less than or equal to a Suslin cardinal and let κ be any reliable cardinal
greater than or equal to λ. Let φ⃗ be a reliability witness for κ. For any strategy ρ on κ, let Kλ

ρ = {σ ∩ λ :

σ ∈ Kρ}. For any A ⊆ Pω1
(λ), A ∈ νλ if and only if there is a strategy ρ on κ so that Kλ

ρ ⊆ A.

Proof. Let Π : Pω1(κ) → Pω1(λ) be defined by Π(σ) = σ ∩ λ. By Fact 4.17 and the uniqueness of the
supercompact measure on Pω1(λ), one has that νλ = Π∗νκ. Suppose A ∈ νλ. Then Π−1[A] ∈ νκ. By Fact
4.16, there is a strategy ρ on κ so that Kρ ⊆ Π−1[A]. Thus Kλ

ρ = {σ ∩ λ : σ ∈ Kρ} = {Π(σ) : σ ∈ Kρ} ⊆ A.
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Now suppose there is a strategy ρ so that Kλ
ρ ⊆ A. Since Π−1[Kλ

ρ ] ⊇ Kρ, , Π−1[Kλ
ρ ] ∈ νκ. So Kλ

ρ ∈ νλ.
Thus A ∈ νλ. □

The following is straightforward.

Fact 4.19. Suppose κ is an ordinal, |κ| ≤ λ < κ+, and ν is a supercompact measure on Pω1
(κ). Let

π : κ → λ be a bijection. Let Π : Pω1
(κ) → Pω1

(λ) be defined by Π(σ) = π[σ]. Then the Rudin-Keisler
pushforward µ = Π∗ν defined by A ∈ µ if and only if Π−1[A] ∈ ν is a supercompact measure on Pω1(λ).

Fact 4.20. Assume AD and DCR. For any κ less than or equal to a Suslin cardinal, let νκ denote the unique
supercompact measure on Pω1

(κ). If λ < κ+, then νλ is Rudin-Keisler reducible to νκ.

Proof. If λ < κ, then Fact 4.17 defines a supercompact measure on Pω1
(λ) which is Rudin-Keisler reducible

to νκ. By Woodin uniqueness of the supercompact measure on Pω1
(λ), this measure must be νλ. Similarly,

if κ ≤ λ < κ+, then Fact 4.19 defines a supercompact measure on Pω1(λ) which is Rudin-Keiser below νκ.
Again by uniqueness, this must be νλ. □

Using this explicit characterization of the supercompact measure, it will be shown next that the ultrapower
ordinals below Θ by the supercompact measure on Pω1

(κ) when κ is below a Suslin cardinal is wellfounded
under AD+.

Fact 4.21. Assume AD+. Let κ less than or equal to a Suslin cardinal. Let νκ be the unique supercompact
measure on Pω1

(κ). Let (νκ)L(P(R)) be the unique supercompact measure on Pω1
(κ) in L(P(R)). Let

λ < Θ. Then νκ = (νκ)L(P(R)),
∏

Pω1
(κ) λ/νκ =

(∏
Pω1

(κ) λ/νκ

)L(P(R))
, and

∏
Pω1

(κ) λ/νκ is wellfounded.

Proof. Since κ and λ are less than Θ, there are surjections π0 : R → κ and π1 : R → λ. Thus π2 : R → Pω1(κ)
defined by π2(r) = {π0(r[n]) : n ∈ ω} is a surjection. For each A ⊆ R, let CA = {π2(r) : r ∈ A}. For
any X ⊆ Pω1(κ), there is an A ∈ P(R) so that CA = X. Let π3 : R → Pω1(κ) × λ be defined by
π3(r) = (π2(r[0]), π1(r[1])). π3 is a surjection. For any A ∈ P(R), let DA = {π3(r) : r ∈ A}. Thus for any
f : Pω1

(κ) → λ, there is an A ∈ P(R) so that DA is the graph of f . The prewellorderings corresponding
to π0 and π1 are subsets of R. Thus L(P(R)) can recover CA and DA from A ∈ P(R). This shows that

Pω1
(κ) = (Pω1

(κ))L(P(R)) and
∏

Pω1
(κ) λ =

(∏
Pω1

(κ) λ
)L(P(R))

.

Note that since κ is less than or equal to a Suslin cardinal in the real world, κ is still less than or equal
to a Suslin cardinal in L(P(R)). Since the Suslin cardinals are unbounded below the supremum of the
Suslin cardinals, there is a reliable ordinal (even a Suslin cardinal) κ̄ ≥ κ. Since κ̄ is a reliable ordinal, fix a
reliability witness φ⃗ on W ⊆ R. Since φ⃗ = ⟨φn : n ∈ ω⟩ is a scale, φ⃗ ∈ L(P(R)). For any strategy ρ on κ, let
Kρ be the set of σ ∈ Pω(κ̄) such that ρ[<ωσ] ⊆ σ and σ is honest relative to φ⃗. Let Kκ

ρ = {σ ∩ κ : σ ∈ Kρ}.
By Fact 4.18, A ∈ νκ if and only if there is a strategy τ on κ̄ so that Kκ

τ ⊆ A. Strategies on κ̄ are essentially
subsets of κ̄. By using the Moschovakis coding lemma applied in L(P(R)) using a surjection of R onto κ̄ in
L(P(R)) (for instance φ0), one can show that the real world and L(P(R)) have the same set of strategies on
κ̄. Note also that for any strategy ρ on κ̄, Kκ

ρ = (Kκ
ρ )L(P(R)) since the notion of honesty is absolute. Using

the explicit definition of νκ (having sets of the form Kκ
ρ as a basis) applied in the real world or L(P(R)),

one has that νκ = (νκ)L(P(R)). This with the previous observation that
∏

Pω1
(κ) λ =

(∏
Pω1

(κ) λ
)L(P(R))

implies that
∏

Pω1
(κ) λ/νκ =

(∏
Pω1

(κ) λ/νκ

)L(P(R))
.

Since AD+ holds in the real world, L(P(R)) |= AD+. By the above,
∏

Pω1 (κ)
λ/νκ is wellfounded

if and only if
(∏

Pω1
(κ) λ/νκ

)L(P(R))
is wellfounded. So work inside L(P(R)) and assume for the sake of

contradiction that there is some κ less than or equal to a Suslin cardinal and ordinal λ < Θ so that
∏

Pω1
(κ) λ/

νκ is illfounded. For each α ≤ Θ, let Wα be the set of reals of Wadge rank less than α. Let φ be the sentence
“there exist ordinals α and β so that Lα(Wβ) |= (∃κ, λ)(κ is less than or equal to a Suslin cardinal ∧ λ <
Θ∧

∏
Pω1 (κ)

λ/νκ is illfounded)”. By the reflection theorem and since P(R) = WΘ, there is some α so that

Lα(WΘ) |= (∃κ, λ)(κ is less than or equal to a Suslin cardinal ∧ λ < Θ∧
∏

Pω1 (κ)
λ/νκ is illfounded). Thus
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L(P(R)) |= φ with witnesses α as above and β = Θ. By the Σ1-reflection into Suslin-coSuslin (Fact 3.15),
S ≺Σ1 L(P(R)). There exists α < S and β ∈ S so that

Lα(Wβ) |= (∃κ, λ)(κ is less than or equal to a Suslin cardinal ∧ λ < Θ ∧
∏

Pω1 (κ)

λ/νκ is illfounded).

Since α, β < Θ, Lα(Wβ) is a surjective image of R. Working in L(P(R)) |= DCR, one can find ⟨fn : n ∈ ω⟩
so that fn ∈ Lα(Wβ), fn : Pω1

(κ) → λ, and Lα(Wβ) |= [fn+1]νκ
< [fn]νκ

for each n ∈ ω. For each n ∈ ω,
Lα(Wβ) |= An = {σ ∈ Pω1

(κ) : fn+1(σ) < fn(σ)} ∈ νκ. Note Lα(Wβ) |= κ is less than or equal to a Suslin
cardinal. Thus Lα(Wβ) has a reliable ordinal κ̄ ≥ κ. Pick a reliability witness φ⃗ for κ̄ in Lα(Wβ) and note
that it is a reliability witness for κ̄ in L(P(R)). For any strategy ρ on κ̄, define Kκ

ρ relative to this reliability
witness φ⃗. By applying the explicit definition of the supercompact measure on κ within Lα(Wβ), for each
n ∈ ω, there is a strategy ρ on κ̄ so that Kκ

ρ ⊆ An. Again since there is surjection of R onto Lα(Wβ) in

L(P(R)), one can use ACR
ω in L(P(R)) to find a sequence ⟨ρn : n ∈ ω⟩ so that for each n ∈ ω, ρn ∈ Lα(Wβ)

is a strategy on κ̄, and Kκ
ρn

⊆ An. Note for all n ∈ ω, Kκ
ρn

∈ νκ. Since L(P(R)) |= νκ is countably compete,⋂
n∈ωK

κ
ρn

̸= ∅. Let σ ∈
⋂

n∈ωK
κ
ρn

⊆
⋂

n∈ω An. Then in L(P(R)), ⟨fn(σ) : n ∈ ω⟩ is an infinite descending
sequence of ordinals below λ. Contradiction. □

Fact 4.22. (Almost everywhere honest-enumeration uniformization) Assume AD+. Let κ be a reliable ordinal
with reliability witness φ⃗ which is a scale on a set W ⊆ R. Let R ⊆ Pω1

(κ) × ωω be such that dom(R) =
Pω1

(κ). There is a strategy ρ on κ with the following properties.

(1) For all s ∈ <ωκ with |s| odd, τκρ (s) ∈ ω.

(2) For all f ∈ ωκ such that f [ω] ∈ Kχκ
ρ
, R(f [ω],Ξ2

τκ
ρ

(f)).

Proof. Consider the game HR on κ defined as follows.

HR

I α0 α2 α4 ...

II β1

πκ,2(α1, x0)

β3

πκ,2(α3, x1)

β5

πκ,2(α5, x2)

...

g f, x

Player 1 and Player 2 alternate playing ordinals from κ. Player 1 plays α2n and Player 2 plays β2n+1 as
in the picture above for each n ∈ ω. Practically, one should regard Player 2 as playing a pair α2n+1 ∈ κ
and xn ∈ ω such that πκ,2(α2n+1, xn) = β2n+1. Let g = ⟨α0, β1, α2, β3, ...⟩. Let f = ⟨αn : n ∈ ω⟩ and
x = ⟨xn : n ∈ ω⟩. Player 2 wins if and only if the conjunction of the following holds.

• For all n ∈ ω, xn ∈ ω.
• R({φ0(Gn(f)) : n ∈ ω}, x).

This game is determined by AD+.
The claim is that Player 2 has a winning strategy in HR. For the sake of contradiction, suppose ρ is a

strategy for Player 1 in HR. Let σ ∈ Pω1
(κ) have the following two properties.

(1) σ is honest relative to the reliability witness φ⃗.
(2) ρ(∅) ∈ σ. For all k ∈ ω, γ0, ..., γ2k+1 ∈ σ, n0, ..., nk ∈ ω,

ρ(⟨γ0, πκ,2(γ1, n0), γ2, π
κ,2(γ3, n1), ..., πκ,2(γ2k+1, nk)⟩) ∈ σ.

Let x ∈ ωω be such that R(σ, x). Let h : ω → σ be a surjection onto σ. Let h̃ : ω → κ be defined by

h̃(n) = πκ,2(h(n), x(n)). Consider the run of HR where Player 1 uses ρ and player 2 uses ρ2
h̃
. Let g = ρ ∗ ρ2

h̃
.

Let f(2n) = g(2n) and f(2n + 1) = πκ,2
0 (g(2n + 1)) = h(n). By (2), for all n ∈ ω, f(2n) ∈ σ. Since for all

n ∈ ω, f(2n+ 1) = h(n) and h : ω → σ is a surjection, f [ω] = σ. By (1), f [ω] is honest. By the properties
of the generic coding function G (Fact 4.8), φ0(Gn(f)) = f(n). Thus σ = {φ0(Gn(f)) : n ∈ ω}. Note that

x(n) = πκ,2
1 (g(2n + 1)) and R(σ, x). This shows that Player 2 has won this run of HR which contradicts ρ

being a winning strategy for Player 1.
Thus by the determinacy of HR, Player 2 has a winning strategy ρ̄. By the first condition for Player

2 winning, condition (1) must hold for ρ̄. Now suppose h ∈ Pω1(κ) is such that h[ω] ∈ Kχκ
ρ
. Consider
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the run of HR where Player 1 plays by ρ1h and Player 2 plays by ρ̄. Let g = ρ1h ∗ ρ̄. Let f : ω → κ

be defined by f(2n) = g(2n) and f(2n + 1) = πκ,2
0 (g(2n + 1)). By the hypothesis that h[ω] ∈ Kχκ

ρ̄
,

f(2n + 1) = πκ,0(g(2n + 1)) ∈ h[ω]. Thus f [ω] = {f(n) : n ∈ ω} = h[ω] which is an honest set by the
hypothesis that h[ω] ∈ Kχκ

ρ̄
. By the properties of the generic coding function, φ0(Gn(f)) = f(n). Thus

h[ω] = {φ0(Gn(f)) : n ∈ ω}. Let x ∈ ωω be defined by x(n) = πκ,2
1 (g(2n + 1)). Since ρ̄ is a Player 2

winning strategy, R({φ0(Gn(f)) : n ∈ ω}, x) holds or equivalently R(h[ω], x). Since x = Ξ2
τκ
ρ̄

(h), one has

that R(h[ω],Ξ2
τκ
ρ̄

(h)). This completes the proof. □

In the following, one will focus on the supercompact measure on Pω1
(ωω). One will develop first a coding

of strategies on ωω. The following objects will be fixed for the rest of the discussion concerning ωω.

Definition 4.23. Fix a Π1
2 set W and a ∆1

3 scale φ⃗ on W of length ωω which witnesses the reliability of
ωω. (This can be obtained by applying the scale property for Π1

3 on some complete Π1
2 set. More explicity,

one can let W = {x♯ : x ∈ R} and let φ⃗ be a modification of the sharp scale so that φ0 : W → ωω is a
surjection.) Let ≺n denote the prewellordering on W induced by φn : W → ωω. Note that ≺n∈ ∆1

3 for all
n ∈ ω. Fix a bijection πωω,<ω : ωω → <ω(ωω). Fix U ⊆ R× R× R which is universal for Σ1

3 subsets of R2.
Let scode be the set of x ∈ R so that the following holds.

(1) For all s ∈ <ωωω, there exist y, v ∈ R such that y ∈W , πωω,<ω(φ0(y)) = s, and U(x, y, v).
(2) For all y, z ∈ W , for all v, w ∈ R, if φ0(y) = φ0(z), U(x, y, v), and U(x, z, w), then v, w ∈ W and

φ0(v) = φ0(w).

For any x ∈ scode, s ∈ <ω(ωω), and α ∈ ωω, let ρx(s) = α if and only if there is a y ∈ W and v ∈ W so
that πωω,<ω(φ0(y)) = s, φ0(v) = α, and U(x, y, v). By the two properties of x ∈ scode, ρx is a well-defined
function from <ω(ωω) into ωω (that is, ρx is a strategy on ωω).

Let scode∗ be the set of x ∈ R so that the following holds.

(a) x ∈ scode.

(b) For all s ∈ <ω(ωω) so that |s| is odd, for all v ∈ R, if U(x, y, v), then πωω,2
1 (φ0(v)) ∈ ω.

Note that if x ∈ scode∗, then Ξ2
τκ
ρ

: ωκ→ ωω.

Fact 4.24. For all strategies ρ : <ω(ωω) → ωω, there is an x ∈ scode so that ρ = ρx.

Proof. Define R ⊆ W ×W by R(y, v) if and only if ρ(πωω,<ω(φ0(y))) = φ0(v). Applying the Moschovakis
coding lemma to the pointclass Σ1

3 with the prewellordering φ0, there is an S ⊆ R with S ∈ Σ1
3 so that for

all β ∈ ωω, there exists a y ∈ W with φ0(y) = β and v ∈ R so that S(y, v). Since πωω,<ω : ωω → <ω(ωω)
is a bijection, this can be expressed also as: for all s ∈ <ω(ωω), there exist y ∈ W and v ∈ R so that
πωω,<ω(φ0(y)) = s, S(y, v). Since U ⊆ R× R× R is universal for Σ1

3 subsets of R2, there is some x ∈ R so
that Ux = S. By the previous observation and the fact that Ux = S ⊆ R, one has properties (1) and (2) of
Definition 4.23 and that ρx = ρ. □

One will need to make several complexity computations in order to use the Kunen-Martin theorem to
bound the ultrapower jνωω

. The closure of ∆1
4, Σ1

4, and Π1
4 under ωω-length unions will be helpful in making

several complexity computations. This result, due to Harrington and Kechris, has analogs for other scaled
pointclasses. For the results here, one can make even better complexity calculations using the Kechris-Martin
theorem ([14] Corollary 1.6) to show Σ1

3 and Π1
3 are closed under ωω-length unions and intersections. Jackson

has extended the Kechris-Martin theorem throughout the projective hierarchy using the description theory
([13] Section 4.4). However, these arguments are not known to generalize much further.

Fact 4.25. (Harrington-Kechris; [10] Corollary 2.2) Assume AD. For all n ∈ ω, for all κ < δ1n, Π1
n+1,

Σ1
n+1, and ∆1

n+1 are closed under κ-length union. In particular, Π1
4, Σ

1
4, and ∆1

4 are closed under ωω-length
unions.

Proof. The last statement follows from the first using n = 3 and the fact that δ13 = ωω+1. □

Fact 4.26. (Martin, Moschovakis; [15] Theorem 8.4) Assume AD. For all n ∈ ω, ∆1
2n+1 is closed under

κ-length unions and intersections for all κ < δ12n+1. In particular, ∆1
3 is closed under ωω-length unions and

intersections.
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Fact 4.27. Assume AD. scode and scode∗ are ∆1
4.

Proof. For each s ∈ <ω(ωω), let As be the set x ∈ R so that there exist y, v ∈ R so that y ∈ W , φ0(y) =
(πωω,<ω)−1(s), and U(x, y, v). Note that As is Σ1

3 since W is Π1
2, φ0 is a ∆1

3-norm, and U is Σ1
3. In particular,

As is ∆1
4. Let A =

⋂
{As : s ∈ <ω(ωω)} which is ∆1

4 since ∆1
4 is closed under ωω-length intersection by Fact

4.25. (A is actually Σ1
3 since Σ1

3 is closed under ωω-length intersections by the Kechris-Martin theorem.)
Note that A is the set of x ∈ R which satisfies Definition 4.23 property (1). Let B be the set of x which
satisfies Definition 4.23 property (2). Since W ∈ Π1

2, U ∈ Σ1
3, and φ0 is a ∆1

3 norm, one has that B is Π1
3.

Since scode = A ∩B, scode ∈ ∆1
4.

Let X = {α ∈ ωω : πωω,2
1 (α) ∈ ω}. For each α ∈ X and s ∈ <ω(ωω) with |s| odd, let Cα,s be the set

of x so that for all y, v ∈ R, if v ∈ W , φ0(y) = (πωω,<ω)−1(s), and U(x, y, v), then φ0(v) = α. Note that
Cα,s is Π1

3. Let C =
⋂
{
⋃
{Cα,s : α ∈ X} : s ∈ <ω(ωω) ∧ |s| is odd}. Since ∆1

4 is closed under ωω-length
intersections and unions, C ∈ ∆1

4. Since scode∗ = scode ∩ C, scode∗ is ∆1
4. □

Lemma 4.28. Assume AD.

(1) Let String ⊆ ω × R × R be defined by String(n, r, y) if and only if y ∈ W , for all m < n, r[m] ∈
W , and πωω,<ω(φ0(y)) = ⟨φ0(r[0]), ..., φ0(r[n−1])⟩ (that is, πωω,<ω(φ0(y)) is the length n-string
⟨φ0(r[0]), ..., φ0(r[n−1])⟩). String is ∆1

3.

(2) Let IntPart ⊆ R× ω be defined by IntPart(v, n) if and only if v ∈W and πωω,2
1 (φ0(v)) = n. IntPart ∈

∆1
3.

(3) Let ONPart ⊆ R × R be defined by ONPart(v, w) if and only if v ∈ W and πωω,2
0 (φ0(v)) = φ0(w).

ONPart ∈ ∆1
3.

(4) There is a ∆1
3 relation NormCompare ⊆ ω × ω × R × R so that for all m,n ∈ ω and v, w ∈ R,

NormCompare(m,n, v, w) if and only if v, w ∈W and φm(v) = φn(w) (where φ⃗ = ⟨φn : n ∈ ω⟩ come
from the fixed reliability witness).

(5) There is a Σ1
3 set Honest ⊆ R so that Honest(r) if and only if for all n ∈ ω, r[n] ∈W and {φ0(r[n]) :

n ∈ ω} is honest relative to the reliability witness φ⃗.
(6) There is a Σ1

3 relation RunΣ1
3
⊆ R×R and a Π1

3 relation RunΠ1
3
so that if x ∈ scode, then RunΣ1

3
(x, r)

if and only if RunΠ1
3
(x, r) if and only if ⟨φ0(r[n]) : n ∈ ω⟩ is a run according to ρx used as a strategy

for Player 2.
(7) There is a Σ1

3 relation ClosedΣ1
3
⊆ R× R and Π1

3 relation ClosedΠ1
3
⊆ R× R with the property that

whenever x ∈ scode, ClosedΣ1
3
(x, r) if and only if ClosedΠ1

3
(x, r) if and only if for all n ∈ ω, r[n] ∈W

and for all for all s ∈ <ω({φ0(r[n]) : n ∈ ω}), ρx(s) ∈ {φ0(r[n]) : n ∈ ω}.
(8) There is a Σ1

3 relation fClosedΣ1
3
⊆ R × R and Π1

3 relation fClosureΠ1
3
⊆ R × R with the property

that whenever x ∈ scode, fClosedΣ1
3
(x, r) if and only if fClosedΠ1

3
(x, r) if and only if for all n ∈ ω,

r[n] ∈W and for all s ∈ <ω({φ0(r[n]) : n ∈ ω}), χωω
ρx

(s) ∈ {φ0(r[n]) : n ∈ ω}.

Proof.

(1) For each s ∈ <ω(ωω), let As be the set of (|s|, r, y) such that y ∈W , φ0(y) = (πωω,<ω)−1(s), and for
all m < n, r[m] ∈ W and φ0(r[m]) = s(m). Note that As ∈ ∆1

3 and String =
⋃
{As : s ∈ <ω(ωω)}.

String ∈ ∆1
3 since ∆1

3 is closed under ωω-length unions by Fact 4.26.
(2) For each α ∈ ωω and n ∈ ω, let Vα,n = {(v, n) : v ∈ W ∧ φ0(v) = (πωω,2)−1((α, n))}. Since φ0 is

a ∆1
3-norm, Vα,n ∈ ∆1

3. Then IntPart =
⋃
{Vα,n : α ∈ ωω ∧ n ∈ ω} which is ∆1

3 since ∆1
3 is closed

under ωω-length unions.
(3) For each α, β < ωω, let (v, w) ∈ Aα,β if and only if φ0(v) = πωω,2(α, β) and β = φ0(w). Aα,β is ∆1

3.
ONPart =

⋃
{Aα,β : α, β < ωω} which is ∆1

3 since ∆1
3 is closed under ωω-length unions.

(4) Let m,n ∈ ω and α < ωω. If α is greater than or equal to the rank of either φm or φn, then let
Am,n,α = ∅. If α less than the rank of both φm and φn, then let Am,n,α = {(m,n, v, w) : φm(v) =
α ∧ φn(w) = α}. Am,n,α is ∆1

3 since all the norms in φ⃗ are ∆1
3 norms. Then NormCompare =⋃

{Am,n,α : m,n ∈ ω ∧ α < ωω} which is ∆1
3 since ∆1

3 is closed under ωω-length unions.

(5) Note that r ∈ Honest if and only if for all n ∈ ω, there exists w ∈ W so that φ0(w) = φ0(r[n]) and
for all k ∈ ω, there exists j ∈ ω such that NormCompare(0, k, r[j], w). Since NormCompare is ∆1

3,
Honest is Σ1

3.
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(6) Let RunΣ1
3
(x, r) if and only if for all n ∈ ω, r[n] ∈W and there exist y, v ∈ R so that String(2n+1, r, y),

U(x, y, v), and φ0(v) = φ0(r[2n+1]). RunΣ1
3

is Σ1
3 and if x ∈ scode, then RunΣ1

3
(x, r) has the intended

meaning stated above.
Let RunΠ1

3
(x, r) if and only if for all n ∈ ω, r[n] ∈ W and for all y, v ∈ R, if String(2n + 1, r, y)

and U(x, y, v), then φ0(v) = φ0(r[2n+1]). RunΠ1
3

is Π1
3 and if x ∈ scode, then RunΠ1

3
(x, r) has the

intended meaning.
(7) This is a similar and simpler than the argument shown next for (8).
(8) Define fClosedΠ1

3
(x, r) if and only if the conjunction of the following holds.

• For all n ∈ ω, r[n] ∈W .
• For all n ∈ ω, for all t, y, v, v0 ∈ R, if the conjunction of the following holds:

– For all k < n, there exists i ∈ ω, φ0(t[k]) = φ0(r[i])
– String(n, t, y).
– U(x, y, v)
– ONPart(v, v0).

then there exists a j ∈ ω, φ0(v0) = φ0(r[j]).
Note that fClosedΠ1

3
∈ Π1

3.

Define fClosedΣ1
3
(x, r) if and only if the conjunction of the following holds.

• For all n ∈ ω, r[n] ∈W .
• For all n ∈ ω and function ℓ : n→ ω, there exist j ∈ ω and t, y, v, v0 ∈ R so that the conjunction

of the following holds.
– For all k < n, t[k] = r[ℓ(k)].
– String(n, t, y).
– U(x, y, v)
– ONPart(v, v0).
– φ0(v0) = φ0(r[j]).

Note that fClosedΣ1
3

is Σ1
3.

If x ∈ scode, then fClosedΣ1
3

and fClosedΠ1
3

have the intended meanings.

□

Fact 4.29. Assume AD. Suppose x ∈ scode∗. Let A be the set of f ∈ ω(ωω) so that f [ω] ∈ Kχωω
ρx

. Then

Ξ2
τωω
ρx

[A] is Σ1
3 (note that since x ∈ scode∗, Ξ2

τωω
ρx

[A] is a set of reals).

Proof. Observe that u ∈ Ξ2
τωω
ρx

[A] if and only if there exist r, t ∈ R so that the conjunction of the following

holds

• fClosedΣ1
3
(x, r)

• Honest(r).
• For all n ∈ ω, t[2n] = r[n].
• RunΣ1

3
(x, t).

• For all n ∈ ω, IntPart(t[2n+1], u(n)).

The above expression is Σ1
3 and it works because x ∈ scode∗ (and note that scode∗ ⊆ scode). □

Fact 4.30. (Steel; [23], [13] Theorem 2.28) Assume AD and DCR. If κ < Θ is a limit ordinal, then there is
a surjective norm ψ : P → κ which is δ-Suslin bounded for all δ < cof(κ), which means that for all A ⊆ P
that are δ-Suslin, sup(φ[A]) < κ.

Fact 4.31. Assume AD+. Let κ < Θ with cof(κ) > ωω. Let Φ : Pω1
(ωω) → κ. Then there is an A ∈ νωω

so that sup(Φ[A]) < κ.

Proof. Fix κ < Θ with cof(κ) > ωω. By Fact 4.30, let ψ : P → κ be a surjective ωω-Suslin bounded
prewellordering. Fix Φ : Pω1(ωω) → κ. Let R ⊆ Pω1(ωω) × R be defined by R(σ, p) if and only if
Φ(σ) = ψ(p). Applying Fact 4.22, there is a strategy ρ so that the following holds:

(1) For all odd length s ∈ <ω(ωω), τωω
ρ (s) ∈ ω.

(2) For all f ∈ ω(ωω) so that f [ω] ∈ Kχωω
ρ

,R(f [ω],Ξ2
τωω
ρ

(f)).
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By Fact 4.24, there is an x ∈ scode so that ρx = ρ. Moreover, x ∈ scode∗ by condition (1) above. Let B
be the set of f ∈ ω(ωω) so that f [ω] ∈ Kχωω

ρx
. By condition (2), for any f ∈ B, R(f [ω],Ξ2

τωω
ρx

(f)) and thus

Ξ2
τωω
ρx

(f) ∈ P by the definition of R. Thus Ξ2
τωω
ρx

[B] ⊆ P and Ξ2
τωω
ρx

[B] is Σ1
3 (and hence ωω-Suslin) by Fact

4.29. Since ψ is a ωω-Suslin bounded norm, there is a δ < κ so that ψ[Ξ2
ρx,1[B]] ⊆ δ. Kχωω

ρx
∈ νωω

by Fact

4.15. Let σ ∈ Kχωω
ρx

. Let f : ω → σ be any surjection and thus f [ω] = σ. Note that f ∈ B. Therefore by (2),

R(σ,Ξ2
τωω
ρx

(f)). This means Φ(σ) = ψ(Ξ2
τωω
ρx

(f)). Since ψ(Ξ2
τωω
ρx

(f)) ∈ Ξ2
τωω
ρx

[B], one has that ψ(Ξ2
τωω
ρx

(f)) < δ.

So Φ(σ) < δ. This shows that sup(Φ[Kχωω
ρx

]) ≤ δ < κ. □

Definition 4.32. Let scode+ consists of those x ∈ R so that the following hold.

(1) x ∈ scode∗.
(2) For all f ∈ ω(ωω) so that f [ω] ∈ Kχωω

ρx
, Ξ2

τωω
ρx

(f) ∈W (where recall W is the underlying set of norms

that form the reliability witness φ⃗).
(3) For all f0, f1 ∈ ω(ωω) so that f0[ω], f1[ω] ∈ Kχωω

ρx
and f0[ω] = f1[ω], then φ0(Ξ2

τωω
ρx

(f0)) = φ0(Ξ2
τωω
ρx

(f1)).

If x ∈ scode+, then let Φx : Kχωω
ρx

→ ωω be defined by Φx(σ) = φ0(Ξ2
τωω
ρx

(f)) for any f : ω → σ which is a

surjection. The conditions of the definition of scode+ imply that Φx is a well-defined function independent
of the choice of f which surjects onto σ.

Fact 4.33. Assume AD+. For any Φ : Pω1
(ωω) → ωω, there is an x ∈ scode+ so that [Φ]νωω

= [Φx]νωω
.

Proof. This was shown in the proof of Fact 4.31. (Replace the ψ : P → κ of the proof of Fact 4.31 with
φ0 : W → ωω.) (Moreover, if one inspects the payoff set for Player 2 in the game HR for the relevant relation
R from Fact 4.31, one can even strengthen Definition 4.32 condition (2) to say that for all f ∈ ω(ωω),
Ξ2
τωω
ρx

(f) ∈W .) □

Fact 4.34. Assume AD. scode+ is ∆1
4.

Proof. Note that x ∈ scode+ if and only if the conjunction of the following hold.

• x ∈ scode∗.
• For all r, t, u ∈ R, if the conjunction of the following hold:

– Honest(r).
– fClosedΣ1

3
(x, r).

– For all n ∈ ω, t[2n] = r[n].
– For all n ∈ ω, IntPart(t[2n+1], u(n))
– RunΣ1

3
(x, t),

then u ∈W .
• For all r0, t0, u0, r1, t1, u1 ∈ R, if the conjunction of the following hold:

– Honest(r0) and Honest(r1).
– fClosedΣ1

3
(x, r0). fClosedΣ1

3
(x, r1).

– For all n ∈ ω, (t0)[2n] = (r0)[n] and (t1)[2n] = (r1)[n].
– For all n ∈ ω, IntPart((t0)[2n+1], u0(n)) and IntPart((t0)[2n+1], u0(n)).
– RunΣ1

3
(x, t0) and RunΣ1

3
(x, t1),

– For all m ∈ ω, there exists n ∈ ω so that φ0((r0)[m]) = φ0((r1)[n]). For all m ∈ ω, there exists
n ∈ ω so that φ0((r1)[m]) = φ0((r0)[n]).

then φ0(u0) = φ0(u1).

The first point is ∆1
4 since scode∗ ∈ ∆1

4. The second and third points are Π1
3. The entire expression is

∆1
4. □

Fact 4.35. (Kunen-Martin Theorem) Assume ACR
ω. Every κ-Suslin wellfounded relation on R has length

less than κ+.

Fact 4.36. (Becker; [1] Theorem 4.2) Assume AD+. Let α < δ13 = ωω+1 and να be the unique supercompact
measure on Pω1

(α). Then jνα
(δ14) = jνα

(ωω+2) = δ14 = ωω+2.
23



Proof. Note that these ultrapowers are wellfounded by Fact 4.21. For all α < δ13 = ωω+1, να is Rudin-Keisler
reducible to νωω by Fact 4.20 and therefore jνα(δ14) ≤ jνωω

(δ14). Thus it suffices to show that jνωω
(δ14) = δ14.

The representatives of ordinals below jνωω
(δ14) are functions of the form Φ : Pω1(ωω) → δ14. Since δ14

is regular, Fact 4.31 implies that Φ is νωω -almost equal to a function which is strictly bounded below δ14.
Thus jνωω

(δ14) = sup{jνωω
(β) : β < δ14}. To prove the theorem, it suffices to show that jνωω

(β) < δ14 for all

β < δ14.
Let β < δ14 = ωω+2. Since δ13 = ωω+1, let ψβ : δ13 → β be a surjection. For each Φ : Pω1

(ωω) → δ13, let

Φ̃ : Pω1(ωω) → β be defined by Φ̃(σ) = ψ(Φ(σ)). For every Υ : Pω1(ωω) → β, there is a Φ : Pω1(ωω) → δ13
so that Φ̃ = Υ. Thus Ψ : jνωω

(δ13) → jνωω
(β) defined by Ψ([Φ]νωω

) = [Φ̃]νωω
for any Φ : Pω1(ωω) → δ13 is a

well-defined surjection. Since δ14 is a cardinal, it suffices to show that jνωω
(δ13) < δ14.

Since δ13 is regular, Fact 4.31 again implies jνωω
(δ13) = sup{jνωω

(γ) : γ < δ13}. Since δ14 is regular, it

suffices to show that jνωω
(γ) < δ14 for all γ < δ13. Since δ13 = ωω+1, the same argument from the previous

paragraph shows that jνωω
(ωω) surjects onto jνωω

(γ) for all γ < δ13. Finally, it has been shown that to prove

the theorem it suffices to show jνωω
(ωω) < δ14.

Define a relation compare ⊆ R×R as follows: compare(x, y) if and only there exists a z ∈ R such that the
conjunction of the following hold.

(1) x, y ∈ scode+ and z ∈ scode.
(2) For all r, t0, t1, u0, u1 ∈ R, if the conjunction of the following hold:

• Honest(r).
• ClosedΣ1

3
(z, r), fClosedΣ1

3
(x, r), and fClosedΣ1

3
(y, r).

• For all n ∈ ω, (t0)[2n] = (t1)[2n] = r[n].
• For all n ∈ ω, IntPart((t0)[2n+1], u0(n)) and IntPart((t1)[2n+1], u1(n)).
• RunΣ1

3
(x, t0) and RunΣ1

3
(y, t1).

then φ0(u0) < φ0(u1).

Observe that (1) is ∆1
4 and (2) is Π1

3. Thus compare is Σ1
4.

Claim 1: compare(x, y) if and only if x, y ∈ scode+ and [Φx]νωω
< [Φy]νωω

.
To see Claim: (⇒) Let z witness the existential quantifier in compare(x, y). Note Kχωω

ρx
∩Kχωω

ρy
∩Kρz ∈ νωω .

Let σ ∈ Kχωω
ρx

∩Kχωω
ρy

∩Kρz
. By definition, this means that σ is honest and closed under χωω

ρx
, χωω

ρx
, and ρz.

Let f : ω → σ be any surjection. Let gx = ρ1f ∗ ρx and gy = ρ1f ∗ ρy. Let r, t0, t1 be such that for all n ∈ ω,

φ0(r[n]) = f(n), r[n] = (t0)[2n], r[n] = (t1)[2n], φ0((t0)[n]) = gx(n), and φ0((t1)[n]) = gy(n). For all n ∈ ω,

let u0(n) = πωω,2
1 (φ0((t0)[2n+1])) and u1(n) = πωω,2

1 (φ0((t1)[2n+1])). r, t0, t1, u0, u1 satisfy the hypothesis
of the conditional in statement (2). Thus φ0(u0) < φ0(u1). Since u0 = Ξ2

τωω
ρx

(f) and u1 = Ξ2
τωω
ρy

(f), one has

that Φx(σ) = φ0(u0) < φ0(u1) = Φy(σ) by definition. Since σ ∈ Kχωω
ρx

∩Kχωω
ρy

∩Kρz
∈ νωω

was arbitrary,

this shows that [Φx]νωω
< [Φy]νωω

.
(⇐) Suppose [Φx]νωω

< [Φy]νωω
. The set A = {σ ∈ Pω1

(ωω) : Φx(σ) < Φy(σ)} ∈ νωω
. By Fact 4.16,

there is a strategy ρ so that Kρ ⊆ A. By Fact 4.24, there is a z ∈ scode so that ρz = ρ. By much of the
same argument as before, z witnesses the existential to show that compare(x, y) holds. This establishes the
claim.

Define an equivalence relation ∼ on scode+ by x ∼ y if and only if [Φx]νωω
= [Φy]νωω

. Let H = scode+/
∼ be the set of equivalence classes of ∼. For X,Y ∈ H, define X < Y if and only if for any x ∈ X
and y ∈ Y , [Φx]νωω

< [Φy]νωω
. Observe that (H,<) order embeds into jνωω

(ωω) by the well-defined map
Λ(X) = [Φx]νωω

for any x ∈ X. This shows that (H,<) is a wellordering. Hence by using the claim,
compare is a wellfounded relation whose length corresponds to the ordertype of (H,<). By Fact 4.33, every
Φ : Pω1

(ωω) → (ωω) has an x ∈ scode+ so that [Φ]νωω
= [Φx]νωω

. This shows that the ordertype of (H,<)

is exactly jνωω
(ωω). Hence the length of compare is exactly jνωω

(ωω). Since compare is a wellfounded Σ1
4

and hence δ13 = ωω+1 Suslin relation, the Kunen-Martin theorem states that the length of compare is less
than (δ13)+ = (ωω+1)+ = ωω+2 = δ14. Thus jνωω

(ωω) < δ14. This completes the proof. □

Theorem 4.37. Assume AD+. Let ⟨Aα : α < δ13⟩ be such that
⋃

α<δ1
3
Aα = P(δ14). Then there is an α < δ13

so that ¬(|Aα| ≤ |<δ1
4δ14|).
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Proof. Suppose P(δ14) =
⋃

α<δ1
3
Aα and |Aα| ≤ |<δ1

4δ14| for all α < δ13. δ13 is a Suslin cardinal and hence

reliable. By Fact 4.36, the hypothesis of Theorem 4.11 holds. Thus |P(δ14)| = |
⋃

α<δ1
3
Aα| ≤ |<δ1

4δ14|. δ14

is a weak partition cardinal and hence a measurable cardinal. Thus δ14 does not inject into P(γ) for any

γ < δ14. So |<δ1
4δ14| < |P(δ14)| by Fact 2.9. Contradiction. □

This argument can be generalized to the suitable analog at higher projective ordinals.

Theorem 4.38. Assume AD+. Let n ∈ ω. Let ⟨Aα : α < δ12n+1⟩ be such that
⋃

α<δ1
2n+1

Aα = P(δ12n+2).

Then there is an α < δ12n+1 so that ¬(|Aα| ≤ |<δ1
2n+2δ12n+2|).
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