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ABSTRACT. Within the determinacy setting, &?(w1) is regular (in the sense of cofinality) with respect to
many known cardinalities and thus there is substantial evidence to support the conjecture that &?(w1) has
globally regular cardinality. However, there is no known information about the regularity of 22(w2). It
is not known if & (w2) is even 2-regular under any determinacy assumptions. The paper will provide the
following evidence that &(ws) may possibly be wi-regular: Assume ADT. If (A, : @ < wi) is such that
P(w2) = Up<w, Aa, then there is an o < wy so that =(|Aa| < [[wa]<w2]).

1. INTRODUCTION

A cardinality is an equivalence class under the bijection relation on the class of a sets. The cardinality
of X is denoted |X| and consists of all sets in bijection with X. Cardinalities are ordered by the injection
comparison relation: |X| < |Y| if and only if there is an injection of X into Y. A cardinal is an ordinal
which does not inject into any smaller ordinals. Assuming the axiom of choice, every cardinality has a unique
cardinal as a member. The axiom of choice will not be assumed here.

If k is a cardinal, then the classical definition of the cofinality of  is cof(k) is the least cardinal § so that
there is an increasing function p : 6 — k so that sup(p) = k. An equivalent definition is that it is the least
ordinal ¢ so that for all v < § and function ® : k — 7, there is an « € v so that |~ [{a}]| = k.

In choiceless settings, cardinalities no longer have unique cardinal members since sets may not wellorder-
able. The collection of cardinalities are also no longer wellordered by the injection comparison relation. In
[7], the authors developed a robust notion of regularity and cofinality in the choiceless setting.

Let X be a set and Y be a class. X is said to have Y-regular cardinality if and only if for every function
®: X — Y, thereis ay € Y so that |[®71[{y}]| = | X|. A set X is said to be locally regular if and only if for
all sets Y with |Y| < |X]|, X has Y-regular cardinality. A set X is said to be globally regular if and only if
for all sets Y which are surjective images of X and —(|X| < |Y]), X has Y-regular cardinality.

Since cardinalities are not wellordered under the injection comparison relation, the natural definition of
the cofinality of a set is formally a proper class:

e The local cofinality of a set X is the class
lcof (X) ={Y : (32)(|Z| = |Y|ANZ C X A X does not have Y-regular cardinality)}.

e Let Surj(X) be the class of all sets onto which X surjects. The global cofinality of a set X is the
class

geof (X) = {Y € Surj(X) : X does not have Y-regular cardinality}.

Observe that if X has locally regular cardinality, then lcof(X) = |X| and if X has globally regular
cardinality, then geof (X) = {Y € Surj(X) : | X| < |Y]}.

The following summarizes some of the results obtained by the authors in [7] concerning regularity and
cofinality. If « is an ordinal, then lcof(a) = {X : |cof(a)| < |X| < ||} and geof(a) = {X € Surj(a) :
|cof(a)| < |X|}. Thus lcof(a) = geof(e). If x is a regular cardinal, then s has globally regular cardinality
and lcof (k) = geof (k) = |k|. Thus the choiceless theory of regularity and cofinality for wellorderable sets has
a strong resemblance to the usual theory of cofinality in the choiceful framework.
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Assuming AC§ and all sets of reals have the perfect set property, R has locally regular cardinality and
Icof(R) = |R|. Under AD™, the Woodin’s perfect dichotomy (3], [6]) implies that R has globally regular
cardinality and geof (R) = {X € Surj(R) : X is not wellorderable}.

FE)y is the equivalence relation on “2 defined by = Fy y if and only if there exists an m € w so that for all
n € w, if m < n < w, then z(n) = y(n). Under AD", the Hjorth’s dichotomy ([TT]) implies that R/FEj is
globally regular and gcof(R/Ep) = {X € Surj(R) : X is not linearly orderable}.

Under ACE and all subsets of R have the property of Baire and the perfect set property, |R| and |w;| are
incomparable cardinalities. This can be used to show that RLIw; does not have 2-regular cardinalities. Thus
geof(RUwy) = {X € Surj(R) : |X| > 2}. Under the same assumptions, R X w; does not have R-regular
cardinality and does not have w;-regular cardinality. Under AD", the Woodin perfect set dichotomy will
show that gcof (R x wy) = {X € Surj(R) : X is uncountable}.

Martin showed that wq —. (w1)2%,, and we —, (w2)S82 under AD. The partition properties on wy can
be used to show that for all € < wy, [w1]® has w-regular cardinality. If ¢ < wq, then [w1]¢ does not have
wy-regular cardinality since [w1] = [Js.,,, [0]“* by the regularity of w; and since |[§]°| < [R| < [[w1]¢|. The
partition relation on ws can be used to show that for all € < wq, [ws]¢ has wi-regular cardinality. If € < wo,
[w2]® = Us <, [0]° and hence as before, [w2]® does not have wy-regular cardinality.

The strong partition property wi —. (w1)5' can be used to show that for each A < wy, [w1]<“* has
A-regular cardinality. [w1]<“* does not have w;-regular cardinality since [wq]<“* = | w1]® and |[w]€| <
[[wi]<“1] for all € < wy.

At the present time, the regular cardinals, R, and R/Ey are the only known locally or globally regular
cardinalities. £?(wp) is the most natural candidate for another globally regular cardinality. The most
important conjecture concerning regularity and cofinality is that &?(w;) has globally regular cardinality. [7]
has amassed substantial evidence that &?(w1) should be globally regular under determinacy assumptions.
P (w) is regular with respect to essentially every set (which does not already have an injective copy of #(w1))
for which one currently has a practical understanding: [5] showed that w; —. (w1)5' implies that 2 (w)

has ON-regular cardinality. One of the main results of [7] is that w; —, (w1)Z},, implies that &?(w;) has

<@1ON-regular cardinality. (It is open if the strong partition property w; —. (w1)5" implies the very strong

partition property w; —. (w1)2,,,; however, the very strong partition property on w; is a consequence of
AD.) Assuming ADt, (w1) is regular with respect to quotient of many familiar Borel equivalence relations.
If E is an equivalence relation with all classes countable, then &?(w;) has R/E-regular cardinality. If F is Fy,
FE4, Es5, a countable Borel equivalence relation, an essentially countable equivalence relation, a hyperfinite
equivalence relation, a hypersmooth equivalence relation, or more generally a 31 equivalence relation which
is pinned in any model of ZFC (in the sense of Zapletal [20]), then &?(w;) has R/E-regular cardinality. The
Friedman-Stanley jump of = is not a pinned equivalence relation. Its quotient “R/ =7 is in bijection with
2., (R), the set of countable subsets of R. One can still show that & (w;) has &, (R)-regular cardinality
under AD™.

As mentioned above, [wa]<“2? does not have wy-regular cardinality. Intuitively, one would expect [w2] <2 to
at least have w;-regular cardinality. Above, it was remarked that the strong partition property wy —. (w1)s*
implies [w1]<“* has w-regular cardinality. However, wo is a weak but non-strong partition cardinal and thus
the argument for [w1]<“! does not apply for [we]<“2. Similarly, the intuition is that £ (wy) should be highly
regular and perhap globally regular.

However since wy is weak partition cardinal which is not a strong partition cardinal, [ws]<“? and & (ws2)
seems just out of reach of the partition arguments and the Martin’s ultrapower analysis of we. (Surprisingly,
[w2]<¥2 and more generally [w,]<“? for 2 < n < w can still be analyzed through the ultrapowers by measures
on wy as shown in [7]). Unlike &?(w;), nothing is known about the cofinality of &?(ws). For example, one does
not know if &(ws) even has 2-regular cardinality. The goal of this paper is to produce some evidence that
[wa]<¥? and P (wsy) could have 2-regular cardinality or more generally could have w;-regular cardinality. (In
the forthcoming [7], the authors have shown that [w2]<“? and even [w,|<“? are wi-regular for all 2 < n < w.)

If [w2] <2 does not have w;-regular cardinality, then one can decompose [ws] <“2 into an ws-length sequence
of disjoint sets (A, : @ < wi) so that [Ay| < |[wa]<“2|. Although the structure of the cardinalities below
[wa]<“2 is far from understood, perhaps the largest natural cardinality of combinatorial flavor strictly below
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[wa]<¥2 is [wa]“t. An instance of wy-regularity for [we]<“2 would be to show that [ws]<“2 cannot be a union
of wi-many sets (A, : @ < wi) so that each |Ay| < |[wa]“"].

Perhaps the largest natural cardinality strictly below 2(ws) is |[w2] An instance of wi-regularity
for &(wz) would be to show that &?(ws2) cannot be a union of wi-many sets (4, : o < wy) so that each
[Aa| < [wo] =2

The main results of this paper will verify these two instances of wy-regularity:

e (Theorem Assume ADT. If (A, : o < wy) is such that [wp]<¥2 = J
an a < wy so that =(|4a| < |[we]“!|).
. (Theorem Assume ADT. If (A, : @ < wy) is such that 2 (wy) =
an « < wi so that —(|4,] < |[wa]<¥2)).
Recently, the authors in [7] have fully verified under AD the conjecture that [wa]<“? is wi-regular: For any
(Aq : @ < wi) such that [wa]<“2 = {J, ., Aa, there is an o < wy so that [A,| = |[wa]<“2|. (More generally,
for all 2 < n < w, [wy]<¥2 is wi-regular.) The verification of w;-regularity for [we]<“2 (or more generally,
[wn]<“2 when 2 < n < w) uses a very technical analysis of the ultrapower of wy by the club ultrafilter on w;
where the type or length of a function into ws represented by a function f :w; — w is not fixed by varies
with f. It is still not known if &(wq) is 2-regular.

For each 1 < n < w, the projective ordinal 5711 is the supremum of the length of A}I prewellorderings on R.
It can be shown that for all n € w, 83,0 = (83,41)F. 8] = w; and 83 = wa. Also §3 = w41 and 8 = Wyo.
The last section will show that the results for w; and ws can be generalized to each odd projective ordinal
o3, +1 and the next even projective ordinal o5, Lo

e (Theorem j Assume ADT. Letn € w. If (A, : o < 83, ) is such that 2(d3,,_,) = Ua<5%n+1 Aq,

then there is an a < 83,1 so that —(|4,| < \[6§n+2]<55n+2|).

<w2|.

a<w, Ao, then there exists

a<w, Aa, then there exists

2. CARDINALITY OF SETS OF FUNCTIONS ON ORDINALS

Definition 2.1. If X and Y are sets, then let XY be the set of all functions from X to Y.

If § is a ordinal and X is a set, then let <0X = |J__;X.

If 6 and X are ordinals and X C A, then let [X]? be the collection of all increasing functions f : § — X.
Let [X]0 = U, _s[X].

If 0 is a cardinals and X is a set, then let 5(X) = {4 € Z(X) : |A| < 6}

If § < X are ordinals, then let 1B(6,\) = {f € X : (Va < §)(sup(f | @) < A)}.

This section collects some basic results concerning the cardinality of sets of the form [\]°, %A, and [A]<?.
Fact 2.2. Let § < \ be ordinals such that & is a cardinal. Then |[N<°| = | Ps(\)| = |<O\|.

Proof. Let @ : [\]<? — Z5()\) be defined by ®(f) = rang(f). ® is a bijection.

Let 7 : A x A — X be a bijection. For f € <%\, let G; = {m(a, ) : @ € dom(f) A f(a) = B}. Note
that since dom(f) € ¢ and § is a cardinal, |G¢| < 6. Thus G; € P5(N\). Define ¥ : <9\ — P5(\) by
U(f) = Gy. ¥ is an injection. The previous paragraph showed there is an bijection of Z5(\) into [A]<°
and [A\]<% C <°\. Thus there is an injection ¥ : Z5(\) — <°X. By the Cantor-Schréder-Bernstein theorem,
[<0A] = [Zs(N)] = |[N<°]. O

Say an ordinal A is indecomposable if and only if for all ¢, 8 < A, a+ < Aand - < A.
Fact 2.3. If § < \ are ordinals and ) is indecomposable, then |[IB(5, )| = [[A]°].

Proof. For f € IB(6,)\), define ®(f) € [A\]° by recursion as follows. Suppose for all 3 < &, ®(f) | 3 has been
defined and for all @ < 8, ®(f)(a) < sup(f | a+1)-(a+1) < A. Then sup(®(f) | 8) < sup(f | §)-8 < A since
sup(f [ 8) < X and X is indecomposable. Let ®(f)(5) = sup(®(f) | 8) + f(B) which is less than A since A is
indecomposable. Then ®(f)(3) = sup(®(f) | B)+ f(B) < sup(f | B)- B+ F(B) <sup(f | B+1)-(B+1) < A

since A is indecomposable.

This defines ® : IB(,\) — [A\]°. Note that for all @ < §, f(«) is the unique ordinal 7 so that ®(f)(«)
sup(®(f) | @) +~. Thus @ is an injection. Thus [IB(5, )| < |[A]°|. Since [A]° C IB(5, ), |[\°| < |[IB(6,6)
By the Cantor-Schroder-Bernstein, |[A]°| = [IB(6, \)|.
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Fact 2.4. Let 6 < X be ordinals such that X is indecomposable and § < cof()\). Then |°\| =
Proof. Suppose § < cof()\). For all f € X and a < 4, sup(f | @) < A. Thus °XA C B(5,)\). Thus

"M = [B5.A)] = [A7] by Fact 2.3 O

Fact 2.5. Let § < \ be ordinals such that X\ is indecomposable, cof(§) = cof(N), and § < cof(A\)T. Then
Al = I[N

Proof. Note that |°\| = |°f(M) )| since 5] = |cof(d)|. By Fact |oof )\ = [[A]f)|. Thus [PA| = [[A]<fV)].
Thus it suffices to produce an injection of [A\]°f™) into [A]?. Let p: cof(\) — §. Since X is indecomposable,
§- A =\ For each a < ), let t(a) be the least B < cof()\) so that a < p(8). For f € [NV let
®(f) : 6 — X be defined by ®(f)(a) = - f(i(a)) + a. One can check that for all f € [\]<fN | &(f) € [\)°
and @ : [A]°fN) — [)\]? is an injection. O

|
>
=

Fact 2.6. If k is a measurable cardinal (has a k-complete nonprincipal ultrafilter on k), then for all 6 < k,
there is no injection of k into P(9).

Proof. Suppose ® : k — Z(0) is a function. Let u be a x-complete nonprincipal ultrafilter on . For each
a<dandi€ {0,1}, let AL = {B < r: ®(B)(a) =i} (where elements of Z(J) are identified with elements
of 92). For each a < 4, let i, be the unique i € {0,1} so that Al € p. Since p is k-complete, (.5 Al € p.
Let f € °2 be defined by f(a) = i,. Since p is nonprincipal, let a; < ag < § so that aj,as € Na<s Ala.
®(a1) = f = P(aa). Thus ¢ is not an injection.

Under AD, w; is a strong partition cardinal and ws is a weak partition cardinal. Thus w; and w, are
measurable cardinals. More generally, (5%” 41 is a strong partition cardinal and 5%,1 12 is a weak partition
cardinal. (It is known that 83 = w41 and 8} = wyra.) (See [6], [I7], or [I8] for more information concerning
partition properties under AD and the associated measures.)

If k is a cardinal, then one says boldface GCH holds at & if and only if there is no injection of x* into
P (k). Boldface GCH holds below & if and only if boldface GCH holds at all 6 < . Fact implies the
following result.

Fact 2.7. Assume AD. Boldface GCH holds at w and w;.

Steel ([24] and [25]) showed that if L(R) = AD, then L(R) = “boldface GCH holds below ©”. Thus by
the Moschovakis coding lemma, it is a theorem of AD that boldface GCH holds below ©%®). More generally,
Woodin showed that ADT implies the boldface GCH holds below ©.

Fact 2.8. Suppose X is cardinal and \ does not inject into P (k) for any k < X. Then —(|[N]<°fV| <

| Uang[HM)-

Proof. Suppose there is an injection @ : [\]°f(N) — U5§n<)\["€]5' Let ® C [A]°f() % X\ x X be defined by
(f,a, B) € ® if and only if & € dom(®(f)) and ®(f)(a) = 8. L[®] = ZFC. In L[®], define ¥ : [\]<FN) —

Us<renlsl® by ¥(f)(e) = 8 if and only if ®(f, o, 8). Note ¥ € L[®] and L[®] = W : [N]°fN) Us<renlsl®
is an injection. If there are § < k < A so that L[®] = A < |[x]°], then there is an injection of A into

(k] C Z(k) in ‘the real world. This contradicts the assumption that A does not inject into & (k) for any
k < A. Thus L[®] = |U§SK<>\[KZ]6‘ = \. By a theorem of ZFC, L[®] |= [[\]°f)| > A*. Tt is impossible that

L[®] | W« [V — U5§n<>\["€]6 is an injection. 0

Fact 2.9. Suppose k is a regular cardinal and there is no injection of k into P(8) for any 6 < . Then

|[K]=7] < |2(K)]-

Proof. Tt is clear that |[k]<"| < |Z?(k)|. Since k is regular, [k]<" = U§§u<n[ﬂ]6- By Fact ﬁ, -(|Z(k)| =
161 < 1 Us <l = [6]9). O
Since Martin showed that ws — (w2)3 (and in fact, wy — (w2)§ for all € < wsy), ws is a regular cardinal.

Fact 2.10. Assume AD. |[wa]<“?| < |2 (w2)|.
Proof. This follows from Fact 2.7] and Fact 2.9 O



Fact 2.11. Let § < A be ordinals such that cof(\) < cof(8) and A does not inject into P (k) for all K < A.
Then |[N°| < [°A].

Proof. 1t is clear that [A]° C °X. Since cof(8) # cof(A), [A]° = U,.,\[k]° C Uu<w<nls]?. Define ¥ :
[)\}cof()\) 50 by
flo) a < cof(A)

V(@) = {O cof(\) < a

¥ is an injection. Thus if there was an injection of ® X into |[\]°|, then there would be an injection of [\]*°f(N)
into U, <, <[k]" which contradicts Fact O

Example 2.12. Assume AD. Recall Steel showed the boldface GCH holds below @) (and one can directly
use the analysis of the ultrapower by the finite partition measures on w; to show the boldface GCH below
ww+1).
(1) |[we]“t| < |“*w,|. This follows from Fact The cardinality of the collection of the increasing
sequences can be smaller than the cardinality of the collection of all sequences.
(2) [IB(w1,ww)| = |[ww + w]“t| < [IB(w1,w, +w)| = |“' (wy +w)|. To see this: Note that [w, + w]“t =
(W]t € Us<pen, [K]°. Thus by Fact [w,]“* does not inject into (Js<,. ., [K]° and thus does not
inject into [w,, +w]*t. However [w,]*t C IB(w1,w,+w). This shows that |[w,, +w]*1| < [IB(w1,ws, +
w)|. Notice that w, 4+ w is not indecomposable. This shows that the indecomposability assumption
of Fact is necessary. Also since [w, + w]¥' = [Wu]“!, |[ww + w]¥!| = |[wo]“t] = [IB(w1,ww)]
by Fact& Note that “*(w,) C IB(w1,ww + w) C “Y(w, +w) and |[“! (w, + w)| = [“*w,|. Thus
|1 (wy, + w)| = |[IB(w1,wy +w)|. This shows that |[w, + w]“t| < |“! (we + w)].

Fact 2.13.

e (I8]) (AD) [w1]<“* does not inject into “(w,,).

e (I8]) (AD + DCg). [w1]<%* does not inject into “ON, the class of w-sequences of ordinals.

e ([91) More generally, if k —« (kK)5" (k is a weak partition cardinal), then [k]<" does not inject into
AON, for all A < k.

Fact 2.14. Assume AD. [[w2]“t] < |[wa]<*2].

Proof. Under AD, Martin showed that wy is a weak partition cardinal (that is, satisfies wy —. (wa)5?).
The result follows from the third point in Fact O

Example 2.15. Assume AD. Note that —(|[w,]“| < [[ww]“']). This is because if there was an injection of
wo]* into [w,]“t, then there would be an injection of [w,]* into (W]t = U, <xcw, [K“7 € Uscreun, [k]°
which violates Fact Note that —(|[w,]“!] < |[we]®]). This is because [w1]<“! injects into [w,]*! and
[w1]<“* does not inject into “ON by Fact Since [w,]“t injects into [w,,]****, this shows that |[w,]¥| <
[ .

See [4] for more information concerning distinguishing sets of the form [x]? and %k for varying 6 < k < ©
under AD™.

3. DECOMPOSITION INTO w; MANY PIECES

Definition 3.1. Fix a bijection 7 : w X w — w. If # € “w and k € w, then let z* € “w be defined by
¥ (n) = z(n(k,n)).

If x € “2, then define R, C w x w by Ry(m,n) if and only if x(w(m,n)) = 1. Let field(z) = field(R,) =
{m: (3n) (Ra(m, n) V Ra(n, m)}-

Let WO = {w € “2: R,, is a wellordering}. Let ot : WO — wq be defined by ot(w) is the order type of
(field(w), Ry). If & < wy, then let WO, = {w € WO : ot(w) = a}.

Definition 3.2. Let o < wy. For s € <¥a, let N = {f € “a: s C f}. Give Y« the topology generated by
{NZ&:s € <¥a} as a basis (which is the product of the discrete topology on «). Then “« is homeomorphic
to “w with its usual topology.
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Under AD, all subsets of “w have the Baire property and thus well ordered unions of meager subsets of
“w are meager in “w. (For the latter fact: Given a wellordered sequence of meager sets whose union is
nonmeager, consider the horizontal and vertical section of the prewellordering induced by the sequence to
obtain a contradiction.) Therefore under AD, for all @ < wy, all subsets of “« have the Baire property and
wellordered unions of meager subsets of “« are meager in “a.

For a < wy, let surj, = {f € “w; : flw] = a}. For all a < wy, surj, is comeager in “a.

If a <wip, p€ <¥a, and ¢ is a formula, then let (V3 * f)o(f) be the assertion that for comeagerly many
[ € Ng, o(f) holds.

Definition 3.3. For each f € “Ywy, let Ay = {n € w: (Vm < n)(f(m) # f(n))}. (Note for all f € “wy,
f1Af: Ay — flw] is a bijection.)

For f € “wy, let &(f) € “2 be defined by &(f)(n(m,n)) = 1 if and only if m € Ay, n € Ay, and
f(im) < f(n). & is a simple form of the Kechris-Woodin generic coding function for w; which is developed
more generally in [16].

Fact 3.4. & :“w; — WO and for all o« < wq, if f € surj,, then &(f) € WO,,.

Proof. Note that (field(&(f)), Re(s)) = (Af, Re(y)) is order isomorphic to (f[Ay], <) where < is the usual
ordering on wy. Thus &(f) does indeed belong to WO. Also if f € surj,, then f[Af] = « and thus
&(f) € WO,,. O

Definition 3.5. Let (p, : r € R) be some standard coding of strategies p : <“w — w on w by reals. Let
E, : R = R be the Lipschitz continuous function corresponding to the strategy p,.. (That is, for each f € “w,
E.(f) € “w is defined by recursion by Z,.(f)(n) = p.({f(0),Z.(f)(0), ..., f(n—1),E.(f)(n—1), f(n))).) Note
that (=, : 7 € R) is a coding of all Lipschitz continuous function by reals.

If A, B € R, then write A <;, B if and only if there is an 7 € R so that A = Z_![B]. The Wadge lemma
under AD asserts that for all A, B € Z(R), A<, Bor (R\ B) <p A.

Martin-Monk showed that under AD and DCg, <[, is a wellfounded relation. For each A € Z(R), let
rky, (A) € ON be the rank of A in <j. Let © be the supremum of the ordinals which are surjective images
of R. It can be shown that © is the length of <j and thus for all A € Z(R), rkp(A) < ©.

Fact 3.6. (Moschovakis coding lemma) Assume AD. Let T be a pointclass closed under 3%, A, and continuous
preimages. Let (P, =) be a prewellordering inT'. Let k be the length of (P, =) and ¢ : P — k be the associated
surjective norm. If R C P x R, then there is an S € ' with the following property.
e SCR
e [For all a < k, there exists ap € P and x € R so that p(p) = « and R(p,x) if and only if there exists
ap€ P and xz € R so that (p) = o and S(p, x).

The following is a useful coarse consequence of the Moschovakis coding lemma.
Fact 3.7. If k is a surjective image of R (i.e. K < ©), then R surjects onto P (k).

Fix the following notation which will be used in the discussion that follows: Let X be a surjective image
of R. Fix7m:R — X. Let § < A < O. By Fact there is a surjection w : R — Z(\). If B C R, let
Tp = {(z, f): 3z € B)(x = () A f = w(zI!)}. Let (A, : @ < v) be such that for all &« < v, A, € X. (In
this section, v will either be w or w;.) In the below applications, |Aq| < [<°A| or [A4| < |9A] for all o < v.
Elements of <%\ or °X can be identified as elements of Z22(\ x \) or of Z()\) (after coding pairs). As an
example, if A C X and ® : A — <%\, then the graph of ® is T where B = {z € R: ®(7(z1)) = w(2[1)}.

Theorem 3.8. Assume AD. Suppose X is a surjective image of R. Let § < A be cardinals so that 1 < § < ©
and w < A< O. Let (A, :n € w) be a sequence so that for alln € w, A,, C X. Assume one of the following
three settings.

(1) |As| < |<ON| for alln € w.

(2) |As| < |°A| for all n € w.

(8) |Aa| < |[N°] for all n € w.
Assume that there is a Z € P(R) so that for all n € w, there exists an v € R so that TE:l[Z] is a graph of
an injection of A,, into <O\ in (1) (into °X in (2) or [N]° in (3)). Then, respectively, the following hold.
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(1) [Unew Anl < [<°A].
(2) Unew Anl <1°Al.
(3) Unew Anl < NP

Proof. Assume the setting of (1) that for all n € w, |4,| < |<°A|. Let R C w x R be defined by R(n,r) if and
only if To—1 4 is the graph of an injection of A, into <9). (Recall that Z![Z] is the subset of R Lipchitz

—

reducible to Z via the Lipschitz continuous function Z, and TE:l[Z] was defined before the statement of
Theorem ) By ACE, there is a sequence (r,, : n € w) so that for all n € w, R(n,r,). Thus for all n € w,
TE;WI[Z] is the graph of an injection A,, into <°\. Let ®,, : A,, — <X be the injection whose graph is TE;WI[Z].
For each z € Unew An, let 1(z) be the least n so that x € A,,. Since w < A, let ¢:w x XA — A bea bijection.
Define ® : {J, ., An — <°A by letting ®(z) € [A]l®«@ @I be defined by ®(z)(7) = (t(2), D, (x) (7).
Suppose © # y. If o(z) # t(y), then ®(x) # P(y) since ¢ is a bijection. If ¢(z) = ¢(y) with common value
n € w, then ®,(x) # ®,(y) since ®,, is an injection. Then again ®(x) # ®(y) since ¢ is an injection. This
establishes that ® is an injection.

In the setting of (2) in which for all n € w, |A4,| < |°)|, the proof is essentially the same.

In the setting of (3) in which for all n € w, |A,,| < |[A]?], observe that the bijection ¢ : w x A — A may be
chosen with the property that for all n € w and a < 8 < A, ¢(n,a) < ¢(n, ). (For instance, ¢ derived from
the Godel pairing function would have such property.) Then the resulting function ®(x) defined as above
would belong to [A]°. O

Theorem 3.9. Assume AD. Suppose X is a surjective image of R. Let (A, : o < wy) be a sequence so that
for all a < w1, Ay € X. Let 6 and X be cardinals such that w; < 6 < X\ < O. Assume one of the following
three settings.

(1) cof(8) > wy and for all o < wy, |Aa| < [<ON.

(2) For all a < wy, [Aa] < [ON.

(8) cof(N\) > wi, and for all a < wy, |As] < |[N°].
Assume that there is a Z € P (R) so that for all a < wy, there exists an r € R so that TE:l[Z] s the graph
of an injection of A, into [\<° in (1) (into °X in (2) or into [\]° in (3)). Then, respectively, the following
hold.

(1) Uacw, Aal < <AL

(2) 1Uacw, Aal < Al

(3) 1Uacw, Aal < AP

Proof. Assume the setting of (1) that for all @ < wy, |As| < |<9A| where cof(§) > wy. Since [<OA\{0}| = [<°)|,
injections from A, into <°X\ {f} will be considered to simplify notation.

Let WO C R be the II} set of reals coding wellorderings and ot : WO — w; be the associated surjective
norm given by the order type function. Define R € WO x R by R(w,r) if and only if Tz-1(z is the graph
of an injection of Ay, into <°A\ {0}. (WO, ot) is a prewellordering which belongs to the pointclass 33
which is closed under continuous preimage, A, and 3%. By the Moschovakis coding lemma (Fact , there
is a 31 set S C R so that for all @ < wy, there is a w € WO, and r € R so that S(w,r). Let <me I} and
<s1€ ¥} be the two norm relations which witness that (WO, ot) is a II}-norm. Let S(w,r) if and only if
w € WOA () (v <g1 wAw <z1 vAS(v,7)). S € 3} and dom(S) = WO. Since 3} has the scale property,
let A : WO — R be a uniformization with the property that for all w € WO, S(w, A(w)). Thus for all

w € WO, R(w,A(w)). For all w € WO, TEX(I 12) is the graph of an injection of Ay () into <°A\ {0}. For
each w € WO, let @, : Aoy = <°A\ {0} be the injection whose graph is TEX(l (2

For each z € U, Aa, let t(z) be the least a < w; so that € A,. Note that [<“w;| = |wi|. Let
0w X Wwi X § X A — X be a bijection. Define

Y(x) = {o(t(2),p,n,¢) : (Fe < 8)(Vp* ™ (e = dom(@e 1) (7)) A1 < € A D) (x) (1) = O}
Observe that YT(z) € Z(A).



Fixz € Ay. Let Ky = {p € <“u(z) : 3, Q)(o((x),p,n,¢) € YT(x)}. If p € K,, then there
is a unique € < § so that (V) L(z)f)(dom(tﬁ@(f)(x)) = ¢€). To see this, suppose €,é < J are such that
(V") £)(dom(@e ()(2)) = €) and (V") f)(dom(®e f)(z)) = &). Let Ag = {f € N} : dom(®e(s)(2)) =
et and Ay = {f € N,ﬁ(x) :dom(®g(s)(x)) = €}. Ag and A; are comeager subsets of N;,(w). Thus AgN Ay # 0.
Let h € AgN A;. Then e = dom(®gn)(z)) = € Let ¢ be this unique e associated to = and p. Let
Uep = {n < € : (3¢)(a(e(x),p,n,¢) € T(x)}. Note that |Us, | < |ej|. If n € U, yp, there is a unique ¢ such
that o(¢(x),p,n,¢) € T(z). To see this, suppose (1, (2 so that o(c(z),p,n, (1), 0(e(x),p,n,(2) € T(x). Then

o = {f € N;® . Pyr)(x)(n) = ¢} and By = {f € NL®) D) (x)(n) = G2} are comeager in N,
By N By is comeager in N;(x). Let h € BoN By. Then (1 = ®g(ny(z)(n) = C2. Let (7, be this unique (.
Thus Y(2) = {o(«(2),p,n: () 1 p € Ko A € Uyp}. Thus [Y(2)] < |U,ek, Uspl < sup{ley] :p € Ko} <9
since |K,| < |[<“u(z)] = w because ¢(z) < wy and cof(d) > w. Thus Y(x) has cardinality less than § and
hence Y(x) € #5(A). It has been shown that Y : {J,.,, Aa = Ps(\).

Next, one will show that for all z € J,.,, Aa, Y(z) # 0. Let a = «(z). Let Ey : surj, — 0 be defined
by E1(f) = dom(®gs)(x)). Since wellordered unions of meager subsets of “a is a meager subset of “a and
surj,, is a comeager subset of “«, there is some € < § so that E;*[{€}] is nonmeager. Let Ey : By [{e}] — A
be defined by Ea(f) = ®g(s)(2)(0). Again since Ey '[{€}] is nonmeager and wellordered unions of meager
sets are meager, there is some ¢ < A so that E; '[{¢}] is nonmeager. By the Baire property, there is a
p € <“a so that Ey *[{C}] is comeager in N, Then o(a,p,0,¢) € T(x). T(z) # 0.

Next, to show Y is an injection. Suppose x # y. First, suppose t(z) # i(y). Above, it was shown
that Y(x) # 0. Let o(c(z),p,n,{) € T(x). Since o is an injection and all elements of Y (y) take the form
o(u(y),p,,C), T(z) # Y(y). Next, suppose that t(z) = ¢(y) and denote this common ordinal by a. Let
D = {f € surj, : dom(Pg5) (7)) # dom(Pe ) (y))}. First suppose D is nonmeager. Consider @ : D — § x §
by @w(f) = (dom(Pgs) (7)), dom(Pe()(y))). Since a wellordered union of meager sets is meager and D
is not meager, there is some €1,ea < & so that @ ![{(e1,€2)}] is nonmeager. Without loss of generality,
suppose €; < €2. Define ¢ : @' [{(e1,€2)}] = A by <(f) = Pe(s)(y)(e1). Since w™[{(€1, €2)}] is nonmeager
and wellordered union of meager sets is meager, there is a ¢ € X so that ¢7![{¢}] is nonmeager. By the
Baire property, let p € <“« be such that ¢~[{(}] is comeager in Ny. Then o(a,p,e1,() € T(y). However,
o(a,p,e1,¢) & T(z) since (V@ f)(dom(Pg(s)(z)) = €1). In this case, T(x) # Y(y). Finally, suppose “a \ D
is comeager. Let ¥ : “a\ D — § be defined by X(f) = dom(®gs)(z)) = dom(Pe () (y)). Since “a\ D is
comeager, there is some € < § so that ¥7![{e}] is nonmeager. Note that since $g(s) is an injection for all
[ € surj(@), ®ep) (@) # Pep)(y). Define II : 71 [{e}] — € be defined by TI(f) is the least n < € so that
Qo5 (2)(n ) # ®g(s)(y)(n). Since X! [{€}] is nonmeager, there is an n < € so that II"![{n}] is nonmeager.
Let F I [{n}] = A x X be defined by T'(f) = (®e () (2)(n), Pe(s)(y)(n)). Since I~*[{n}] is nonmeager,
there are (1,(y € A with ¢; # (3 so that T7![{(¢1,{2)}] is nonmeager. Since all subsets of “a have the
Baire property, there is a p € <“a so that T =1[{((1, (2)}]is comeager in Ny¥. Then o(a, p,n,¢1) € Y(x) and
o(a,p,m,¢1) ¢ Y(y). Thus Y(z) # Y(y). It has been shown that T : Ay — P5(N) is an injection.
Fact [2.2] shows [<OA| = | 25(\)].

Next assume the setting of (2). The following will sketch the necessary modifications. By the same
argument as above, for each w € WO, there is an injection @, : Ao (w) — o). Let

Ky ={(p,n) :p € <“u(x) An <A EC< N D f) (Do py(2)(m) = )}

For each (p,n) € K, by the argument provided above, there is a unique ¢ so that (¥}’ L(w)f)(cbqs(f)(a:)(n) = ().
Thus for each (p,n) € K, let (7, be this unique (. Note that K, C <”L(m) X § C <Ywy x 6. Let
T:<%w; x § — § be a bijection. Let yt: w; X A — X be a bijection. Define T : X — %X by

2a) — p(e(x),0) 7o) ¢ Ky
Tt {H(L(x)7C§,7;) T Ha) e Ky AT Ha) = (pon)

Finally, one will to show T is an injection. Suppose z,y € U, ., Aa and = # y. If (z) # «(y), then

T(z) # Y(y) since p is a bijection. Now suppose t(xz) = ¢(y) and let « denote this common ordinal.

For all f € surj,, Pg(s)(7) # Pe(s)(y). Let ¥ : surj, — J be defined by ¥(f) is the least n < 0 so
8
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that @ (s (2)(n) # Pe(s)(y)(n). Since surj, is comeager in “a and wellordered unions of meager sets
are meager, there is an < § so that ©71[{n}] is nonmeager. Let IT : X71[{n}] — X x X be defined by
I(f) = (Pe(s)(@)(0), Pe(s)(y)(n)). Since L7'[{n}] is nonmeager, there is some (1,2 < A so that (1 # (o
and IT71[{({1,(2)}] is nonmeager. By the Baire property, let p € <“a so that II=[{(¢1, (2)}] is comeager in
Ng. Let B =7(p,n). Then Y(x)(8) = pu(a, (1) # p(a, G2) = T(y)(B). Thus T(z) # T(y). It has been shown
that T is an injection.

Assume the setting of (3). Let K, (j,, and 7 : <“w; x & — ¢ be defined as in (2). The bijection
1 w1 X A — A can be chosen with the property that for all v < wy and v < A, sup{p(v,8) : B <~} < A. Let
T be defined as above in (2). Forz € X,y < d,andp € <“u(z),let Py, = {n € d:1(p,n) < yAT(p,n) € K.}
For each p € <“u(x), let Fy = {¢7, :n € P{,}. The claim is that F7_ is bounded below A. To see this,

suppose Fj_ is not bounded below \. For each n € Py, let Y\ = {f € N:é(m) F Qg (@) () = (Ft-
Each Y7 is comeager in N;(x). Since wellordered intersection of comeager subsets of Nf,(x) is comeager

PYn
in N;(Z)’ ﬂneP;”_p Y;f%n « nery , ngf%n' Then
sup(Pe sy () | y) > sup{(y,, : m € Py} = sup(Fy,) = A. Then since v <, ®g(s)(z)(7) > A and hence
P (f)(x) ¢ [A]°. Contradiction. Thus for all p € <“i(x), sup(Fy.) < A. Since cof(X) > w and |[<“i(z)| = w,
sup{sup(£y;,) : p € ““u(z)} < A. Note that sup(Y(z) | v) < sup{u(c(),C) : ¢ € Upecw,a) Fprt <
sup{s(¢(z),¢) : ¢ < sup{sup(Fy,) : p € <“u(z)}} < A (by the property of chosen bijection ). This shows
that T : U, Aa = IB(4,). T is an injection by the same argument as in (2). The result now follows
from Fact 2.3 0

is comeager in N, ) and is in particular nonempty. Let f €

Theorem 3.10. Assume AD, DCg, and cof(©) > wy. Let X be a surjective image of R. Let (Aq 1 @ < wy)
be a sequence so that for all o < wy, Ao € X. Let § and X\ be cardinals so that wi < 0 < A < O. Assume
one of the following three settings.

(1) cof(8) > wy and for all a < wy, |Aa] < |<ON.

(2) For all a < wy, |Aa| < [°N].

(8) cof(N) > wy and for all a < wy, |As] < |[N].
Then, respectively, the following hold.

(1) [Uacu, Aal < 0.
(2) Uacw, Aal < 1°Al.
(3) [Uacw, Aal < 1A

Proof. For each o < wy, let B, be the least § so that there is some B € £(R) with rk;(B) = 8 and Tp is
the graph of an injection of A, into <?\. Since cof(0) > wy, sup{Ba : @ < w1} < O. Let Z € Z(R) so that
rkr(Z) = sup{fa : @ < w1}. The result now follows from Theorem O

Theorem 3.11. Assume AD, DCg, and cof(0) > w. Suppose X is a surjective image of R. Let 1 < 4§ < ©
and w <\ < O. Let (A, :n € w) be a sequence so that for alln € w, A, C X. Assume one of the following
three settings.

(1) |As| < |<0N| for alln € w.

(2) |Aa| < |°A| for all n € w.

(3) |Aal < |[N°| for alln € w
Then, respectively, the following hold.

(1) |Unew Anl < T20AL
(2) |Upew Anl < PN
(3) |Unew Anl < [N

Proof. The argument is similar to the proof of Theorem [3.10| using Theorem (]

Woodin defined an extension of AD called AD" which includes (1) DCg, (2) all sets of reals are oco-Borel,
and (3) ordinal determinacy (For every A < ©, continuous function 7 : “\ — R, and A C R, the game on A
with payoff 77 [A] is determined). It is open whether AD and AD™ are equivalent. Basic information about
aspects of AD™ can be found in [3], [6], [19], and [17].
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Fact 3.12. (Woodin) Suppose AD' and V = L(P(R)). Then either ADg holds or there is a set of ordinals
J so that V = L(J,R).

Fact 3.13. If AD", =ADg, and V = L(Z(R)), then © is reqular.

Proof. By Fact there is a set of ordinals J so that V' = L(J,R). All sets in L(.J,R) are ordinal definable
from J and an r € R. For each r € R and o < O, if there is an ODy ;) surjection w : R — «, then let
@Wa,r + R = a be the least such surjection according to the canonical wellordering of ODy ;.. For each
a < 0, let m, : R — a be defined by

() = W l0] (mm) if there is an ODy; 10y surjection of R onto
¢ 0 otherwise.

T 1s a surjection. This define the sequence (7, : @ < ©) so that 7, : R — « is a surjection for each a < O.
Now suppose cof(0) < ©. Let 7: R — cof (©) be a surjection. Define o : R — O by o(z) = WT(w[o])(l‘[l]). o
is a surjection onto © which is impossible. ]

Let 1 <n < wand A CR" (again R refers to “w). A is Suslin if and only if there is an ordinal A and a
tree T C w™ x A so that A = {(z1,...,2,) € R : 3f € “N)((z1, ..., zpn, f) € [T]}. A CR™ is coSuslin if and
only if R™ \ A is Suslin.

Fact 3.14. (Woodin) Assume AD" and ADg. All sets of reals are Suslin.

A transitive set M is said to be Suslin and coSuslin if and only if there is a surjection 7 : R — M so
that the equivalence relation £; C R x R on R and the relation F; C R x R defined below are Suslin and
coSuslin:

rEryen(z)=nly) and (x,y)€ Fr < n(z)en(y).

Note that M is in bijection with R/E,. Let Fy C R/E; x R/E, be defined by ([z]g_, [y]g,) € Fx if and
only if (z,y) € Fy. Then (M, €) is €-isomorphic to (R/Ey, Fy). In other words, M is Suslin and CoSuslin
if it has a natural coding on R which is Suslin and coSuslin.

Let S be the union of the collection of all transitive set which are Suslin and coSuslin. (S, €) is a
e-structure. In general, one says a set X is Suslin and coSuslin if and only if X € S.

Woodin showed that AD™ implies the following reflection property.

Fact 3.15. (Woodin; [22]) (X1 -reflection into Suslin and coSuslin) Assume ADT and V = L(Z(R)). S <x,
(V,€). (That is, S is a X1-elementary substructure of the universe V.)

Theorem 3.16. Assume AD'. Let X be a surjective image of R. Let (A, : o < wy) be a sequence so that
for all a < wy, Ay € X. Let § and X\ be cardinals so that wy < 6§ < X\ < ©. Assume one of the following
three settings.

(1) cof(8) > wy and for all a < wy, |Aa] < |<ON.

(2) For all a < wy, |Aa| < [°N].

(8) cof(\) > wy and for all a < wr, |Aa| < |[N°].

Then, respectively, the following hold.

(1) |Ua<w1 Aal S ‘<5/\|'
(2) |Ua<w1 Aal S ‘5/\‘
(3) Uncw, Aal < 1A

Proof. Consider the setting of (1). Let ¢ : R — X be a surjection. Define an equivalence relation E on R by
x E y if and only if ¢(z) = ¢(y). Note that X is in bijection with R/E. For each o < w1, let K, = ¢~ [A4]
and E, = E | K,. Then K,/E, C R/E and A, is in bijection with K,/E,. Injections of A, into <%\
induce injections of K,/E, into <°\. Let 7 : R — R/E be defined by n(x) = [z]g. Let @ : R — 2()\)
be a surjection given by Fact [3.7, Then injections between K, /E, and [\]<° can be coded by sets of reals
through the coding B +— Tp described above. This shows that X and (A, : @ < w;) with the property
stated in setting (1) are in bijection with objects R/E and (K, /FE, : & < w) with the properties in setting
(1) which belong to L(Z(R)). It suffices to prove the theorem in L(Z(R)).
10



With this discussion in mind, one will now assume ADT, V = L(Z£(R)), and that X and (A, : @ < w;)
belong to L(Z?(R)) with the properties stated in (1). If cof(©) > wy, then the result follows from Theorem
Suppose cof (©) < w;. Thus O is singular and hence ADg holds by Fact Assume for the sake of
contradiction that there is a set X and a sequence (A, : @ < wy) satisfying (1) and —~(|U, ., Aal < |<ON)).
Let Y = U, ., Aa and thus =(|Y] < |<9A]). Since all sets of reals are Suslin and coSuslin by Fact since
AD™ and ADg holds, the sets Y, §, and X are Suslin and coSuslin and hence belong to S.

Let ¢ be the following sentence with &, A, and Y as a parameter: § < A < © and there exists a sequence
(Ay v < wy) so that Y = Uacw, A, and for all @ < wy, |Aa| < |<PA|. (© is an abbreviation for the ordinal
defined as the supremum of the ordinals which are surjective images of R.) Let ¥ be some sufficiently strong
finite fragment of ZF. Let ¢ be the following ¥;-sentence with Y, §, A, and R as parameters: There exists
a transitive set M = ¥ + AD so that R C M and M = . Let < be a prewellordering of length A whose
associated norm was used to define the surjection w : R — &?(\) which appears in the coding described before
Theorem 3.8 Since L(#(R)) = “T, AD, and ¢” and using reflection on the hierarchy (Lo (Z(R)) : a < ON),
there is an ordinal a > O such that L,(Z(R)) = “%, AD, and ¢”. Thus L(Z(R)) | ¢ as witnessed by
Lo(Z(R)). By ¥j-reflection into Suslin and coSuslin (Fact -) S = ¢. Let M € S be a transitive set
containing R so that M = 4. Let (A, : a < w;) with Y = Ua<w, Ao witness the existential quantifier in ¢.
Since for each a < wy, M = |A,| < |<0A|, R C M, satisfies AD, and has the prewellordering < used to code
injections of subsets of Y into <)\, there is some B € Z(R)N M so that T codes the graph of an injection
of A, into <. Since M € S implies M is a surjective image of R, sup{rk;(B): B€ Z(R)NM} < ©". In
the real world, let Z € Z(R) be such that rky (Z) > sup{rk(B) : B € Z(R)NM}. Note that for all & < wy,
there is an r € R so that TE:l[Z] codes the graph of an injection of A, into [A]<?. Applying Theorem in

the real world to (A, : @ < wi), one has that |Y| = | Ua<w, Ayl < |<°A|. This contradicts the assumption
that —(]Y] < [<ON)). O

Theorem 3.17. Assume ADT. Suppose X is a surjective image of R. Let 1 <6 < © andw < XA < ©. Let
(A, :n € w) be a sequence so that for alln € w, A, C X. Assume one of the following three settings.

(1) |An| < [SON| for alln € w.

(2) |Aa| < |°A| for all n € w.

(3) |Aa| < |[N°] for alln € w
Then, respectively, the following hold.

(1) Uney Anl <[52A].
(2) [Unew Anl < Al
(3) Unew Anl < NP

Proof. The proof follows the template of the proof of Theorem [3.16] using Theorem [3.8 a

Theorem 3.18. Assume ADT (or AD, DCg, and cof(©) > w;). If (A, : o < wy) is a sequence such that
Uacw, Aa = [w2]=¢2, then there is an a < wy so that —(|Aa| < [[wa]“1]).

Proof. Suppose (A, : a < wp) is a sequence such that [wy]<“? = |J,_, Aa. Suppose for the sake of
contradiction that for all & < wy, |A44| < |[we]*t|. By Theorem [3.16] |[w2]<“2| < [[we]*!| which violates Fact
214 O

Theoremis regarded as partial evidence that [ws]<“2 is wy-regular which means for any (A, : o < wy)
such that (J,.,, Aa = [we]~*2, there is an o < wy so that [Ay| = [[w2]<“2|. This conjecture has recently
been solved by the author. [7] showed that under AD, [w2]<“? has w;-regular cardinality. However, it is still
not known if & (ws) is wi-regular or even 2-regular. The following is some evidence.

Theorem 3.19. Assume ADT (or AD, DCg, and cof(©) > w;). If (A, : a < wy) is a sequence such that
Uacw, Aa = P(wa), then there is an a < wi so that =(|Aa| < |[wa]<<2).

Proof. Suppose (A, : o < wy) is a sequence such that P(w2) = J,.,, Aa- Suppose for the sake of
contradiction that for all & < wy, |Aq| < |[w2]<“2|. By Theorem | P (w2)| < |[w2]<“2| which violates
Fact 22100 O
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Since under AD, wj is singular with cof (ws) = wa, Fact [2.9| cannot be used to show [w3]<“3 or even [w3]“2
have smaller cardinality than &(ws3). However [] shows that |[w3]<?| < |[ws]<“?| < |2 (w3)| under ADT by
the following result.

Fact 3.20. ([]) Assume AD™.

(1) (ABCD Conjecture) Let o, 3, 7, and & be cardinals such that w < a < <0 andw <y <§<0O.
|*B| < 78] if and only if & < and § < 4.
(2) If kK < © is a cardinal and € < K, then |°k| < |<"k|.

It is still open if |[w3]<¥3| < |Z(ws3)|. The following result implies that if one decomposes [w3]<“2 or
P (ws3) into wi-many pieces (A, : @ < wy). Then at least one piece A, does not inject into [w3]“2.

Theorem 3.21. Assume ADT (or AD, DCg, and cof(©) > wy ).

(1) If w1 < Kk < © is a regular cardinal and (Ay : @ < wy) is a sequence such that | J
then there is an o < wy so that =(|Aq| < |[K]<"]).

(2) Ifwi < e <k <O and (Ay : @ < wi) is a sequence such that J,.,, Aa = <"k, then there is an
a < w; so that =(JAa] < [K]).

(3) If w1 <e< k<O and (Ay : @ < w1) is a sequence such that |J
a < wy so that —(|A] < [K]).

Ay = P(k),

a<wi

Ay = P(k), then there is an

a<wi

Proof. (1) If |Aa| < |[K]<"| = |<"k|, then |2 (k)| = |<"| by Theorem [3.16] Since AD" implies boldface
GCH below O, this would contradict Fact

(2) If |Aq| < |°k], then |<%k| = |°k| by Theorem This would contradict Fact

The proof of (3) is similar. O

4. DECOMPOSITION INTO A SUSLIN CARDINAL MANY PIECES

This section will consider a decomposition of sets into x many pieces where « is a Suslin cardinal. Kechris
and Woodin ([16]) developed a more general generic coding function on Suslin cardinals (or more generally
reliable ordinals). In the previous section, the wellordered additivity of the meager ideal had a prominent
role in many arguments. For x > w, there is no clear analog of this for “x and its generic coding function.
However, if S C & is a countable set, then ¢S is homeomorphic to R and thus under AD, the meager ideal on
“S (with its usual topology) will satisfy the full wellordered additivity. The idea will be to do an argument
similar to the previous section for each countable S C k and then take an ultrapower by a supercompact
measure on &, (k), the set of all countable subsets of k. One will need to impose conditions regarding
the ultrapower maps of the supercompact measure to successfully generalize these arguments. However, one
will still be able establish the analog of the main result of the previous section (concerning decomposition of
P (wy) = P(83) into wy = &7 many pieces) for decomposition of P(w,42) = F(8}) into w1 = d3 many
pieces.

Definition 4.1. An ordinal A is reliable if and only if there is a scale g = (p, : n € w) on aset W C R
such that the following holds.

or all n € w, ¢, : W — Xand g : W — A is a surjection.

1) For all on W = Xand ¢g: W — A i jecti

(2) The relation Sy(x,y) defined by z,y € W A@o(z) < po(y) and Si(x,y) defined by z,y € W Agpg(x) <
©o(y) are Suslin subsets of R2.

@ with the above property will be called the reliability witness for .

If o C X is countable and £ € o, then o is said to be &-honest (relative to @) if and only if there is a
w € W so that ¢o(w) = £ and for all n € w, ¢, (§) € 0. Such a w € W will be called a &-honest witness for
o (relative to F). A countable o C X is honest (relative to @) if and only if for all £ € o, o is £&-honest.

Fact 4.2. Suppose A is a reliable ordinal with reliability witness @ which is a scale on a set W C R. For
each € < A, there is a countable set o so that o is -honest relative to .

Proof. Let w € W so that ¢g(w) = £ which is possible since pg : W — A is surjective. Let 0 = {pn(w) 1 n €
w}. o is &-honest with w as its £-honest witness. O
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It is generally not possible to uniformly associate £ to a countable &-honest set (relative to a reliability
witness). However if A is a reliable ordinal of uncountable cofinality, then one can at least uniformly associate
an ordinal less than A which is £-honest which will be sufficient for applications here.

Fact 4.3. Suppose X is a reliable ordinal with reliability witness @ and cof(\) > w. For each £ < A, there is
a & < X so that for all v with & <~y <\, v is £-honest relative to @.

Proof. By Fact there is a countable & C X\ which is &-honest. ¢’ = sup(c) < A since cof(\) > w. Suppose
~ is such that £’ < < k. Since & C 7,  is &-honest. (Il

Definition 4.4. Let X be a set. Let 2, (X) = {0 € Z(X) : |o|] < w} (which is the set of countable
subsets of X). Let v be an ultrafilter on &, (X). v is a fine ultrafilter on 2, (X) if and only if for
eachz € X, A, = {0 € Z,(X): 2z € 0} € v. visanormal ultrafilter on Z,, (X) if and only if for
every ® : &, (X) = Z,,(X) such that {o € &, (X) : 0 # ®(6) C o} € v, there is an x € X so that
{0 € Z,,(X):2x € ®(0)} € v. vis asupercompact measure on X if and only if v is a countably complete,
fine, and normal measure on &, (X).

Fact 4.5. (Harrington-Kechris; [10]) Assume AD. If k less than or equal to a Suslin cardinal, then there is
a supercompact measure on P, (k).

(Woodin; [26]) Assume AD. If k is less than or equal to a Suslin cardinal, then the supercompact measure
on P, (k) is unique.

Fact 4.6. Assume AD. Suppose @ is a sequence of norms on W C R which is a reliability witness for \. Let
v be a countably complete and fine measure on P, (N). Let £ < A. Then {o € P, (N) : 0 is E-honest} € v.

Proof. Pick any w € W so that po(w) = £ (which is possible since ¢q surjects onto A). By fineness of v,
An ={0 € P, () : po(w) € 0} € v. By countably compleness of v, (1, o, An € v. Since v is a filter,
Nhew An € {0 € Py, (N) : 0 is {-honest} € v. O

Fact 4.7. Assume AD. Suppose @ is a sequence of norms on W C R is a reliability witness for \. Let v be
a supercompact measure on P, (N). Then A= {c € P,,()\): 0 is honest} € v.

Proof. Suppose A ¢ v. Let A = 2, (\)\ A. Since v is an ultrafilter, A € v. Let ® : 2, () = P, (\)
be defined by ®(0) = {£ € o : 0 is not é-honest}. Note that for all ¢ € A, § # ®(0) C 0. So A C {0 €
Py (A) 0 # ®(0) C o} and therefore {o € 2, (\) : ) # ®(0) C o} € v. By normality, there is a
n € Asothat B={oc € £, (\):n € Do)} € v. Pickaw € W so that ¢g(w) = n. For each n € w,
Cn={0€ Z,,(A) : pn(w) € 0} € v by fineness. Then C' =, .., Cy, € v by countably completeness. Then
D =BNC €v. Pick any 0 € D. w is a n-honest witness for o since for all n € w, ¢,(w) € 0. Thus o is
n-honest. However, nn € ®(0) means that o is not -honest. Contradiction. ]

Recall the notation z™ from Definition forx € R and n € w.

Fact 4.8. (Kechris-Woodin; [16] Lemma 1.1, [13] Theorem 6.1) Assume AD. Let X be a reliable ordinal with
@ be a sequence of norms on a set W C R being a reliability witness. Then there is a Lipschitz continuous
function & : Y\ — R so that the following holds.

(1) For alln € w and f € “)\, &(f)I" € W and ¢o(&(f)IM) < f(n).

(2) Foralln € w and f € “\, if flw] is f(n)-honest, then wo(&(f)M) = f(n).
Thus if f[w] is honest, then for all n € w, po(S(f)M) = f(n). For each n € w, let &,, : “\ — W be defined
by &, (f) = ().

A function & with the above property is called a generic coding function for \ relative to the reliability

witness .

Theorem [£.9] will only need the concept of -honest for a particular ordinal £ < A and will never need
full honesty. Thus one will only directly use Fact concerning fine and countably complete measures on
P, (A) rather than Fact Which involves supercompact measures on &, (A). However, it is convenient to
use the uniqueness of the supercompact measure (Fact to uniformly find long sequences of supercompact
measures on various ordinals. Theorem [4.9| will just need codes for f(0) rather than all of f so the function
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Bg : YA — W will be used directly rather than &. The full generic coding function will be used later to
analyze the ultrapower of the supercompact measure.

Again, use the notation defined before Theorem [3.8 Suppose 7 : R — X. Let 6 <A < © and w : R —
PN). UBCR,let Tg = {(z,f): 3z € B)(x =7z A f = w(z[1)}. f AC X and & : A — <)\, then
there is some B € Z(R) so that the graph of ® is T.

Theorem 4.9. Assume AD. Let X be a surjective image of R. Let k be a reliable cardinal. Letk <6 < A < O
be a cardinals with cof(§) > w. For each o < K, let v, be the unique supercompact measure on 2, ().
Suppose one of the two cases occurs.

(1) jv.(8) = 6 and jy, (A) = A.

(2) For all o < K, j,,(6) =0 and j,, (N) = A
Let (Aq : @ < K) be a sequence so that there exists a Z € Z(R) with the property that for alla € k, Ay C X,
|Aal < |<°N|, and there is an r € R so that To-1(y is the graph of an injection of Aq into <9N. Then
|Ua<nA04‘ S ‘<5A|

Proof. Let ¢ = (¢, : n € w) be a scale on W C R which serves as a reliability witness for . If case (1)
holds, for each o < &, let £(a) = k. If case (2) holds, let £(«) be the least £ which is a-honest relative to .
Regardless of the case, ji,,, (0) = ¢ and jga)(A) = A for all o < k.

Define R C W x R by R(w,r) if and only if To—1|,, is the graph of an injection of Ay, (,) into <O\ {0}
Let I' be a scaled pointclass containing the Suslin relations W and Sy (from Deﬁnitionm 1| for ¢p) and closed
under 3% and A. By applying the Moschovakis coding lemma to R, ¢, and I, there is a relation RCW xR
sothat RC R, R €T, and for all @ < &, there is a w € W with ¢ (w )—aandreRsothatR(w T).
Let RC W xR be defined by R(w,r) if and only if w € W A (Fv)(So(v, w) A So(w,v) A R(v,7)). R €T
and dom(R) = W. Since T is a scaled pointclass, let A : W — R be a uniformization with the property that
for all w € W, R(w, A(w)). Thus for all w € W, R(w, A(w)). For all w € W, T5X<1w)[Z] is the graph of an

injection of A, () into <A\ {#}. For each w € W, let @, : Ay — <°A\ {0} be the injection whose
graph is T——l )[Z].

For each ZL’ € Uncr Aa, let o(x) be the least o < & so that x € A,. Let 7: <“k xd x A = A be a bijection.
If o is a countable set and p € <“o, then let NJ = {f € “c : p C f}. “o is given the product of the discrete
topology on o which equivalently is generated by {N7 : p € <o} as a basis. For any countable o, “o is
homeomorphic to “w and has the Baire property for its topology. For p € <“o and ¢ a formula, (V,7 f)¢(f)
abbreviates {f € NJ : p(f)} is comeager in N;. For all z € J,,_, Ao and 0 € Z,,, (§(1(z))) with () € o,
let

a<k

T7(0) = {r(p.7.0) : p € <0 A (Be < D)(V}i7,y)-p )€ = dom (@, (1) (1)) A < €A Dy () () (m) = O}

Since 7 maps into A, one has that T%(c) € #()). Thus for each x € (J,c, Ao, T¥ 1 Zu, (£(u(x))) —
Z(N). Note that the hypothesis that Haegw(m(w))) AMVe(u(z)) = Jveiay (A) = A implicitly implies that this
ultrapower is wellfounded. Define Y (z) to be the set of all ordinals v such that there exist (equivalently,
for all) functions f : Z,, (£(e(z))) — ON with [flu, ., =7, {0 € P, (§(u(2))) : f(o) € T(0)} € Ve(u(a))-
(Although this ultrapower does not satisfy Lo$” Theorem, T is intuitively defined by Y (z) = [T*],,,,,,-)

Claim 1: For all z € J, ., Aa, T(z) C A

To see Claim 1: Suppose v € Y(z) and f : £, ({(«(x))) — ON with [f],., ., = 7. Thus {o €
P (E((2))) : f(0) € Y¥(0) € P(N)} € Veuw))- Thus [flug, )y < Jreeioy (M) = A Thus v < A. This shows
~v € A. Claim 1 has been established.

Claim 2: For all z € J, ., Ao, T(x) # 0.

To see Claim 2: Since &£(¢(x)) is an ¢(z)-honest ordinal, A = {0 € L, ({(c(x))) : o is t(x)-honest} €
Ve(u(z))- Pickany o € A. Let surid® = {f € “o : flw] = oAf(0) = t(z)} which is a comeager subset of NG 2y
For all f € surj®, flw] = o is t(x)-honest or equivalently f(0)-honest. By Fact ©o(Bo(f)) = ¢t(z) and
therefore, ®es,(f) : Ay(z) — <°A. Forall € < 4, let B, = {f € surjs(® dom(®g,(s)(x)) = €}. One has that
surje; Ue) = U..5 Be. Since wellordered union of meager sets is meager and surf(gﬁ) is a comeager subset of
N 4y there is some € so that Be is nonmeager. (Note that € > 0 since @, (s) : Aya) = <OA\ {0}.) For
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each ¢ <A, let Cc = {f € Be : ®e,(5)(2)(0) = ¢}. Be = ¢, Cc. Again since wellordered union of meager
subsets of “o are meager and Be is nonmeager, there is ¢ so that C is nonmeager. Since “o has the Baire
property, there is a p € <“o so that B; is comeager in N(i@))y Then 7(p,0,¢) € T*(o). This shows that
for all 0 € A, Y*(o) # 0. Let h : A — X be defined by h(c) = min(Y*(c)). Then [h] € T(x). This
establishes Claim 2.

Claim 3: For all z € ., Ao and 0 € Z,,, (§(¢(x))), |T*(0)] < 0.

To see Claim 3: Let B = {p € Yo : (Ele)(vza)ypf)(e = dom(®g,(sy(z)))}. For each p € B, there is a
unique €, < ¢ so that (VZ"(TI»Apf)(ep = dom(®g,(s))). Thus €, surjects onto K7 = {7(p,n,¢) : 7(p,n,¢) €

Ve(u(x))

Y*(o)} sinceif 7(p,n, ) € K, then n < ¢, and  is uniquely determined from p and 7. Hence |KJ| < |ep| < 4.
Since B C <“o is countable, Y*(0) =, K, and cof(§) > w, one has that [Y*(o)| < d.

Claim 4: For all x € J, ., Ao, |T(z)] < ¢ and thus Y(z) € P5(N).

To see Claim 4: Suppose v € Y(x) and [fl,,,,,, = 7- For each o € Z,, (£((x))), let hy(o) be the
ordertype of f(o) in Y?(¢). By Claim 3, hy : P, (&((x))) — 6. Let X2(y) = [Pflvei(ay and note
that X%(y) is independent of the choice of representative f. Let g% : &, (£(¢(x))) — § be defined by
g% (0) = ot(Y*(0)). Note that g* (o) < ¢ by Claim 3. Thus X7(y) = [hf}yw(m)) <9 veioyy < Jvequiay (8) =9
Thus X% : T(z) = [9%]ve(, (), Where [g7]1,(, (), < J. Now suppose 7o < 71 and yp,71 € T (). Let fo and f;
be such that [folu,(, ), = 70 and [filu, ), = 71- Thus {o € P, (§(u(z))) : fo(o) < f1(0)} € Ve(y(x))- Thus
S7(70) = [Pfolvecey < [Philveey = 27 (1) Thus ¥ : T(z) — [¢%],,,, s an order-preserving map. Thus
|Y(z)| < 0 and hence Y(x) € P5(A). This shows Claim 4.

Define x : [Jycp Aa = £ X Ps(A) by x(2) = (1(x), T(x)).

Claim 5: x : Uyep Aa = & X P5(N) is an injection.

To see Claim 5: Suppose o, 21 € Jyo, Aa and zg # 1. First suppose ¢(zg) # t(x1). Then x(x0) =
(t(z0), T(zg)) # (e(x1),Y(21)) = x(21). Now assume t(zg) = ¢(z1) and let a be this common ordinal.
Let A = {0 € Z,,(£(a)) : 0 is a-honest} and note that A € vg,). Let Ag be the set of ¢ € A so that
Ey = {f € surjy : dom(®e,(s)(w0)) = dom(Pg,(s)(x1))} is nonmeager in “o. Let A; = surjy \ Ag. Since
A= AgUA; and A € vg(,), exactly one of Ag € ve(q) or A1 € vg(q). Suppose Ag € vg(o). Fix o € Ag so
Eg is nonmeager. Let F7 = {f € ES : dom(®g,(f)(z0)) = € = dom(Pg,(s)(1))}. Since By = U, 5 Fs
and EY is nonmeager in “o, let & < 0 be the least € so that F7 is nonmeager. Since for all f € F?,
P, (f)  Aa — <)\ is an injection, Qoo (r)(20) # Peo(r)(21). For each n < &, let Hy be the set of f € FZ
so that 7 is least 7’ so that @e,(s)(20)(1') # Pey(s)(x1)(n'). Since F =, . Hy, let ), be the least 7
so that H7 is nonmeager. For each pair (Co, 1) of distinct ordinals in A, let K¢ be the set of f € Hp
so that @60( ) (0)(Ns) = Co and P, (p)(21)(7s) = C1. Since HF = H{KE  : 0, € AN G # G}, let
(€3, C7) be least pair (o, (1) so that K¢ . is nonmeager. Since “o has the Baire property, let p, be the
least p € <“o (under a uniformly deﬁned wellordering of <“o) so that K¢ & o is comeager in N7. Then

T(Pos 110, C5) € Y20(0) but 7(pe, s, CS) & Y™ (0). Let h(c) = 7(Pes0,(S). Then h(c) € Y¥(s) but
h(c) ¢ Y (o) for all o € Ag. Then [h],,,, € Y(zo) but [hl,. ., & Y(x1). So Y(xo) # Y(x1). Hence
X(zo) = (o, Y(20)) # (o, Y (1)) = x(21). Now suppose A; € v¢(q). Let 0 € A;. Then EJ is meager in “o.
Let I3 = surjg \ Ey which is comeager in “o. For each pair of ¢y # € less than §, let JZ . be the set of f € I3
so that dom(®g,(f)(z0)) = €0 and dom(Pe,(s)(z1)) = €. Then I3 = U{JT ., : €o,e1 < I A€o # e1}. Let
(€3, €7) be the least pair (eo, 1) with €9 # €1 so that JZ _ is nonmeager Without loss of generality, suppose
€5 < €. Foreach ¢ <\, let Q7 ={f € J& o : Po,(s)(®1)(€0) = (} & o = Uec) QF. Let (o be least ¢ so
that Qg is nonmeager. Since Yo has the Baire property, let p, be the least p € <“o so that Q‘CZU is comeager in
Ng. Let h(0) = 7(ps, €5, (o). For all o € Ay, h(o) € T (o) however h(o) ¢ T* (o). Thus [hly, ., € (1)
and [h],, ., ¢ Y(20). So Y(zo) # Y(z1). Therefore, x(xo) = (a, Y(20)) # (a, Y(21)) = x(21). Claim 5 has
been established.
Since | Zs5(\)| = |<°A| by Fact and |Zs(N\)| = |k x Ps(N)|, one has that there is an injection of
Ua<r Aa into <0A. O

Theorem 4.10. Assume AD and DCgr. Suppose X is a surjective image of R. Let k be a reliable cardinal.
Assume cof(0) > k. Let § and X be cardinals such that k < § < X < O and cof(§) > w. For each o < k, let
Vo be the unique supercompact measure on P, (a). Suppose one of the two cases occurs.
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(1) ju.(0) =98 and j, (N) = A
(2) For all o < K, j,,(6) =0 and j,, (N) = A

Let (Ao : a < K) be a sequence so that for all o € k, Ay € X, and |Aa| < [N, Then |U, ., Aal < [<°AL.
Proof. The proof follows from Theorem in a manner similar to how Theorem follows from Theorem
B9 0

Theorem 4.11. Assume AD". Suppose X is a surjective image of R. Let k be a reliable cardinal which
is below a Suslin cardinal. Let k < § < A < © be cardinals with cof(§) > w. For each a < k, let v, be the
unique supercompact measure on P, («). Suppose one of the cases occurs.

(1) 4u..(0) =0 and j, (N) = A.

(2) For all o < K, j,,(6) =6 and j,_ (A) = A.

Let (Aq : a < k) be a sequence so that for all a € k, Ay C X, and [Ay| < |<°A[. Then |U, ., Aol < [N
Proof. This result follows from Theorem and Theorem as in the proof of Theorem [3.16 O

It is implicit in the assumption that j,, (A) = A that the ultrapower [[ g () A/va is wellfounded. This
w1

is addressed in Fact [4.21] Then next few results will work toward showing j,, (d}) = i which is due
to Becker [I] Theorem 4.2. One will need an explicit characterization of the supercompact measure on
P, (k) when k is a reliable ordinal. Various constructions of a supercompact measure on &, (k) can be
found in Solovay [21], Harrrington-Kechris [I0], and Becker [I]. By Woodin’s result [26] concerning the
uniqueness of the supercompact measure on 2, (), they all define the same measure. Here, one will use
a construction of the supercompact measure from generic codings presented in [I3]. However, one uses the
“ordinal determinacy” clause of AD" to get the necessary determinacy of certain games with moves on the
ordinal. Many results below have AD™ as a hypothesis but had previously been proved under AD using the
determinacy of certain real games given by [10] Harrington-Kechris. The generic coding methods seems more
suitable for generalization as Becker-Jackson [2] and Jackson [I2] showed certain cardinals (for instance the
projective ordinals 5,11) have higher degree of supercompactness (i.e. are Jf—supercompact).

Fact 4.12. Let k be an ordinal, v be a supercompact measure on P, (k), and [ : <Yk — Kk be a function.
Then {c € 2, (k) : f[<¥o] Co} €.

Proof. Let A = {0 € P, (k) : f[<¥o] C o}. For the sake of contradiction, suppose A ¢ v. Let A =
P, (k) \ A and note that A € v since v is an ultrafilter. Fix a wellordering < of <“k. If o € A, then there
isap € <Yk so that f(p) ¢ 0. Let p, be the least such p according to <. By the countably additivity of
v, there is an 7 so that B = {0 € A |ps| = n} € v. If 1 = 0, then p, = () for all ¢ € B. By fineness,
C={oceB: f0)eo}tev. ForaloeC, f(p,) = f(0) € o which contradicts the definition of p,-.
Now suppose 7. > 0. For each k < 7, let ® : B — P, (k) be defined by ®y(0) = {p,(k)}. For all k < 7,
{o0 € B: 0 # ®(0) C o} € v. By normality, there is an ay € k so that Dy, = {0 € B : oy € Pi(0)} € v. Let
p € "r be defined by p(k) = ag. Thus E = {0 € B : p; = p} = (<5 Dr € v by the countably completeness
of v. By fineness, F ={oc € D: f(p) € 0} € v. Forall 0 € F, f(p,) = f(p) € o which contradicts the
definition of p,. This completes the proof. O

Definition 4.13. Formally a strategy on « is a function p : <“k — k. If pg and p; are two strategies, then
po * p1 € “k is defined by recursion as follows: If n is even, then (pg * p1)(n) = po(po * p1 [ n). If n is odd,
then (po * p1)(n) = p1(po * p1 | n). If f € “r, then let p; be the strategy defined by p}(2n) = f(n) and
p}(Zn +1)=0foralln € w. If f € ¥k, then let pfc be the strategy defined by pfc(Qn) =0 and p?c(Qn +1)=
fn). If f € ¥k, let foven € Yk and foqq € “k be defined by feven(n) = f(2n) and foqa(n) = f(2n+1). If p
is a strategy, then let =), =2 : ¥k — “r be defined by Z,(f) = (p * p})even and Z3(f) = (p} * p)odd-

Fix a bijection 72 : k — k x k. Let 752, 7% : K — & be defined by 75 (a) = 8 and 7}°%(a) = v where
7% (@) = (B,7). If p is a strategy on &, let x5 = 7% o p and Th = 7% o p.

Definition 4.14. Let k be a reliable ordinal with reliability witness ¢ which is a scale on W C R. Let
p: <YKk — Kk be a strategy on k. Let K, be the set of 0 € &, (k) so that ¢ is honest relative to the reliability
witness ¢ and p[<“o] C o.
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Fact 4.15. Let x be a reliable ordinal with reliability witness @ which is a scale on W CR. Let p: ¥k — K
be a strategy on k. Then K, € vy.

Proof. This follows from Fact [£.7] and Fact O

Generic coding can be used to define the unique supercompact measure on ., (k) when & is a reliable
ordinal. The game will be provided next and used to show that sets of the form K, for strategies p on &
form a basis for the supercompact measure on &, (k).

Fact 4.16. Assume AD". Let k be a reliable ordinal with reliability witness @ which is a scale on W C R.
Let v, be the unique supercompact measure on P, (k). Let A C P, (k). A € v, if and only if there is a
strategy p: <“k — Kk so that K, C A.

Proof. Fix A C 2, (k). Define the game G4 on k as following.

I Qp Qg Qy

Ga f

II e31 Qs Qs

Player 1 and 2 alternate playing ordinals from . Player 1 plays the ordinals as, and Player 2 plays the
ordinals as,41 for all n € w. Player 1 wins G4 if and only if {p(6,(f)) : n € w} € A. Let v} be the
set of all A C Z,, (k) so that Player 1 has a winning strategy in G4. Let B C “w be B = {r € “w :
(vn)(rl"l € W) A {po(r™) : n € w} € A}. The payoff set for G4 is &~'[B]. Since & : “rx — “w is
continuous, the “ordinal determinacy” clause of AD™ implies that G4 is determined. It can be shown that

v¥ is a supercompact measure on Z,, (k). (Thus one can define the unique supercompact measure v, on

P, (k) to be v}.)

If there is strategy p on & so that K, C A, then A € v, since K, € v, by Fact Now suppose
A € v, =v}. Let p be a Player 1 winning strategy in Ga. Let ¢ € K, which means that o is honest and
p[<¥o] C 0. Let g : w — o be a surjection. Let f = p* pg be the run of player 1 playing the terms of g
against Player 1 using p. Since p[<“c] C o and g[w] = o, one has that fw] = . Since f[w] = o is honest, by
the properties of the generic coding function (Fact [4.8)), ¢o(&,,(f)) = f(n). Thus {po(&,(f)) :n € w} = 0.
Since p is a Player 1 winning strategy, 0 = {po(&,(f)) : n € w} € A. Since 0 € K, was arbitrary,
K, CA. O

Fact 4.17. Suppose k be an ordinal, X\ < k, and v is a supercompact measure on k. Let Il : P, (k) —
P, (N be defined by Il(0) = o N A. Then the Rudin-Keisler pushforward p = IL,v defined by A € u if and
only if I7[A] € v is a supercompact measure on 2, ().

Proof. 1t is straightforward to see that p is an ultrafilter and countably complete. Suppose @ € A. Let
A={re 2, () :a¢c} By the fineness of v, B= {0 € Z,, (k) : a € k} € v. Note that B = II"1[A].
By definition A € p. Thus p is fine. Let @ : 2, (\) = £, (\) be such that C = {7 € L2, (\) : 0 #£ &(7) C
7} € p. Define ¥ : &, (k) = P, (k) by ¥(c) = ®(c N A) and note that ¥ actually maps into £, ().
Let D={c € Z,,(k): 0 # ¥Y(cNA) Co}. Note that D =T "}C]. Thus D € v since C € pu = l,v. By
the normality of v, there is an o € k so that £ = {0 € &, (k) : a € ¥(0)} € v. Note that & € A. Let
F={re 2, ()\):ac®(r)} Note that E =II"'[F] and hence F € u. This shows that x is normal. O

Using the proof of Fact one can provide an explicit characterization of the supercompact measure on
P, (A) when A less than or equal to a Suslin cardinal using the generic coding on a reliable ordinal greater
than or equal to A.

Fact 4.18. Assume ADV. Let X be less than or equal to a Suslin cardinal and let r be any reliable cardinal
greater than or equal to A. Let ¢ be a reliability witness for k. For any strategy p on k, let K;,\ ={onNAi:

o€ K,}. Forany A C Z,,(N), A€ vy if and only if there is a strategy p on K so that K;‘ C A.

Proof. Let II : &, (k) = P, (A) be defined by II(c) = o N A. By Fact and the uniqueness of the

supercompact measure on Z,, ()\), one has that vy = Il,v,. Suppose A € vy. Then II7![A] € v,. By Fact

there is a strategy p on & so that K, C II"*[A]. Thus Kj ={ocNX:0ceK,} ={ll(0):0 € K,} C A.
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Now suppose there is a strategy p so that K;‘ C A. Since H_I[Kg‘] 2 K,,, H_l[K’;\] € vx. So K’;\ € vy.
Thus A € vy, O

The following is straightforward.

Fact 4.19. Suppose k is an ordinal, |k| < A < k*, and v is a supercompact measure on P, (k). Let
Tk = X\ be a bijection. Let I1 : P, (k) = Py, (N\) be defined by (o) = w[o]|. Then the Rudin-Keisler
pushforward p = IL,v defined by A € p if and only if II71[A] € v is a supercompact measure on P, (\).

Fact 4.20. Assume AD and DCg. For any k less than or equal to a Suslin cardinal, let v, denote the unique
supercompact measure on P, (k). If X < k*, then vy is Rudin-Keisler reducible to v,.

Proof. If A < k, then Fact defines a supercompact measure on &, (\) which is Rudin-Keisler reducible
to v,. By Woodin uniqueness of the supercompact measure on &, (), this measure must be v,. Similarly,
if Kk < X< kT, then Fact defines a supercompact measure on 2, () which is Rudin-Keiser below v;.
Again by uniqueness, this must be v}. ]

Using this explicit characterization of the supercompact measure, it will be shown next that the ultrapower
ordinals below © by the supercompact measure on &, (k) when & is below a Suslin cardinal is wellfounded
under AD™.

Fact 4.21. Assume ADT. Let k less than or equal to a Suslin cardinal. Let v, be the unique supercompact
measure on P, (k). Let (v,)*(Z®) be the unique supercompact measure on 2, (k) in L(P(R)). Let

L(2(R))
A< O. Then v, = (v,)HZ®), ngl(ﬁ) A v = (H(@wl(ﬁ) )\/V,i) , and Hﬁ’wl(n) A/ Vi is wellfounded.

Proof. Since k and \ are less than O, there are surjections 1o : R = k and 71 : R — A. Thus 7y : R — 2, (k)
defined by mo(r) = {mo(r[") : n € w} is a surjection. For each A C R, let Cy = {ma(r) : r € A}. For
any X C Z,,(k), there is an A € Z(R) so that Cy = X. Let m3 : R = Z,, (k) x A be defined by
m3(r) = (ma(rl), my (r1)). 73 is a surjection. For any A € 2(R), let D4 = {n3(r) : » € A}. Thus for any
[P, (k) = A there is an A € Z(R) so that D4 is the graph of f. The prewellorderings corresponding
to mp and 7 are subsets of R. Thus L(Z(R)) can recover Cq and D, from A € Z(R). This shows that

) L(P(R))
Por () = (P () and [, A= (T, ()

Note that since « is less than or equal to a Suslin cardinal in the real world, x is still less than or equal
to a Suslin cardinal in L(Z(R)). Since the Suslin cardinals are unbounded below the supremum of the
Suslin cardinals, there is a reliable ordinal (even a Suslin cardinal) & > k. Since & is a reliable ordinal, fix a
reliability witness @ on W C R. Since @ = (p,, : n € w) is a scale, § € L(Z(R)). For any strategy p on &, let
K, be the set of 0 € &,,(k) such that p[~“o]| C o and o is honest relative to g. Let K = {ocNk:0 € K,}.
By Fact A € v, if and only if there is a strategy 7 on & so that K C A. Strategies on &k are essentially
subsets of k. By using the Moschovakis coding lemma applied in L(Z(R)) using a surjection of R onto % in
L(Z(R)) (for instance ¢g), one can show that the real world and L(Z?(RR)) have the same set of strategies on
k. Note also that for any strategy p on k, K = (K’;)L(‘@(R)) since the notion of honesty is absolute. Using
the explicit definition of v, (having sets of the form K} as a basis) applied in the real world or L(Z(R)),
) L(2(R))

_ L(2(R o— : : _
one has that v, = (v,.)*(?®). This with the previous observation that H@M(E) A= (Hﬂwl(n) A
o L(2(R))
implies that Hé?wl(n) A v, = (HL@%(K) /\/V,g> .
Since AD' holds in the real world, L(Z(R)) = ADT. By the above, H@wl(ﬁ) A vy is wellfounded

L(Z(R))
if and only if (H P () A/ 1/5) is wellfounded. So work inside L(Z(R)) and assume for the sake of
contradiction that there is some & less than or equal to a Suslin cardinal and ordinal A < © so that Ht@wl (1) A /
vy, is illfounded. For each o < O, let W, be the set of reals of Wadge rank less than a. Let ¢ be the sentence

“there exist ordinals v and 5 so that L,(W3) = (3k, A)(k is less than or equal to a Suslin cardinal A A <
OA Hﬁ%l () M Vi is illfounded)”. By the reflection theorem and since &(R) = We, there is some « so that

L.We) E (3, A)(k is less than or equal to a Suslin cardinal AX < O A H‘@M(N) A/ vy is illfounded). Thus
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L(Z(R)) E ¢ with witnesses « as above and 8 = ©. By the ¥j-reflection into Suslin-coSuslin (Fact ,
S <5, L(Z(R)). There exists a < S and S € S so that

L,(W3) = (3K, A)(k is less than or equal to a Suslin cardinal A X < © A H A/, is illfounded).
gawl (%)
Since «, 8 < ©, Lo(Ws) is a surjective image of R. Working in L(Z?(R)) = DCg, one can find (f,, : n € w)
so that f, € LaWg), fn: Puw (k) = A, and Lo(Ws) = [fatilu. < [fuly. for each n € w. For each n € w,
LoWg) = A, ={0 € P, (k) : fas1(0) < fulo)} € v,. Note Lo(Wp) [= & is less than or equal to a Suslin
cardinal. Thus L, (W) has a reliable ordinal & > k. Pick a reliability witness J for & in L,(WWg) and note
that it is a reliability witness for & in L(#(R)). For any strategy p on &, define K , relative to this reliability
witness ¢. By applying the explicit definition of the supercompact measure on x within L, (W3), for each
n € w, there is a strategy p on & so that K C A,,. Again since there is surjection of R onto L,(W3) in
L(Z(R)), one can use ACS in L(Z(R)) to find a sequence (p, : n € w) so that for each n € w, p, € La(Ws)
is a strategy on &, and K C A,. Note for all n € w, K € v,. Since L(Z(R)) = v, is countably compete,
Mnew Kpy, # 0. Let 0 € N,cp, K5 € Npew An- Then in L(Z(R)), (fu(o) : 7 € w) is an infinite descending
sequence of ordinals below \. Contradiction. ]

Fact 4.22. (Almost everywhere honest-enumeration uniformization) Assume ADT. Let k be a reliable ordinal
with reliability witness @ which is a scale on a set W C R. Let R C P, (k) X “w be such that dom(R) =
P, (k). There is a strategy p on k with the following properties.

(1) For all s € <“k with |s| odd, 7)(s) € w.

(2) For all f € “k such that flw] € Ky, R(f[w],Efg(f)).

Proof. Consider the game Hp on « defined as follows.
I o 1% oy
Hp g fx
11 B B3 Bs

2 (aq,20) ™% (g, 1) T2 (as, z2)

Player 1 and Player 2 alternate playing ordinals from . Player 1 plays as, and Player 2 plays fo,4+1 as
in the picture above for each n € w. Practically, one should regard Player 2 as playing a pair as,+1 € K
and z,, € w such that 72(ag,41,7,) = PBons1. Let g = (g, f1,0a2,83,...). Let f = (o, : n € w) and
x = (x, :n € w). Player 2 wins if and only if the conjunction of the following holds.

e Foralln e w, z, € w.
o R({vo(&n(f)) :n € w} x).
This game is determined by AD™.
The claim is that Player 2 has a winning strategy in Hg. For the sake of contradiction, suppose p is a
strategy for Player 1 in Hg. Let 0 € &, (k) have the following two properties.
(1) o is honest relative to the reliability witness .
(2) p(0) € 0. For all k € w, Yo, ..., Yoka1 € T, NG, -y Nk € W,

p(<’707 7Tm2(’71, nO)v V2, 71—&2(’737 711), ey WK72(72k+1a nk)>) €o.

Let # € “w be such that R(o,z). Let h : w — ¢ be a surjection onto 0. Let h : w — & be defined by
h(n) = 7%2(h(n),z(n)). Consider the run of Hg where Player 1 uses p and player 2 uses p}%. Let g = px p}%.
Let f(2n) = g(2n) and f(2n + 1) = 75*(g(2n + 1)) = h(n). By (2), for all n € w, f(2n) € o. Since for all
n€w, f(2n+1) = h(n) and h : w — o is a surjection, flw] = . By (1), flw] is honest. By the properties
of the generic coding function & (Fact [I.8), ¢o(&,(f)) = f(n). Thus o = {@o(&,(f)) : n € w}. Note that
z(n) = 7*(g(2n + 1)) and R(o,z). This shows that Player 2 has won this run of Hp which contradicts p
being a winning strategy for Player 1.

Thus by the determinacy of Hgr, Player 2 has a winning strategy p. By the first condition for Player
2 winning, condition (1) must hold for p. Now suppose h € Z,, () is such that hlw] € Ky~. Consider
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the run of Hi where Player 1 plays by p}L and Player 2 plays by p. Let g = p}L xp. Let f:w — K
be defined by f(2n) = g(2n) and f(2n + 1) = 75*(g(2n + 1)). By the hypothesis that hlw] € Ky,
f@n+1) = 7%g(2n + 1)) € hlw]. Thus flw] = {f(n) : n € w} = h|w] which is an honest set by the
hypothesis that hlw] € Kyx. By the properties of the generic coding function, ©0(6,(f)) = f(n). Thus
hlw] = {0o(G,(f)) : n € w}. Let z € “w be defined by z(n) = 77"*(g(2n + 1)). Since j is a Player 2
winning strategy, R({po(®,(f)) : n € w},z) holds or equivalently R(h[w],z). Since x = Ezg (h), one has

that R(h[w], E?; (h)). This completes the proof. O

In the following, one will focus on the supercompact measure on &, (w,). One will develop first a coding
of strategies on w,,. The following objects will be fixed for the rest of the discussion concerning wy,.

Definition 4.23. Fix a II} set W and a A} scale @ on W of length w,, which witnesses the reliability of

Wy (This can be obtained by applying the scale property for IT} on some complete IT} set. More explicity,

one can let W = {2* : x € R} and let @ be a modification of the sharp scale so that ¢y : W — w,, is a

surjection.) Let <,, denote the prewellordering on W induced by ¢,, : W — w,,. Note that <,€ A} for all

n € w. Fix a bijection ¥« <¥ : w, — <“(w,). Fix U C R x R x R which is universal for X1 subsets of R?.
Let scode be the set of = € R so that the following holds.

(1) For all s € <“w,,, there exist y,v € R such that y € W, 7%« <%(pq(y)) = s, and U(x,y,v).
(2) For all y,z € W, for all v,w € R, if vo(y) = @o(z), U(z,y,v), and U(zx, z,w), then v,w € W and
@o(v) = po(w).

For any z € scode, s € <“(w,), and « € w,,, let p,(s) = « if and only if there isay € W and v € W so
that 79« <%(po(y)) = s, wo(v) = @, and U(z,y,v). By the two properties of = € scode, p, is a well-defined
function from <“(w,,) into w, (that is, p, is a strategy on w,,).

Let scode™ be the set of z € R so that the following holds.

(a) x € scode.
(b) For all s € <¥(w,,) so that |s| is odd, for all v € R, if U(z,y,v), then 77 (po(v)) € w.
Note that if 2 € scode”, then Ezg PYR — Yw.

Fact 4.24. For all strategies p : <“(w,) — w,,, there is an x € scode so that p = p,.

Proof. Define R C W x W by R(y,v) if and only if p(7“<<“(p0(y))) = ¢o(v). Applying the Moschovakis
coding lemma to the pointclass 31 with the prewellordering g, there is an S C R with S € X} so that for
all B € w,, there exists a y € W with ¢g(y) = 8 and v € R so that S(y,v). Since 7<% : w, — ““(wy)
is a bijection, this can be expressed also as: for all s € <¥(w,,), there exist y € W and v € R so that
T < (0o(y)) = 8, S(y,v). Since U C R x R x R is universal for 31 subsets of R?, there is some = € R so
that U, = S. By the previous observation and the fact that U, = S C R, one has properties (1) and (2) of
Definition and that p, = p. O

One will need to make several complexity computations in order to use the Kunen-Martin theorem to
bound the ultrapower j,, . The closure of Al 3! and IT} under w,-length unions will be helpful in making
several complexity computations. This result, due to Harrington and Kechris, has analogs for other scaled
pointclasses. For the results here, one can make even better complexity calculations using the Kechris-Martin
theorem ([14] Corollary 1.6) to show 21 and IT} are closed under w,,-length unions and intersections. Jackson
has extended the Kechris-Martin theorem throughout the projective hierarchy using the description theory
([I3] Section 4.4). However, these arguments are not known to generalize much further.

Fact 4.25. (Harrington-Kechris; [10] Corollary 2.2) Assume AD. For all n € w, for all k < &), I,

XL, and A}, are closed under k-length union. In particular, I}, 3}, and A} are closed under w,,-length
UNLONS.

Proof. The last statement follows from the first using n = 3 and the fact that 6% = Wyt1- O

Fact 4.26. (Martin, Moschovakis; [15] Theorem 8.4) Assume AD. For alln € w, A}, is closed under
k-length unions and intersections for all k < 6én+1. In particular, A} is closed under w,,-length unions and
intersections.
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Fact 4.27. Assume AD. scode and scode® are Al.

Proof. For each s € <“(w,), let A, be the set x € R so that there exist y,v € R so that y € W, ¢o(y) =
(mw<@)=1(s), and U(z, y,v). Note that Ay is 31 since W is I13, ¢g is a Ai-norm, and U is 3. In particular,
Agis AL Let A ={As:s € <¥(w,)} which is A} since A} is closed under w,-length intersection by Fact
4.25] (A is actually E1 since X} is closed under w,-length intersections by the Kechris-Martin theorem.)
Note that A is the set of £ € R which satisfies Definition property (1). Let B be the set of x which
satisfies Definition property (2). Since W € II3, U € 21, and ¢g is a A} norm, one has that B is IT3.
Since scode = AN B, scode € A].

Let X = {a € w, : 77“%(a) € w}. For each a € X and s € <“(w,) with |s| odd, let C, , be the set
of z so that for all y,v € R, if v € W, @o(y) = (7~ <9)"1(s), and U(z,y,v), then po(v) = a. Note that
Cos is L. Let C = {U{Cuys : @ € X} : s € <“(wy,) A|s| is odd}. Since A} is closed under w,-length
intersections and unions, C' € A}. Since scode™ = scode N C, scode™ is A]. g

Lemma 4.28. Assume AD.

(1) Let String C w x R x R be defined by String(n,r,y) if and only if y € W, for all m < n, rl™ €
W, and 7 <“(po(y)) = (0o(r®), ..., 0(r"=1)) (that is, 7 <(po(y)) is the length n-string
(o (), ..., wo(r*=1))). String is AL,

(2) Let IntPart C R x w be defined by IntPart(v,n) if and only if v € W and 75 (¢o(v)) = n. IntPart €
Al

(3) Let ONPart C R x R be defined by ONPart(v,w) if and only if v € W and 752 (po(v)) = @o(w).
ONPart € Al

(4) There is a A} relation NormCompare C w x w x R x R so that for all m,n € w and v,w € R,
NormCompare(m, n, v, w) if and only if v,w € W and @ (v) = on(w) (where @ = (py, : n € w) come
from the fized reliability witness).

(5) There is a T set Honest C R so that Honest(r) if and only if for alln € w, ™ € W and {po(rl™) :
n € w} is honest relative to the reliability witness @.

(6) There is a ¥3 relation Runs: C RxR and a IT} relation Runygy so that if x € scode, then Runs; (z,7)

if and only if Runpy (2, 7) if and only if (o(rl™) :n € w) is a run according to p, used as a strategy
for Player 2.
(7) There is a X3 relation Closedzé C R x R and II3 relation Closedné C R x R with the property that

whenever x € scode, Closeds: (x,7) if and only if Closedy (z,7) if and only if for alln € w, rlew
and for all for all s € <“({po(r™) :n € w}), pu(s) € {wo(r™) : n € w}.

(8) There is a X} relation fCIosedzl CRxR and I} relation fCIosureH1 C R x R with the property
that whenever x € scode, fCIOSEdEI(LU r) if and only if fClosedyy; (z, 7") if and only if for all n € w,

ri"l € W and for all s € <w({g00(r["]) n € wh), xpe(s) € {po(r ["]) n € w}.

Proof.

(1) For each s € <*(w,), let A; be the set of (|s|,r,y) such that y € W, o(y) = (7*=<<)~1(s), and for
all m < n, rl™ € W and @ (™) = s(m). Note that A, € A} and String = J{4, : s € <“(w,,)}.
String € Al since A} is closed under wy-length unions by Fact

(2) For each @ € w, and n € w, let Vo, = {(v,n) : v € W A o(v) = (72)"((a,n))}. Since pp is
a Al-norm, V, , € Al. Then IntPart = J{Van : @ € w, An € w} which is A} since A} is closed
under w,,-length unions.

(3) For each «, 8 < w,, let (v,w) € Aq g if and only if ¢o(v) = 7« 2(a, B) and 8 = po(w). Aa,pg is Al.
ONPart = J{A4a 5 : @, B < w,} which is A} since Al is closed under w,-length unions.

(4) Let m,n € w and @ < w,,. If « is greater than or equal to the rank of either ¢, or ¢,, then let
Amon.a = 0. If a less than the rank of both ¢,, and ¢, then let Ay, 1.0 = {(m,n,v,w) : @ (v) =
aApp(w) = a}. Apna is A} since all the norms in ¢ are A} norms. Then NormCompare =
U{4m.na:mn€wAa<w,} which is A} since A} is closed under w,-length unions.

(5) Note that r € Honest if and only if for all n € w, there exists w € W so that @o(w) = @ (™) and
for all k& € w, there exists j € w such that NormCompare(O,k,r[j],w). Since NormCompare is A3,
Honest is 3.
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(6) Let Runs;(z,7) if and only if for all n € w, "l € W and there exist y, v € R so that String(2n-+1,7,y),
Ul(x,y,v), and @o(v) = @o(rl2nti). Runs; is 31 and if z € scode, then Runs; (z,7) has the intended
meaning stated above.

Let Runyyy (z,7) if and only if for all n € w, r[® € W and for all y,v € R, if String(2n + 1,7,7)
and U(z,y,v), then ¢pg(v) = po(rl2rti). Runp is IT} and if x € scode, then Runpp (2, ) has the
intended meaning.

(7) This is a similar and simpler than the argument shown next for (8).

(8) Define fClosedyy; (x,7) if and only if the conjunction of the following holds.

e Forallnew, r™ e W,

e For all n € w, for all t,y,v, vy € R, if the conjunction of the following holds:

— For all k < n, there exists i € w, @o(tF) = @o(rll)
— String(n, t,y).
- U({E, Y, U)
— ONPart(v, vg).
then there exists a j € w, po(vo) = @o(r¥l).
Note that fClosedpy; € I1:.

Define fCloseds;: (z,7) if and only if the conjunction of the following holds.

e Forallnew, r™Mew.

e For all n € w and function ¢ : n — w, there exist j € w and ¢, y, v, vy € R so that the conjunction

of the following holds.

— For all k < n, tiF = plt®)],
— String(n, t,y).
- Uz, y,v)
— ONPart(v, vp).
— ¢o(vo) = wo(rl).

Note that fClosedy; is 23.

If = € scode, then fCIosedz;:l3 and fCIosedHé have the intended meanings.

O

Fact 4.29. Assume AD. Suppose x € scode”. Let A be the set of f € “(wy) so that flw] € K «.. Then
22, [A] is B3 (note that since x € scode™, E2.,, [A] is a set of reals).
Pz Px

Proof. Observe that u € EE% [A] if and only if there exist 7, ¢ € R so that the conjunction of the following
holds
fCloseds; (z,7)
Honest(r).
For all n € w, t" = pll,
Rung; (z,1).
e For all n € w, IntPart(t2* 1 u(n)).
The above expression is 31 and it works because x € scode® (and note that scode® C scode). O
Fact 4.30. (Steel; [23], [I3] Theorem 2.28) Assume AD and DCg. If k < © is a limit ordinal, then there is

a surjective norm v : P — Kk which is §-Suslin bounded for all 6 < cof(k), which means that for all A C P
that are 6-Suslin, sup(p[A]) < k.

Fact 4.31. Assume ADV. Let k < © with cof(k) > w,,. Let ® : P, (w,) — k. Then there is an A € v,
so that sup(®[4]) < k.

Proof. Fix k < O with cof(k) > w,. By Fact let ¢ : P — Kk be a surjective w,-Suslin bounded
prewellordering. Fix & : Z,, (w,) — k. Let R C £, (wo) x R be defined by R(o,p) if and only if

®(0) = (p). Applying Fact there is a strategy p so that the following holds:
(1) For all odd length s € <“(w,,), 77 (s) € w.
(2) For all f € “(w,) so that flw] € KX;;’W:R(f[WLEi;w ().
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By Fact there is an a € scode so that p, = p. Moreover, x € scode™ by condition (1) above. Let B
be the set of f € “(wy) so that flw] € K,«.. By condition (2), for any f € B, R(f[w],Ef_:ﬁ (f)) and thus
:3% (f) € P by the definition of R. Thus E ww [B] C P and EQ%, [B] is £} (and hence w,-Suslin) by Fact
4.290 Since ) is a w,,-Suslin bounded norm, there isad <k so that Y= 1[B]] € 0. K xow € Uy, by Fact
4.15| Let o € K »w. Let f : w — o be any surjection and thus flw] =o. Note that f € B. Therefore by (2),

R(o, :3;%0 (. ThlS means ¢(o) = ¢(:25w (f)). Since (=2 e (f)) € E _T;u; [B], one has that (=22 o (f)) <é.

T

So @(o) < 4. This shows that sup(®[K,« ) w]) <0 < k. O

Definition 4.32. Let scode™ consists of those 2 € R so that the following hold.
(1) x € scode™.
(2) For all f € “(w,) so that flw] € K ww, E2.. (f) € W (where recall W is the underlying set of norms
that form the reliability witness ). 4

(3) Forall fo, fi € “(wy) so that folw], fi[w] € K we and folw] = fi[w], then wo(Ei:;J (fo)) = apO(Ein; (f1)).
If x € scode™, then let ®, : Kywo — w, be defined by @, (0) = wo(Ef;Jw (f)) for any f:w — o which is a

surjection. The conditions of the definition of scode™ imply that ®, is a well-defined function independent
of the choice of f which surjects onto o.

Fact 4.33. Assume AD". For any ® : 2,,, (w.,) = w.,, there is an x € scode™ so that [®],, = [®,],,_-

Proof. This was shown in the proof of Fact (Replace the v : P — k of the proof of Fact with
©o : W — w,,.) (Moreover, if one inspects the payoff set for Player 2 in the game Hp for the relevant relation
R from Fact [£.31] one can even strengthen Definition condition (2) to say that for all f € “(wy),
B (f) eW) -

Fact 4.34. Assume AD. scode™ is Al.

Proof. Note that z € scode™ if and only if the conjunction of the following hold.

e 1 € scode™.
e For all r t,u € R, if the conjunction of the following hold:
— Honest(r).
— fCloseds; (, 7).
— For all n € w, tl?" = ¢l
— For all n € w, IntPart(t2"1 u(n))
— Rung; (2, 1),
then v € W.
e For all rg, tg, ug,r1,t1,u1 € R, if the conjunction of the following hold:
— Honest(rg) and Honest(ry).
— fCloseds;: (,79). fCloseds (z,71).
For all n € w, (to)?™ = (ro)" and ()2 = (ry).
For all n € w, IntPart((to)2" 1 ug(n)) and IntPart((to) 21 ug(n)).
Runs; (x,to) and Runs; (x,t1),

— For all m € w, there exists n € w so that po((r)™) = o((r1)™). For all m € w, there exists
n € w so that oo((r1)™) = @ ((re)™).
then @o(up) = @o(u1).
The first point is A} since scode® € A}. The second and third points are ITi. The entire expression is

Al O
Fact 4.35. (Kunen-Martin Theorem) Assume AC%. Every k-Suslin wellfounded relation on R has length
less than k™.

Fact 4.36. (Becker; [1] Theorem 4.2) Assume ADT. Let oo < 83 = w41 and v, be the unique supercompact
measure on P, (a). Then j,, (83) = ju. (Wota) = 0) = Weta.
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Proof. Note that these ultrapowers are wellfounded by Fact For all a < 6% = Wy+1, Yo is Rudin-Keisler
reducible to v, by Fact and therefore j,,_ (83) < Jvw, (84). Thus it suffices to show that j,,,_ (83) = 45,

The representatives of ordinals below j,,,_ (8}) are functions of the form @ : 2, (w,) — 8;. Since d}
is regular, Fact 4.31] implies that ® is v, -almost equal to a function which is strictly bounded below 5}1.
Thus jy,, (8)) = sup{ju, (B) : B < d;}. To prove the theorem, it suffices to show that Jua, (B) < o} for all
B < 8.

Let 8 < 54 = Wy42. Since 53 = W1, let Yg : 6 — B be a surjection. For each ® : &, (w,) — 651)), let
d: P, (we) — B be defined by ®(0) = 9(®(0)). For every Y : Z,, (ww) — B, thereis a @ : Py, (ww) — o3
so that ® = Y. Thus ¥ : G, (85) = ju._ (B) defined by ¥([®],, )= [(I>],,w for any ® : Z,, (w,,) — 03 is a
well-defined surjection. Since 8y is a cardinal, it suffices to show that Jve, (83) < 85

Since 83 is regular, Fact again implies j,,, (83) = sup{jp,_(7) : v < 83}, Since dj is regular, it
suffices to show that j,,_ (7) < o) for all v < 3. Since 83 = w,,41, the same argument from the previous
paragraph shows that j,,, (w.) surjects onto j,,, (7) for all v < d3. Finally, it has been shown that to prove
the theorem it suffices to show j,,, (w.) < ;.

Define a relation compare C R x R as follows: compare(z,y) if and only there exists a z € R such that the
conjunction of the following hold.

(1) =,y € scode™ and z € scode.

(2) For all 7, tg,t1,up, u; € R, if the conjunction of the following hold:
e Honest(r).
e Closeds; (z,7), fCloseds; (z,7), and fCloseds; (y, 7).
e For all n € w, (to)P" = ()P = ¢l
e For all n € w, IntPart((to)!?" 1, ug(n)) and IntPart((¢,)2" 1 uy (n)).
 Runy:(2,t0) and Runs; (y,t1).

then ¢o(uo) < ¢o(u1).
Observe that (1) is A} and (2) is ITi. Thus compare is 31.

Claim 1: compare(z,y) if and only if z,y € scode™ and [®,],, < [®y].,_ -

To see Claim: (=) Let z witness the existential quantifier in compare(z,y). Note K« NK, wo Ky, € Vi,
Let 0 € K, ww K, s N K,,. By definition, this means that o is honest and closed under X5y Xpe s and ps.
Let f:w 0 be any burjectlon Let g, = pf * pr and g, = pf * py. Let r,tg,t1 be such that for all n € w,
po(r™) = f(n), Il = (to)", rinl = (1,)Bn, @0((%)[”]) = gu(n), and @o((t1)") = g,(n). For all n € w,
let ug(n) = 7% (o ((to)2"1)) and uy(n) = 722 (po((t1)2")). r, to, t1, ug, uy satisfy the hypothesis
of the conditional in statement (2). Thus g (ug) < o(u1). Since ug = Ei;; (f) and u; = Ei;w (f), one has
that ©,(0) = ¢o(uo) < wo(u1) = (o) by definition. Since o € K ww N Kyso NK,, € vy, was arbitrary,
this shows that [®.],, < [®y],,_ -

(<) Suppose [®,],,, < [®y]u,, . Theset A = {0 € P, (w,) : Pu(0) < ®y(0)} € vy,. By Fact
there is a strategy p so that K, C A. By Fact there is a z € scode so that p, = p. By much of the
same argument as before, z witnesses the existential to show that compare(x,y) holds. This establishes the
claim.

Define an equivalence relation ~ on scode™ by z ~ y if and only if [®,],, = [@y]v,,, - Let H = scode™/
~ be the set of equivalence classes of ~. For X,Y € H, define X <Y if and only if for any z € X
and y € Y, [®.],, < [®yly, . Observe that (H, <) order embeds into j,,_(w.) by the well-defined map
A(X) = [®,],,, for any € X. This shows that (H,<) is a wellordering. Hence by using the claim,
compare is a wellfounded relation whose length corresponds to the ordertype of (H, <). By Fact every
®: P, (w,) = (wy) has an @ € scode™ so that [®],, = [®,],,_. This shows that the ordertype of (H, <)
is exactly jy, (w,). Hence the length of compare is exactly j,, (w,). Since compare is a wellfounded X}
and hence 6% = wy,+1 Suslin relation, the Kunen-Martin theorem states that the length of compare is less
than (03)" = (Wut1)" = w2 = ;. Thus j,, (w.) < 8;. This completes the proof. O

Theorem 4.37. Assume ADT. Let (A, : o < 83) be such that Ua<5% Ay = P(8}). Then there is an a < 83

so that —(| Ay < |<%3681)).
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Proof. Suppose Z(8}) = Ua<5% Ag and |Ay| < |<%5681] for all o < 3. 61 is a Suslin cardinal and hence

reliable. By Fact the hypothesis of Theorem holds. Thus |2(8})| = ‘Ua<5é Au| < |<9:81). 61

is a weak partition cardinal and hence a measurable cardinal. Thus 6}1 does not inject into () for any
1

v < 8}. So |<%18y| < |22(8})| by Fact Contradiction. O

This argument can be generalized to the suitable analog at higher projective ordinals.

Theorem 4.38. Assume ADT. Letn € w. Let (Ay : a0 < 5%n+1> be such that Ua<5; N Ay = P(83,.1)-

Then there is an o < (5%”_’_1 so that —(|Aq| < |<5%n+26%n+2|).
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